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Organic matter (OM) serves as a crucial site for shale gas generation and
occurrence. Its content and spatial connectivity significantly influence gas flow
ability and gas occurrence. However, in characterizing the three-dimensional
(3D) connectivity of OM, current imaging techniques such as FIB-SEM and nano-
CT cannot balance field of view (FoV) and image resolution. To address this
gap, in this work, we develop a novel workflow for numerical reconstruction of
REV-size digital rocks of OM that integrates high-resolution information of pore
structures in large-view MAPS (modular automated processing system) images.
Specifically, the open source code, SliceGAN, is used in the 3D reconstruction of
digital rocks of OM, while the high-resolution information of OM pore structures
is integrated into the digital rocks in terms of the classification of OM in the
MAPS images. The classification of OM is solely based on the surface or 2D
porosity of individual OM watersheds. As a first attempt, we propose three types
of OM including Type A with high porosity (>20%), Type B with medium porosity
(10%∼20%), and Type C with low porosity (<10%). Based on the case studies of
three in-situ shale samples with different OM contents, we show that at the
REV size the three types of OM, as a whole, can form conducting pathways
throughout the domains, but each type of OM is disconnected. Type A and Type
B OM have poor connectivity, while Type C OM holds the best connectivity
dominating gas transport at the REV scale. Moreover, the reconstructed 3D
digital rocks of OM can be used in the numerical modeling of REV-size gas
transport in shales.

KEYWORDS

organic matter, MAPS images, REV size, connectivity, 3D reconstruction of digital rocks

1 Introduction

The development of unconventional oil and gas resources such as shale gas and
shale oil has been a major focus in the global energy sector. In comparison with
conventional oil and gas reservoirs, however, the complexity and multiscale pore
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structures of shale reservoirs pose significant challenges to their
development. Multiscale pore structures of shale have a crucial
impact on gas occurrence and flow. Pores in shale matrix can
range from nano to micro scales, including nanopores (<2 nm),
micropores (2–50 nm), and macropores (>50 nm) (Loucks et al.,
2012; Milliken et al., 2013), which consist of organic matter (OM)
pores, mineral matrix pores, and natural micro-fractures, forming
a complex pore network (Xu et al., 2020; Wang et al., 2021;
Gao et al., 2024; Zhang et al., 2024). Nano-scale pores provide
large specific areas and serve as the main sites for gas adsorption,
while micro-scale pores and fractures provide channels for free
gas flow. The multiscale pore structures lead to the coexistence
of various gas flow mechanisms, such as adsorption-desorption,
Knudsen diffusion, slip flow, and Darcy flow. Among them, the
connectivity of OM plays a key role (Curtis et al., 2014; Ma et al.,
2016; Ma et al., 2017). Highly-connected organic pore networks not
only increase gas occurrence capacity but also provide continuous
pathways for gas flow, facilitating gas desorption and transport
within shale (Guo et al., 2018; Wang et al., 2022). Therefore, in-
depth understanding of the characteristics of OM connectivity and
its influence on gas occurrence and flow is of great significance for
optimizing shale gas development strategies and improving resource
utilization efficiency.

Up to now, the analysis of multiscale pore structures of shale has
been mainly dependent on fluid injection experiments such as gas
adsorption and mercury intrusion porosimetry (MIP) (Sun et al.,
2017; Gao et al., 2018), and various imaging techniques such
as scanning electron microscopy (SEM), micro-nano computed
tomography (CT), and focused ion beam scanning electron
microscopy (FIB-SEM) (Tang et al., 2016; Yang et al., 2016;
Garum et al., 2020; Zhao et al., 2020; Gou et al., 2021). The
combination of several fluid injection methods may provide a wide
range distribution of pore sizes. However, it cannot distinguish pore
types (e.g., OM pores and mineral matrix pores) and their spatial
connectivity. On the other hand, Curtis et al. (2014) used high-
resolution, large-field scanning electron microscope stitched images
to analyze the connectivity of OM inWolfcamp and Barnett shales at
the 2D representative elementary volume (REV) scale, revealing that
OM is almost disconnected in the 2D images. Therefore, to evaluate
the real connectivity of OM, the 3D imaging is indispensable, yet
current 3D imaging experiments encounter irreconcilable conflicts
between field of view (FoV) and spatial resolution. For instance,
while the FIB-SEM can achieve high-resolution 3D imaging of shale,
it is time-consuming and has a small FoV that cannot reach the REV
size of shalematrix (100∼300 µm) (Wu et al., 2020).Themicro/nano
CT can identify the 3D distribution of OM, but its resolution is
insufficient to capture internal pore structures of each OM element,
preventing the OM classification (Yang et al., 2024). Therefore, how
to integrate high-resolution pore structure information of OM into
the REV-size 3D OM distribution will be a challenge, which will be
addressed in this work.

