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Manganese is a strategic mineral resource primarily utilized in iron and steel
metallurgy. As the world’s largest consumer of manganese, China’s future
demand for this resource is crucial for its economic and social development and
industrial planning. This paper focuses on manganese demand in China’s iron
and steel sector, establishing a combined grey prediction model and support
vector regression model (GM-SVR) to forecast China’s crude steel output from
2024 to 2035. Based on this output, we estimate manganese resource demand
from 2024 to 2035 using the steel-to-manganese ratio. We employ qualitative
and quantitative analyses to project manganese resource needs for this period
by applying the “S” shape law and sectoral demand forecasting methods. These
three methods indicate a gradual decrease in China’s manganese demand,
with projections of 12.86 million tons in 2025, 11.76 million tons in 2030, and
10.64 million tons in 2035. Despite the yearly decline in demand and tightening
environmental policies, the overall need for manganese in China remains
substantial. Therefore, increasing investment in manganese ore exploration
is essential, as well as enhancing research and development in application
technologies, optimizing the structure of manganese-related industries, and
improving green growth and resource management.

KEYWORDS

manganese resources, “S” shaped law, grey support vector machine model, crude steel
production, sectoral demand forecasting method

1 Introduction

As a strategic metal, manganese is extensively used in iron and steel production,
metallurgy, batteries, and the chemical industry. It is an essential bulk raw material for
industrial processes, prompting countries worldwide to categorize manganese as a key
mineral. In 2023, China accounted for 64% of global manganese consumption, making it
the largest consumer of manganese resources. The growth of China’s manganese resource
industry is crucial for the overall development of the global manganese sector. A healthy
Chinese manganese industry significantly influences the advancement of manganese
resources worldwide. Manganese is a critical raw material for steel production, with 90%
of China’s manganese consumption used in this sector. As a deoxidizer and desulfurizer,
which removes oxygen and sulfur impurities during iron and steel smelting, manganese
enhances the mechanical properties of steel. It improves strength without significantly

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1538908
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1538908&domain=pdf&date_stamp=2025-03-26
mailto:fhy0205@163.com
mailto:fhy0205@163.com
https://doi.org/10.3389/feart.2025.1538908
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1538908/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1538908/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1538908/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhao et al. 10.3389/feart.2025.1538908

reducing ductility. Therefore, manganese consumption plays a
pivotal role in China’s steel industry.

Previous studies on manganese resources mainly focus on
the types of global manganese ore deposits, their reserves and
distribution, production, consumption, and trade (Wang, et al, 2019;
Sun et al., 2020; Ren et al., 2022; Sun et al., 2022; Guo et al., 2024).
However, more research literature on manganese resource demand
forecasting needs to be conducted. The inverted ‘U’-shaped law was
utilized to predict manganese consumption in a previous study,
which posited that China’s consumption of manganese resources
would peak between 2016 and 2017 (He, 2020). Currently, standard
methods for predicting mineral resource consumption include the
“S” shape law prediction method, which relates per capita resource
consumption to per capita GDP (“S” shape law prediction method)
(Wang et al., 2015; Gao et al., 2019; Zhang, 2019), the sectoral
demand forecasting method (Wu, 2021; Wu et al., 2021; Wang et al.,
2024), the trend analogical analysis forecastingmethod (Zhang et al.,
2024), mathematical model forecasting method (Wu et al., 2021;
Zhang et al., 2024), and a combination of modeling and machine
learning techniques (Ren et al., 2021; Ai et al., 2023; Wang et al.,
2023; Zhou et al., 2024). China consumes 90% of its manganese
in iron and steel metallurgy, and manganese demand can be
predicted using the linear relationship between crude steel output
and manganese consumption (He, 2020). Standard methods for
predicting crude steel output include the “S”-shaped law of mineral
resources consumption, ARIMA, and support vector machine
(SVR) model (Wang et al., 2015; Ge, 2017; Liu, 2020; Wang and
Gao 2020). Support Vector Machine (SVM) models effectively
address nonlinear issues and are suitable for small sample datasets,
offering highermodel accuracy (Ge, 2017). However, themanganese
demand forecasts do not account for changes in manganese
consumption across different sectors. As manganese consumption
in the new energy sector grows rapidly, its share of China’s overall
manganese consumption is expected to rise in the coming years
(Zhang, 2022). Sectoral demand forecasting involves a detailed
analysis and prediction of each sector (Wu, 2021; Wang et al.,
2024) to enable more accurate forecasting of future
manganese consumption.