There have been many studies of numerical reconstruction of
digital rocks. A 3D digital rock reconstruction method based on
multi-point geo-statistics (MPS) has been proposed. It extracts
multi-point statistical information from training images (i.e.,
2D slices), establishes search trees and templates as constraints,
iteratively generates 2D images, and ultimately overlays them to
form 3D digital rocks (Okabe and Blunt, 2004; Zhang et al., 2016;

Liu et al., 2023). Additionally, a cross-correlation-based simulation
algorithm (CCSIM) has been used to construct 3D digital rocks of
shale, enabling the generation of 3D images with similar properties
from 2D input images (Tahmasebi et al., 2015; Tahmasebi et al.,
2016; Ji et al., 2019a). With the advancement of artificial intelligence
(AI) and computational resources, deep learning has also been
playing an important role in 3D digital rock core reconstruction.
Generative adversarial networks (GANs) have been introduced
for digital rock reconstruction, with the reconstructed rock cores
evaluated using autocorrelation functions (Mosser et al., 2017;
Zhang et al., 2021; Zhao et al., 2021; Cao et al., 2022; Zhang et al.,
2025). Compared with traditional reconstruction methods, GAN
models can rapidly generate target digital rock cores once trained.
Recently, the SliceGAN model has been proposed, which is capable
of generating multi-component 3D images from multi-component
2D slices (Kench and Cooper, 2021).

In this work, we mainly contribute to developing a novel
workflow for numerical reconstruction of REV-size OM digital
rocks, which can integrate high-resolution information of pore
structures in large-view MAPS images. As a first attempt, three
in-situ shale samples with different OM contents are used for
illustration. Moreover, the three reconstructed REV-size OM digital
rocks are analyzed to understand themultiscale connectivity of OM.
The remainder of the paper is organized as follows. In Section 2,
we present the details of the reconstruction of REV-size digital
rocks of OM including the classification of individual OM elements
or watersheds in Section 2.1, and the 2D to 3D reconstruction
by the SliceGAN model in Section 2.2. Results and discussion are
given in Section 3, which is followed by the main conclusions and
outlook in Section 4.

2 Materials and methods

Three in-situ shale samples were collected from the Longmaxi
Formation in the Luzhou Block of the Sichuan Basin. Figure 1
shows the developed workflow for the 3D reconstruction of
Shale OM which can integrate high-resolution information of
OM pore structures. First, a field emission scanning electron
microscope (Zeiss Crossbeam 540) is used in the secondary electron
imaging mode to obtain MAPS images with a spatial resolution of
16 nm through large-area stitching. The images are segmented to
individual OM watersheds using the ImageJ software, followed by
the classification of OM watersheds in terms of surface porosity
(excluding subresolution OM pores). After classifying OM at the
high resolution, the images were substantially coarsened. The
coarsened 2D images associated with the classified OM watersheds
are reconstructed into the 3D OM digital rocks using the SliceGAN
model (Kench and Cooper, 2021; Kench et al., 2022). Finally, the
connectivity between different types of OM units or watersheds will
be analyzed.

In order to analyze the connectivity ofOM in shales with varying
OM content, we have selected three shale samples with different
OM contents. Based on the OM content (defined by the OM area
including OM pores and subresolution OM divided by the image
area) and the total porosity of OM (defined by the total area of OM
pores divided by the OM content), the samples may be categorized
into high OM content and low porosity (HOM-LP), medium OM
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FIGURE 1
Workflow for the 3D reconstruction of Shale OM integrating high-resolution information by MAPS. (A) Sub-image of the original MAPS. (B) Watershed
segmentation of the image using ImageJ. (C) Classification of OM watersheds based on surface or 2D porosity. (D) Coarsening of the classified image.
(E) Stitching multiple images to achieve the REV-size FoV. (F) 2D-to-3D reconstruction of classified OM using the SliceGAN model.