In this paper, based on previous research and manganese
consumption big data, themanganese consumption structure as well
as the consumption situation in China is studied. Furthermore, the
potential shortfall of manganese consumption in various fields is
analyzed. A support vector machine (SVM) model is constructed
for crude steel production forecasting, and the correlation between
the model’s eigenvalues and the accuracy of the prediction error is
investigated. The model’s performance is verified through the mean
absolute error (MAE), the root mean square error (RMSE), and the
coefficient of determination (R2). Based on the model prediction
results and the strong correlation between manganese consumption
and crude steel production, future crude steel production is
predicted from a macroeconomic perspective using a combination
of the gray forecasting model and the support vector machine
(SVM) model (GM-SVR). Based on the forecast results of China’s
crude steel production from 2024 to 2035 using the support
vector machine (SVM) model, combined with the relationship
between crude steel and manganese consumption, it is suggested
that future manganese consumption will exhibit a downward trend.
China’s crude steel production has already shown a decreasing

trend. When analyzing China’s manganese consumption sectors,
the iron and steel industry remains dominant, while the battery
sector exhibits an upward trend. Consequently, overall manganese
consumption in China is expected to decline in the future. Based
on a combination of qualitative and quantitative analysis, with
the S-shaped curve law prediction results as a reference, three
prediction methods are employed: the sectoral demand forecast
method, the S-shaped curve prediction method, and the linear
ratio between steel and manganese consumption. These methods
are used to predict China’s manganese demand from 2025 to 2035.
The average value of the three prediction results is calculated to
enhance the reliability and stability of the forecasts. Furthermore,
recommendations are provided based on the future supply and
demand situation.

2 Data sources and methods

1980–2035 China’s urbanization rate from United Nations;
Population data for each country from 1980 to 2035 from UN
World Population Prospects; GDP per capita data for each country
from 1980 to 2035 fromWorld Bank, International Monetary Fund,
Oxford Economics, and theNational Bureau of Statistics (NBS); data
on the total value of China’s secondary industry and the total value
of the construction industry for 1980–2023 are from the NBS; Data
on China’s manganese demand for 2000–2023 are from the USGS,
IMNI, JOGMEC, and data on manganese consumption in other
countries are from IMNI, national statistical or mineral authorities,
or for this paper the calculation of apparent consumption.

Manganese consumption in five developed countries—the
United States, Germany, Japan, South Korea, and the United
Kingdom—has already peaked. As a developing country,
China has seen its manganese consumption stabilize. The per
capita manganese consumption in these developed nations
is used as a reference to predict China’s future trend in
per capita consumption. A total of six countries—namely
the United States, Germany, Japan, South Korea, the United
Kingdom, and China—were selected to forecast manganese
consumption in China from 2024 to 2035 using the “S” shape law
forecasting method.

The urbanization rate, GDP per capita, output value of the
construction industry, output value of the secondary industry, and
population number were selected as eigenvalues for grey correlation
analysis related to crude steel output from 1980 to 2023. A grey
support vector machine model (GM-SVR) was employed to predict
these eigenvalues, which were then used as inputs for forecasting
crude steel output from 2024 to 2035. This output, combined with
the linear ratio of steel to manganese, enabled the derivation of
manganese demand in China for the same period.

We examined the proportion of manganese consumption across
various sectors, including iron and steel metallurgy, batteries,
and chemicals, while assessing future consumption trends. The
sectoral demand forecasting method was utilized to analyze
and predict China’s manganese demand in different fields from
2024 to 2035.

A comparative analysis of the results from the “S”-shaped
law forecasting method, the sectoral demand forecasting method,
and the GM-SVR model was conducted to validate and
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FIGURE 1
Updated consumption structure of manganese resources (Source:
IMNI).

refine the determination of manganese demand in China for
2024 to 2035.

3 Consumption of manganese
resources

3.1 Consumption structure

Consumption structure of manganese in China (Figure 1).
Manganese consumption in China is predominantly concentrated
in iron and steel metallurgy, accounting for 90% of total usage. The
remaining 10% is distributed as follows: 5% in general batteries,
1% in lithium batteries, 2% in the chemical industry, and 2% in
other applications. Manganese serves primarily as a deoxidizer,
desulfurizer, and alloying element within the iron and steel sector.
For example, during the steelmaking process, manganese efficiently
eliminates oxygen and sulfur, enhances the chemical purity and
overall quality of steel, and reduces non-metallic inclusions, which
negatively affect steel performance. These improvements thereby
enhance the mechanical properties and corrosion resistance of steel.
In battery applications, it is chiefly utilized as a negative agent
in dry batteries and as a positive electrode material in power
batteries. In recent years, significant technological advancements
have accompanied rapid development in new energy vehicles. This
has resulted in a year-on-year increase in the installed capacity of
power batteries, driving substantial growth in manganese demand
for these applications.