TABLE 1 Information on OM Contents and mineral compositions of the three shale samples used in this work. All the data is from the image analysis of
MAPS images.

Shale
samplea

OM content
(%)

Total
porosity of
OM (%)

Mineral composition (%)

Quartz Clay Calcite Dolomite Feldspar Pyrite Others

MOM-HP 8.56 14.28 66.28 5.00 6.35 16.46 3.88 1.86 0.16

HOM-LP 12.18 6.40 69.75 4.40 12.03 5.91 3.31 4.28 0.32

LOM-LP 4.90 4.27 26.60 38.68 13.36 8.00 10.85 2.03 0.47

aHOM-HP, MOM-HP, and LOM-LP represent high OM content and low porosity, medium OM content and high porosity, and low OM content and low porosity, respectively.

content and high porosity (MOM-HP), and lowOMcontent and low
porosity (LOM-LP). We notice that the OM contents are obtained
by calculating area ratios from the segmented MAPS images (size
of 196 × 196 μm2 and resolution of 16 nm), while the mineral
compositions are determined by using quantitative evaluation of
minerals by scanning electronmicroscopy (QEMSCAN) (size of 400
× 2,500 µm and resolution of 0.4 µm). Table 1 lists the information
of OM contents and mineral compositions of the three samples.
The image-based data is also in good consistence with experimental
measurements.

2.1 Classification of organic matter

2.1.1 REV analysis
The REV analysis is conducted to determine the appropriate

scale at which pore structures and OM connectivity can be

meaningfully characterized. The analysis involves incrementally
increasing the FoVof the segmented images, until the calculatedOM
content andOMtotal porosity reach stable values, indicating that the
REV size is achieved.

To analyze the spatial distribution characteristics of OM in the
shale samples, we adopt the method described by Wu et al. (2020),
conducting statistical analysis of minerals, OM, and OM pores in
different sizes of sub-images. For each large-area stitched sample,
the statistical average size is gradually increased from the minimum
to the maximum as shown in Figure 2. It starts at 10 μm, and then
increases with a 10 µm increment. At each average size, 10 square
regions are randomly sampled in an original MAPS image. Within
each sampled region, the area ratio of a target label is calculated,
defined as the ratio of the number of pixels with that label to the total
number of pixels in the region.The average and standard deviation of
the area ratios from the 10 random samples are calculated to obtain
the mean area ratio and its variability at different sizes.
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FIGURE 2
Method for determining the 2D REV Size of shale matrix.

This method allows us to evaluate the change in area ratio of the
target label with varying observation sizes, thereby determining the
REV size. Finally, for each sample, we plot the relationship between
the mean area ratio and the region size, with error bars representing
the standard deviation as shown in Figure 2 (right).

2.1.2 Three types of watershed of organic matter
In this work, we aim to reconstruct REV-size OMdigital rocks (a

few hundred microns), which integrate high-resolution information
of OM pore structures. First, it is prohibitive to numerically
reconstruct 3D REV-size digital rocks directly based on MAPS
images, due to the massive data. Alternatively, we propose to classify
OM in terms of OM watershed porosity in MAPS images, such that
the classification information can be kept in substantially coarsened
MAPS images. Then, we can reconstruct REV-size OM digital rocks
composed of several types of OM.

Based on the morphology of OM pores, previous studies have
mainly classified OM into honeycomb-shaped, sponge-shaped, and
needle-shaped organic pores (Ji et al., 2019b; Yang et al., 2022).
However, this sort of classification requires manual classification
of each OM watershed, which is labor-intensive when processing a
large number of images and cannot quantify the surface porosity
of each OM watershed. A few studies have shown that the pore
connectivity (excluding subresolution pores) varies significantly
among OM with different surface porosities (Wei et al., 2023).
Throughout FIB-SEM images, low-porosity and medium-porosity
OM mostly exhibits isolated pores, while high-porosity OM shows
connected pores (Borjigin et al., 2021). The permeability of OM
watersheds with connected pores can be two orders of magnitude
higher than that of watersheds with isolated pores (Yang et al., 2024).
Additionally, gas occurrence within OM varies considerably with
respect to surface porosity. Therefore, in the work, as a first attempt,
we propose to classify segmented OM watersheds into three types
of OM, with respect to their surface porosities, i.e., Type A (the
porosity range is >20%), Type B (10∼20%), and Type C (<10%).
Overall, Type A OM features connected OM pores throughout their

watersheds and high porosity, while Type B and Type COM features
isolated OM pores and low porosity. As a first attempt, the critical
value of 20% is qualitatively based on our FIB-SEM analysis and
percolation theory.