3.2 Manganese consumption

Since 2000, China’s rapid industrial development has
significantly increased domestic manganese demand, rising from
780,000 tons in 2000 to 12.86 million tons in 2023—an increase
of over 15 times (Figure 2). However, with the transformation and
upgrading of China’s industrial landscape and the gradual peak of
iron and steel demand, the growth rate of manganese demand is
expected to slow considerably and trend downward over time.

FIGURE 2
Chinese manganese demand, 2000–2023.

4 “S” shaped pattern prediction

4.1 Definition

The Global Strategy Research Center of the Chinese Academy
of Geological Sciences has developed a prediction model based
on the “S” shape law. This paper utilizes the historical trajectory
of per capita manganese consumption in selected countries to
forecast China’s future manganese demand by comparing it with
consumption levels at similar stages of development (using GDP
per capita as an evaluation index, 1990 GK USD). The selected
countries include the United States, the United Kingdom, Germany,
Japan, South Korea, and China, focusing on per capita manganese
consumptionandGDPper capita (Figure 3).Theper capitamanganese
consumption in the United States, the United Kingdom, Germany,
and Japan—countries recognized as the developed nations—has
peaked. Manganese consumption primarily occurs in the iron and
steel metallurgy sector. Since the start of the 21st century, China
has also focused its primary manganese consumption on iron and
steel metallurgy. However, the usage of manganese in new energy
lithium batteries has been growing rapidly in recent years, now
accounting for 1% of the total consumption structure. The late start
of industrialization for developing countries means that the per capita
manganese consumption of developed countries remains a significant
point of comparative reference.

4.2 Predicted results

According to data on per capitamanganese consumption in the
United States, Germany, Japan, the United Kingdom, and South
Korea, the per capita manganese consumption of the developed
countries peaked at 9,000–13,000 dollars. South Korea, a later
developed country, peaked when the per capita GDP in the latter
developed country reached 18,000–19,500 dollars. China, a rising
economy after South Korea and Japan, has the most similar
development trend. Concerning the peak per capita manganese
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FIGURE 3
Manganese consumption per capita versus GDP per capita in a typical
developed country.

consumption in Korea, it can be determined that China’s per
capita manganese consumption peaks when its per capita GDP
reaches 18,000–19,500 dollars. In 2023, when China’s per capita
GDP reaches 19,425 dollars, the per capitamanganese consumption
will gradually enter the peak value of 9.02 kg and then slowly
decline. By analogizing with the declining trend of per capita
manganese consumption in developed countries after the peak of
manganese consumption, according to the high position of per
capita manganese consumption, the “S” shape is divided into high
and middle “S” shapes. According to this, China’s future per capita
manganese consumption is projected. Among them, the high “S”
shape ismainly typified by Japan and SouthKorea, categorized as the
neutral scenario; themedium “S” shape countries aremainly typified
by Germany and the United States, categorized as the optimistic
scenario. The GDP per capita and Mn consumption per capita for
the two scenarios are summarized in Table 1.

Neutral scenario. The “S” shaped curve of per capitamanganese
consumption in Korea and Japan is the main analogy for forecasting
the downward trend of manganese consumption after reaching the
peak. Mn demand peaks in Korea and Japan in 2004–2006 and
1972–1975, respectively. Optimistic scenario. It is mainly predicted
by analogy with the downward trend of manganese consumption
per capita in the United States and Germany after reaching the
peak of the “S” curve, and the United States and Germany reached
the peak of manganese demand in 1961–1964 and 1965–1968,
respectively. According to the development trend after the peak
of manganese consumption in different countries, China’s future
trend of manganese consumption per capita is predicted, and the
prediction results are shown in Table 2.

5 Gray support vector machine model
prediction

5.1 Support vector machine model

SVR is often used as an algorithm to solve small-sample,
nonlinear regression problems and is one of the classical machine

learning models (Ma et al., 2023). In the SVR model, the
projection of low-latitude nonlinear eigenvalues into high-
latitude space is converted into a linear regression function by
a kernel function (Meng et al., 2022). The training samples
M = {(x1,y1), (x2,y2),⋯,(xn,yn)}. The prediction function is
defined in Equation 1 where x is the input eigenvalue, and f(x) is the
output eigenvalue.

f(x) = w ·φ(x) + b (1)

Where w is the hyperplane weight vector and b is the
deviation vector.

The mathematical expression of the loss error ε
is given in Equation 2.

min 1
2
‖w‖2 +C

n

∑
i=1
(ξi + ̂ξi) (2)

C is the penalization factor that ξi.There is a correlation between
̂ξi and the slack variables.

The constraints are given by Equations 3–5:

yi − [w ·φ(xi)] − b ≤ ε+ ξi (3)

[w ·φ(xi)] + b− yi ≤ ε+ ̂ξi (4)

ξi ≥ 0, ̂ξi ≥ 0 (5)

Where φ(xi) is the kernel function.
The prediction function is defined in Equation 6.

f(x) =
n

∑
i=1
(ai + ̂ai)K(xi,x) + b (6)

Where ai and ̂ai are Lagrange multipliers and K(xi,x) is the
kernel function of the SVRmodel, with its mathematical expression
defined in Equation 7.

K(xi,x) = exp(−
‖xi − x‖

2

2g2
) (7)

Where g are the kernel function parameters.

5.2 Gray prediction model

The grey forecasting model GM (1,1) is suitable for forecasting
data with incomplete information and small samples (Yao et al.,
2009). In this paper, SPSSPRO software is used to forecast the
total value of the secondary industry from 2024 to 2035 for the
characteristic value.

5.3 Eigenvalue selection and correlation
analysis

As an important indicator of a country’s economic development
level, GDP per capita has a close relationship with crude steel
production. Usually, crude steel production is equal to the sum of
domestic crude steel consumption and exports. Although exported
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TABLE 1 GDP per capita and manganese consumption per capita for typical countries in the two scenarios. (The neutral scenario represents South
Korea and Japan, while the optimistic scenario represents the United States and Germany.)

Sight Reference country Peak GDP per capita
($/person, 1990GK)

Peak per capita
manganese consumption
(kg)

Neutral scenario South Korea
Japanese

18,000–19,500
11,000–11,300

13.7
10.6

Optimistic scenario
America 12,000–13,000 5.7

German 9,000–10,300 4.9

TABLE 2 China's manganese consumption per capita 2024-2035 “S” shaped pattern forecast results.

Year Optimistic scenario Neutral scenario

Manganese
consumption per capita
(kg/person)

Manganese demand
(tons)

Manganese
consumption per capita
(kg/person)

Manganese demand
(tons)

2024 9.06 1,291 9.07 1,293

2025 9.03 1,286 9.00 1,283

2026 8.95 1,274 8.87 1,262

2027 8.83 1,256 8.65 1,230

2028 8.68 1,232 8.36 1,187

2029 8.49 1,204 7.99 1,134

2030 8.28 1,172 7.57 1,071

2031 8.11 1,146 7.20 1,017

2032 7.94 1,120 6.80 959

2033 7.78 1,095 6.39 899

2034 7.64 1,072 5.97 837

2035 7.53 1,053 5.55 776

steel products are not consumed domestically, they are also part
of the national economy (Wang, 2018). The population size
flanks the future changes in demand for housing, transportation,
infrastructure construction, etc., affecting the increase or decrease
in crude steel demand. Crude steel production is an important
indicator of the output value of the secondary industry (Le et al.,
2009), which mainly includes construction and industry, and is an
important area of crude steel consumption. The urbanization rate
is an important indicator of a country’s urbanization level, and
the urbanization rate has an important impact on the change of
steel demand in the steel market. The construction industry is an
important area of crude steel consumption (Le et al., 2009). The
relationship between these characteristic factors and crude steel
production is not linear (Le et al., 2009). Therefore, forecasting
China’s future crude steel production needs to be combined with
multiple factors.

5.3.1 Limitations of correlation analysis
The correlation analysis exhibits insufficient consideration of

external factors, particularly the impact of policy interventions and
technological advancements: policy influence: the implementation
of the “Dual Carbon” policy goals (carbon peaking and carbon
neutrality) has imposed restrictions on energy-intensive industries,
leading to a decline in crude steel production. This regulatory shift
may decouple traditional economic indicators from steel demand.
Technological progress: the widespread adoption of electric arc
furnace (EAF) steelmaking technology has reduced reliance on
traditional blast furnaces. This technological shift could weaken
the correlation between secondary industry output and crude steel
production, as EAF processes prioritize scrap steel recycling over
raw material-intensive methods (Chen et al., 2024).

The data of GDP per capita, urbanization rate, population, the
output value of secondary industry, the output value of construction
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TABLE 3 Gray correlation analysis results of crude steel production.

Eigenvalue (math.) Relatedness Rankings

GDP per capita 0.997 1

urbanization rate 0.985 2

demographic 0.984 3

Secondary sector output 0.923 4

Construction output 0.778 5

industry, and crude steel production are dimensionless (initialized),
the discrimination coefficient is 0.5, and the results of grey
correlation analysis are shown in Table 3.