In this work, the MAPS image of each shale sample with
a resolution of 16 nm and an overall FoV of 196 × 196 μm2 is
divided into 144 sub-images. The sub-images are imported into the
ImageJ software, where the Trainable Weka Segmentation plugin
(Schindelin et al., 2012; Arganda-Carreras et al., 2017) is used to
segment the images into ternary images including three phases,
i.e., OM (with subresolution pores), OM pores (resolved pores at
the 16 nm resolution), and the reminder (i.e., matrix). We change
OM pores into OM, then the watershed algorithm (Beucher and
Lantuéjoul, 1979) is used to segmentOM into individual watersheds.
Moreover, compared with the ternary images, we can obtain the
surface porosities of OM watersheds. Finally, according to their
surface porosities, we can classify OM watersheds into Types
A, B, and C.

2.2 2D to 3D reconstruction of organic
matter

We utilize 2D images to reconstruct 3D shale images using
the SliceGAN model (Kench and Cooper, 2021). This approach
aims to address the dimensional discrepancy between 2D training
images and 3D generative models. Specifically, SliceGAN employs
an architecture consisting of a 3D generator and three 2D
discriminators. The generator is responsible for generating 3D
volume data from noise or latent space, while the discriminators
process 2D slices generated along the x, y, and z directions.

During the reconstruction process, the 3D volume is sliced
pixel-by-pixel along each direction, resulting in a series of 2D
images. These images are then fed into the corresponding 2D
discriminators for evaluation. Throughout the training process, the
discriminators compare the real 2D images with the generated
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FIGURE 3
Illustration of 3D Image Generation from 2D Shale Images, adapted from Kench and Cooper, 2020.

2D slices, learning the differences between them. The generator
is optimized to progressively improve the quality of the generated
3D volume data until the slices in each direction can pass the
evaluation of the respective discriminator. The training is complete
when the generated 3D model meets the discriminators’ criteria in
the x, y, and z directions. Once the model is fully trained, it can
generate 3D volume data that aligns with the characteristics of the
2D images (Kench and Cooper, 2021), The schematic diagram of
the SliceGAN training process is shown in Figure 3. Our model’s
generator contains 40,116,224 trainable parameters, while each
discriminator has 2,764,800 trainable parameters. The training
employs the Wasserstein GAN with Gradient Penalty (WGAN-GP)
loss function, using metrics such as Wasserstein distance, gradient
penalty, and discriminator scores for real and generated samples to
ensure transparency and stability. The training was conducted on
an Intel i9-10900K CPU with 64 GB of RAM and an NVIDIA RTX
4,000 GPU with 8 GB of VRAM. The model was trained for a total
of 50 epochs, which required approximately 24 h.

Currently, all 3D reconstruction techniques face a common
challenge of the inability to directly reconstruct large-scale 3Ddigital
rocks. This means that the voxel dimensions of reconstructed 3D
images are limited. The maximum output of the SliceGAN model
is 384 × 384 × 384 pixels. Therefore, in order to construct REV-size
digital rocks of shale OM, we first determine the REV size of shale
OM. Then, we substantially coarsen the classified OM at the high
resolution. Because the size of an OM watershed is generally much
larger than that of OM pores and the OM classification is completed
before the resolution reduction, the pore structure information of
OM watersheds can be retained according to its type.

3 Results and discussion

3.1 REV analysis and organic matter types

The REV analysis of different components in the three samples
shows that when randomly sampled regions are smaller than

50 μm, the area ratios of the components exhibit large fluctuations,
indicating unstable statistical results. As the sampling region
gradually increases, the area ratios of the components (including
matrix, OMwith subresolution pores, andOMpores) becomemuch
more stable at the region size of 100 µm as shown in Figure 4.
This may indicate that the length scale of 100 µm can be an
appropriate REV size for characterizing the distribution of different
components in shales. It is worth noting that the size of 100 µm
may not be applicable to other shale samples or other properties
such as microfractures and clays. Moreover, the 2D REV size may be
relatively larger than the corresponding 3D REV size, given the fact
that the 2D case holds much less information of shale components.