5.3.2 Eigenvalue analysis
The correlation degree is evaluated and ranked for the five

feature objects; the value of the correlation degree is between 0 and
1, and the larger the value is, the stronger the correlation between
it and “crude steel production.” From the above table, it can be seen
that for the five characteristic values, GDP per capita (GK USD) has
the highest value (correlation: 0.997), followed by urbanization rate
(%) (correlation: 0.985), population (billion) (0.984), output value
of the secondary industry (billion) (0.923), and the value of output
value of the construction industry (billion) is only 0.778, because the
secondary industry includes both the construction industry and the
industrial industry. Comparing the correlation between the output
value of the secondary industry and the correlation between the
output value of the construction industry, it is more appropriate to
select the output value of the secondary industry, and this paper
selects the eigenvalues with a correlation degree of 0.9 or more,
which is conducive to a more accurate prediction of the model.
Therefore, GDP per capita, urbanization rate, population, and output
value of secondary industry are selected as input eigenvalues of
the SVR model.

5.4 Gray support vector machine model
prediction

5.4.1 Data preprocessing
First, a support vector machine model (SVR) is constructed

to normalize the input features, including GDP per capita,
urbanization rate, population, and the total value of the secondary
industry, to avoid potential inaccuracies duringmodel construction.
Subsequently, the input features (GDP per capita, urbanization
rate, population, and total value of the secondary industry) and
the output feature (crude steel output) from 1980 to 2023 are
divided into a training set and a test set in a 7:3 ratio to train
the model.

5.4.2 Model parameter selection
The trial and error method is employed to set the parameters of

the Support Vector Regression (SVR) model, with the penalty factor
set at 2. The radial basis function (RBF) is selected due to its strong

capability to handle nonlinearities, as well as its robust stability and
generalization abilities. The parameter for the RBF is set at 1.2, and
the loss function is configured at 0.01. Following the completion of
parameter tuning, the model is evaluated.

5.4.3 Model validation
Using the sample data on GDP per capita, population,

urbanization rate, and output value of secondary industry from the
test set, the Support Vector Regression (SVR) model is employed to
derive the crude steel output. The results are then compared with
the actual data to assess the validity of the SVR model.

5.4.4 Model performance evaluation
As a critical component of model usability assessment, this

study employs the coefficient of determination (R2), mean absolute
error (MAE), and root mean square error (RMSE) to evaluate
the model’s performance. MAE quantifies the differences between
predicted and observed values, particularly by disregarding the
impact of negative deviations. RMSE measures the model’s error in
quantitative predictive analysis, while R2 quantifies the correlation
or collinearity between predicted and actual values. Through the
training of the SVRmodel, the test set yields an R2 of 0.992, anMAE
of 0.018, and an RMSE of 0.223. Similarly, the training set achieves
an R2 of 0.994, an MAE of 0.015, and an RMSE of 0.235. Both the
training and test sets exhibit R2 values greater than 0.99, with MAE
and RMSE values being closely aligned, demonstrating that the SVR
model possesses high predictive accuracy and strong generalization
capabilities.

By integrating with the gray model, the issue of missing future
values of input feature values in the single SVR model is addressed.
Based on the excellent SVR model, the fitting degree between the
actual and predicted values of crude steel production from 1980 to
2023 is visually processed, as shown in Figure 4. This demonstrates
that the SVR model has a good fitting degree.

5.4.5 Input Characteristics of the SVR Model
Data encompassing per capita GDP, population, and

urbanization rates spanning the period from 2024 to 2035 were
aggregated. The projected values of China’s secondary industry
output for the same timeframe were forecasted utilizing a Grey
Prediction Model, which demonstrated an average relative error
of 5.701% and a posterior difference ratio of 0.007. This indicates
that the model achieved commendable fitting performance and
high precision. The primary factors influencing crude steel demand
between 2024 and 2035, along with the corresponding data, are
presented in Table 4.

China’s 2024–2035 per capita GDP, population, urbanization
rate, and secondary industry output value forecast data as the
eigenvalue input SVR model to derive the 2024–2035 crude steel
production.

The consumption of manganese in China is closely intertwined
with its crude steel production, as steel production serves as
the primary driver of manganese demand. Approximately 90% of
manganese consumption occurs in the iron and steel metallurgy
sector. By utilizing the steel-to-manganese ratio—defined as the
ratio of manganese demand to crude steel output—we can estimate
China’s manganese consumption from 2024 to 2035 and project
future trends in manganese demand.
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FIGURE 4
Fitting comparison between true values and predicted values of the training set and test set in the SVR model.

FIGURE 5
The steel-to-manganese proportion of China’s crude steel output in
relation to manganese demand from the year 2000–2023.

Critical value detection via change point detection (Pelt
algorithm). In the critical value analysis of the steel-manganese ratio,
the Pelt algorithm is employed to detect structural mutation points
in the time series, with the core formula presented in Equation 8.

TotalCost =
K+1

∑
i=1

Cost(yti……ti+1) +K× β (8)

K is the number of variable points, y_(t_i …t_(i+1)) is the data
segment in the time interval [ti,ti+1), β is the penalty coefficient,
which controls the sensitivity of the number of variable points, and
Cost (y_(a …b)) is the cost of fitting the data segment y_(a …b)
fitting cost.

Cost (y_(a …b)) represents the segmented cost formula:

Cost(ya……b) =
b−1

∑
t=a
(yt − μ)

2 (9)

µ is the mean value of the segment.

In the relevant study, in order to balance sensitivity and stability
and avoid the model’s over-reliance on data noise, we empirically set
the parameter β to 2.5 based on the 95% confidence interval. Phased
statistics: phases were divided by the critical year of detection, and
means, standard deviations, and Bootstrap 95% confidence intervals
were calculated.

The critical detection years revealed significant turning points in
2008 and 2019. An analysis of the steel-to-manganese ratio across
these three stages was conducted, and the 95% confidence intervals
for the steel-to-manganese ratio values in each stage were calculated
(Table 5), showing a steady increase in the steel-to-manganese ratio
throughout the three stages. Based on the steel-manganese ratio of
crude steel production and manganese demand from 2000 to 2023,
the formula for the steel-manganese ratio is: y = 0.01289x - 1.63025966
(Figure 5).The goodness of fit R2 is 0.9785, indicating good reliability.
According to the steel-manganese ratio, the coefficient is 12.98 kg of
manganese per ton of steel. Considering the overall perspective, the
future steel-manganese ratio is in a relatively stable upward stage, with
a steel-manganese ratio of 12.9 kg of manganese per ton of steel. The
results for China’s crude steel production and manganese demand
from 2024 to 2035 are shown in Table 6.

6 Sectoral demand forecasts

The sectoral demand forecast method mainly analyzes and
predicts the consumption situation of manganese resources in
various fields. Based on the consumption situation of manganese
resources, this paper mainly analyzes the iron and steel metallurgy
field and battery field, and the battery field is divided into the general
battery field and lithium battery field.

6.1 Iron and steel metallurgy

Iron and steelmetallurgy, as the largest consumer ofmanganese, is
mainly used in construction, machinery manufacturing, automobile
manufacturing, shipbuilding, household appliances, and other
consumer sectors (Ren et al., 2022). Under the transformation and
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TABLE 4 China's GDP per capita, population, urbanization rate, and secondary industry output projections, 2024–2035.

Year GDP per capita
(GK dollars)

Population
(billions)

Urbanization
rate (%)

Secondary
sector output
(billion)

2024 20,116 14.25 65.54 516,815

2025 21,133 14.24 66.48 545,740

2026 21,996 14.23 67.38 575,502

2027 22,899 14.22 68.25 606,125

2028 23,845 14.20 69.07 637,634

2029 24,835 14.18 69.87 670,055

2030 25,871 14.16 70.63 703,415

2031 26,698 14.13 71.35 737,740

2032 27,556 14.10 72.04 773,059

2033 28,447 14.07 72.70 809,400

2034 29,373 14.03 73.32 846,792

2035 30,336 14.00 73.92 885,267

TABLE 5 Critical year division stages, means, standard deviations, 95%
confidence intervals.

Phase Average
value

Standard
deviation

95%
confidence
intervals

Phase 1
(2000-2008)

0.65 0.11 [0.59, 0.71]

Phase 2
(2009-2019)

1.10 0.03 [1.08, 1.12]

Phase 3
(2020-2023)

1.14 0.10 [1.06, 1.23]

upgrading of infrastructure construction and the “double-carbon”
policy, China’s crude steel demand gradually peaked. It shows a
downward trend, and the industry’s output decreases yearly. It can be
seen through thepredictionof theGM-SVRmodel that the crude steel
outputwillbe1013.96milliontons in2025,922.18milliontons in2030,
and 828.1 million tons in 2035. Crude steel output of 828.10 million
tons.Accordingtothein-depthreportof themanganese industry inthe
metal industry, the average manganese content in steel is 1.1%, which
leads to theChinesemanganesedemand in2025, 2030, and203511.15
million tons, 10.14 million tons and 9.11 million tons respectively.

6.2 Battery sector

Manganese is used in batteries, which are divided into lithium
batteries and general batteries (Ren et al., 2022).

TABLE 6 China's crude steel production, manganese
demand, 2024–2035.