Table 2 lists the percentages of the three OM types in the three
shale samples at three different image resolutions. It is seen that
the image resolution has minor impact on the percentages, which
can verify the reconstruction of REV-size digital rocks of OM
on substantially coarsened MAPS images. HOM-LP has the OM
content of 12.18%, but a low total OM porosity of 6.4%, primarily
consisting of TypeCOM(up to 10%).MOM-HPhas theOMcontent
of 8.56%, with a higher OM porosity of 14.28%, consisting of Type
A (1.7%), Type B (4.42%), and Type C (2.44%) OM. LOM-LP has
the OM content of 4.9%, with a low total OM porosity of 4.27%,
primarily composed of Type C (up to 4.3%) OM. For the present
shale samples, Type B and Type C OM is dominant, except for
MOM-HP that is also rich in Type A OM, giving rise to a relatively
high total OM porosity.

Figure 5 shows the distributions of the classified OM including
TypeA in green, TypeB in red, andTypeC in blue.When the original
resolution is reduced by 20 times, the image sizes are reduced from
12,288 × 12,288 pixels to 614 × 614 pixels. It is seen that besides the
percentages, the 2D distributions of the three types of OM at the
two resolutions are in good consistence. Additionally, based on our
image analysis in the ImageJ, regardless of the OM content, there is
no 2D connectivity of OM throughout the MAPS images, which is
consistent with previous studies (Curtis et al., 2014). Therefore, the
3D reconstruction will be indispensable to analyze the connectivity
of REV-size OM.
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FIGURE 4
The Area ratios of shale components in the MAPS images at different statistical region Sizes. (A) matrix contents, (B) OM contents, and (C) contents
of OM pores.

TABLE 2 Absolute percentages of OM types in the three shale samples at three different image resolutions.

Shale sample Resolution (nm) Type A OM (%) Type B OM (%) Type C OM (%)

MOM-HP

16 1.72 4.43 2.45

160 1.71 4.42 2.45

320 1.70 4.42 2.44

HOM-LP

16 0.05 1.53 10.60

160 0.04 1.53 10.61

320 0.05 1.53 10.60

LOM-LP

16 0.27 0.34 4.30

160 0.27 0.35 4.31

320 0.26 0.34 4.30

3.2 Connectivity of organic matter pores

To evaluate the accuracy of the SliceGAN model in
reconstructing 3D shale digital cores from 2D slices, we used a FIB-
SEM 2D slice to reconstruct the organic matter and organic pores
of shale. The FIB-SEM image resolution is 4 nm, with dimensions
of 1,600 × 1,600 × 1,000 pixels. For validation, we selected a single
slice along the Z-axis and extracted a 384 × 384-pixel sub-image.
This sub-image was then used as input for the SliceGAN model to
reconstruct the 3D image, as shown in Figure 6. The reconstruction,
conductedwithAVIZO software, was compared to FIB-SEM images.
The results indicated that the organic porosity derived from FIB-
SEM images was 25.02%, while that reconstructed using SliceGAN
was 24.66%, yielding an error of less than 5%. Additionally, the pore
diameter and coordination number distributions obtained from
the FIB-SEM images and SliceGAN reconstructions were in good
agreement. The average coordination number for the FIB-SEM
images is 3.14, with an average pore diameter of 67.82 nm, while
the SliceGAN-generated 3D images show an average coordination

number of 2.65 and an average pore diameter of 72.11 nm. These
parameters demonstrate a good level of consistency between the two
datasets, confirming that 3D images reconstructed from 2D shale
slices using SliceGAN are both reliable and accurate.

To investigate the connectivity of resolved pores within different
types of OM, instead of FIB-SEM reconstruction, three types
of OM presented in the MOM-HP sample have been selected
for the 3D reconstruction by the SliceGAN model, as shown in
Figure 7. AVIZO (FSI, 2019) is used to conduct the connectivity
analysis. It is found that resolved pores in the Type A OM (surface
porosity of 28%) arewell connected, while resolved pores in the Type
B (surface porosity of 17%) andTypeC (surface porosity of 1.8%) are
disconnected with a few locally connected pores.