Year Crude steel
production (tons)

Manganese
demand (tons)

2024 102,225 1319

2025 101,396 1,308

2026 100,349 1,295

2027 990,02 1,277

2028 970,29 1,252

2029 95,062 1,226

2030 92,218 1,190

2031 90,223 1,164

2032 88,080 1,136

2033 86,801 1,120

2034 84,371 1,088

2035 82,810 1,068

In the realm of lithium batteries, the consumption landscape
has witnessed a surge in manganese usage amidst the rapid
development of new energy sources. Manganese plays a pivotal
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TABLE 7 China’s manganese demand analysis, 2024–2035.

Year Baseline scenario Optimistic scenario GM-SVR prediction
combined with
steel-manganese
ratio

Sectoral demand
projections

Consolidated
manganese
demand(tons)

2025 1,283 1,286 1,308 1247 1280

2030 1,071 1,172 1,190 1155 1172

2035 776 1,053 1,068 1063 1061

role, predominantly serving as a key component in the cathode
materials of power batteries. Presently, manganese’s application is
chiefly concentrated in lithium manganate and ternary material
compositions for lithium battery cathodes. Data sourced from
the CITIC Securities Research Department indicates that lithium
manganate comprises 61% manganese, whereas ternary materials
contain 10.6% manganese. Currently, the manganese content in
nickel manganese acid lithium batteries, phosphate manganese
iron lithium batteries, lithium-rich manganese-based batteries, and
sodium-ion batteries is minimal. Nevertheless, it is anticipated
that as market penetration escalates in the future, the demand
for manganese will experience a corresponding upswing. Forecasts
provided by Bloomberg New Energy Finance (BNEF) and the China
Securities Research Department project the global installed capacity
of power batteries to attain 1300 GWh, 2,600 GWh, and 4,500 GWh
by the years 2025, 2030, and 2035 respectively (CITIC Securities,
2022), translating to manganese utilization of 316,000 tons, 673,000
tons, and 1,242,000 tons for these respective years. Predictions by
Zhang et al. (2024) estimate that the capacity of power batteries
in China will escalate to 931 GWh, 1241 GWh, and 1551 GWh by
2025, 2030, and 2035 respectively. Through estimation grounded
on the capacity of power batteries in China relative to the globally
installed capacity of power batteries, the anticipated manganese
consumption in Chinese power batteries is poised to reach 226,300
tons, 321,200 tons, and 428,100 tons by 2025, 2030, and 2035
respectively. Dry batteries mainly dominate the general battery
field, and common dry batteries include ordinary zinc-manganese
dry batteries, alkaline zinc-manganese dry batteries, magnesium-
manganese dry batteries, lithium-manganese dry batteries, and
nickel-cobalt-manganese automobile batteries (Xu et al., 2023).
With the continuous development of electric vehicles and renewable
energy storage, the importance of manganese in lithium batteries
will further increase. In contrast, the attention and growth potential
of the general battery market is relatively small, so the short-term
prediction of manganese used in the field of general batteries in the
future will remain at about 610,000 tons.

6.3 Chemical and other fields

Manganese in the chemical field is mainly used to prepare a
variety of manganese salt oxidizers and disinfectants, etc., with
specific applications such as water treatment chemicals and other
chemicals, automotive primers, colorants for bricks, frits, glass,
textiles and ceramic tiles, powder coatings, artist’s glazes, and

cosmetics (Ren et al., 2022). In the short term, the development
trend of manganese in the chemical field is stable, and the short-
term forecast of manganese consumption in the chemical field in the
future remains stable at 240,000 tons.

Manganese consumption in other fields, such as electronics,
environmental protection, building materials, agriculture, etc., is
very small. In the field of electronics, it is mainly used to make soft
magnetic materials; in the field of environmental protection, it is
mainly used as a purifying agent for automobile exhausts, industrial
wastewater, and drinking water; in the field of building materials, it
is mainly used as a coloring and fading agent for building materials;
and in the field of agriculture, it is used to produce fertilizers
and pesticides (Ren et al., 2022; Xu et al., 2023). The quantity of
manganese used in these fields maintains a stable development
trend, and it is predicted that China’s consumption of manganese
in other fields will remain stable in the future, which will be about
240,000 tons.

Sectoral Demand Forecasting for Manganese: Key Focus Areas.
The sectoral demand forecasting formanganese primarily focuses on
predictive analysis of its consumption in two key areas: the iron and
steel metallurgy sector, which represents the primary consumption
domain, and the battery sector, which is a rapidly growing
consumption field.These sectors are critical for understanding both
current and future manganese demand trends. In contrast, the
chemical industry sector and other sectors exhibit limited data
availability regardingmanganese consumption due to their relatively
low share in total manganese usage and stable demand patterns.
These sectors are characterized by minimal short-term fluctuations,
making them less significant for near-term predictive analysis.

Utilizing the departmental demand forecasting methodology, it
is projected that China’s consumption of manganese resources will
amount to 12.47 million tons, 11.55 million tons, and 10.63 million
tons for the years 2025, 2030, and 2035 respectively.

7 Analysis of the forecast results

In the course of this research, due to the time limitation of the
crude steel production data utilized in the model, there exists a
certain degree of variability in the forecasting results. Therefore, it is
advisable to acquiremore updated data to further refine and enhance
the precision of the SVR (Support Vector Regression) model’s
predictions. Regarding the forecast of manganese demand, the GM-
SVR (Gray Model - Support Vector Regression) model incorporates
multifactor predictions from a broad perspective, considering both
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the steel-to-manganese ratio and the departmental demand forecast
methodologies, thereby further improving the accuracy of future
manganese demand forecasts in China. Limitations of the GM-SVR
Model: The model’s predictive performance is heavily influenced by
sudden external factors, such as natural disasters and political crises,
which can significantly impact the forecasted crude steel production.
This study’s prediction model struggles to account for these abrupt
extrinsic variables.

The ‘S’ shaped curve forecasting approach, together with
the GM-SVR (Grey Model - Support Vector Regression) model
incorporating the steel-to-manganese ratio forecast and the
departmental demand forecast, are employed to project China’s
manganese demand for the period spanning 2024 to 2035, as
presented in Table 7. With reference to the ‘S' shaped curve for
anticipating China’s manganese demand, this study analyzes the
forecasting outcomes of the GM-SVR model when amalgamated
with the steel-to-manganese ratio and departmental demand. The
forecasting outcome of the GM-SVR model when integrated with
the steel-to-manganese ratio bears resemblance to that of the
optimistic scenario. By synthesizing the forecasting results of the
three methodologies, this paper adopts the mean value as the more
scientifically grounded forecast for China’smanganese demand from
2024 to 2035. Specifically, China’s manganese demand in the years
2025, 2030, and 2035 is projected to reach 12.86 million tons, 11.76
million tons, and 10.64 million tons respectively. He, (2020), has
forecasted that China’s manganese demand in 2025 and 2030 would
amount to 10.2 million tons and 9.39 million tons respectively. The
forecasted trends exhibit a descending pattern, which aligns with
the findings of this research.

8 Conclusion and recommendations

(1) This study utilizes three forecastingmethodologies, specifically
the ‘S’ shaped curve forecasting approach, the GM-SVR
(Grey Model - Support Vector Regression) model integrated
with the steel-to-manganese ratio forecasting technique, and
the departmental demand forecasting method, to anticipate
China’s manganese requirements for the timeframe spanning
2024 to 2035. The forecasting results derived from these three
approaches demonstrate a strong level of agreement, with the
predicted manganese demand in China for the years 2025,
2030, and 2035 being 12.83 million tons, 11.76 million tons,
and 10.64 million tons respectively.

(2) China’s manganese demand of 12.86 million tons in 2023 has
entered the peak period of manganese consumption. In the
future, China’s steel demand will gradually decline, decreasing
manganese consumption in iron and steel metallurgy. The
development of power battery technology and the gradual
increase of the penetration rate of new manganese-based
anode materials cause manganese consumption in lithium
batteries to increase yearly. However, the growth rate of the
battery field is not as fast as that of the iron and steel
metallurgy field, so manganese demand in China will show a
slow downward trend in the future.

Based on the manganese demand in China, the following
recommendations are made:

(1) Strengthening technological research and development and
technological upgrading in the field of manganese resource
application. Strengthen the research and development
and upgrade of manganese ore mining, processing, and
metallurgical technologies, improve the utilization rate of
manganese resources at home and abroad, and reduce energy
consumption. Strengthen manganese ore and manganese
product recycling technologies and improve the utilization
rate of secondary resource recycling. Encourage enterprises,
scientific research institutions, and universities to cooperate in
industry-university research to enhance the development and
innovation of manganese-related industrial technologies.

(2) Optimize the structure of the manganese industry and
enhance the overall value of the manganese industry.
China is highly dependent on the iron and steel industry,
and manganese accounts for a high proportion of its
consumption. We should extend the industrial chain, increase
the research and development of manganese products in new
energy sources, new materials, and other high-tech fields,
encourage diversified development, increase the added value
of manganese products, and gradually get rid of the industrial
development pattern of “importing resources and exporting
low-end products.”
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