Figure 8 shows the distributions of coordination numbers and
pore sizes in the three types of OM. It is seen that the Type B
and Type C OM have more resolved pores than the Type A OM,
but the Type A OM has the highest mean coordination number
of 1.77. The equivalent pore diameters of the Type A OM are up
to 200 nm with a mean value of around 100 nm. The equivalent
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FIGURE 5
Distributions of the Classified OM including Type A in green, Type B in red, and Type C in blue, and their percentages in the whole MAPS images.

pore diameters of the Type B OM are up to 100 nm with a mean
value of around 50 nm. Moreover, as expected, the Type C OM
has many much smaller resolved pores (smaller than 50 nm) as
shown in the last column of Figure 8. The pore size distributions
within different types of OM can reflect the different sates of gas
occurrence including adsorbed and free gases. Previous studies have
shown that the absolute adsorption capacity of OM decreases as the
proportion of resolved pores increases, while the amount of free
gas increases as the proportion of as the proportion of resolved
pores increases (Ji et al., 2019a). Therefore, we may conclude the
proportion of free gas is highest within the Type A OM, whereas
the proportion of adsorbed gas is highest within the Type C OM.

3.3 3D REV-size connectivity of organic
matter

Due to the extremely low contents of Type A OM in HOM-LP
and LOM-LP, in their 3D reconstruction we neglect the Type A OM.
As shown in the first column of Figure 9, the 2D distributions of the
three types of OM in the reconstructed digital rocks of OM are very
similar to those in the training images (refer to Figure 5). Overall, the
distributions of the three types of OM are relatively homogenous in
the HOM-LP and MOM-HP shale samples, where the clay content is
less than 5%, suggesting a limited contribution of clay to connectivity.
In contrast, the distribution in theLOM-LP ismuch less uniform,with
large OM clusters developed in some regions as shown in the second
column of Figure 9. This is mainly because of its high clay content
(around40%) and lowOMcontent (4.91%) as shown inTable 1, due to

its higher clay content, the connectivity of these isolatedOMelements
may rely on clay minerals, which is an aspect that warrants further
attention in future studies.

We further use the open source code PoreSpy to extract the
networks of OM composed of the three types of OM as shown in
the last column of Figure 9. It is found that the average coordination
number (CN)values for all theOMinHOM-LP,MOM-HP,andLOM-
LP are 7.56, 4.77, and 3.01, respectively. As a whole, the three types of
OM in HOM-LP and MOM-HP have good connections throughout
the domains. Although LOM-LP holds a relatively high mean CN
value, we see many isolated OM elements due to the nonuniform
distribution. The high CN value is due to the formed well-connected
OM clusters in some regions. As mentioned above, in the 2D full
MAPS images, OM is not connected through the domains. However,
our analysis shows that in the reconstructed 3DREV-size digital rocks
of OM, OM is connected, even for the LOM-LP sample.

Given the fact that the three types of OM correspond to
different capacities of gas flow and occurrence, it is of importance
to understand the connectivity of each type of OM. In the HOM-LP
sample, only the Type COM forms connective pathways throughout
the domain, due to its high content (10.83%) listed in Table 3. In
the other two shale samples, the Type A and Type B OM do not
exhibit overall connectivity, and require the Type C OM to form
the overall connectivity. Although the Type A OM features high
flow conductance, it needs to connect with the Type B and Type C
OM of much low conductance to achieve the overall connectivity at
the REV size. This indicates that at the REV scale gas flow capacity
is dominated by the Type C OM in our case studies. Moreover,
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FIGURE 6
Comparison between FIB-SEM and SliceGAN generated images. (A) FIB-SEM 3D image. (B) 3D distribution of pores in a subregion of the FIB-SEM
image. (C) The first slice of image (B), used as the 2D input for the SliceGAN model. (D) 3D pore distribution from the SliceGAN reconstruction. (E) 2D
slice from the SliceGAN 3D reconstruction. (F) Comparison of pore diameter distributions between FIB-SEM and SliceGAN generated images. (G)
Comparison of coordination number distributions between FIB-SEM and SliceGAN generated images.

FIGURE 7
3D reconstruction of each type of OM, the red color represents the pores connected along the Z-axis, while the blue color indicates all pores. The first
column shows the types of OM. The second column shows the segmented 2D images. The third column shows cross-sections of 3D reconstructed
OM. The fourth column shows the 3D OM pores of the reconstructed OM. Type A has connected pores while the other two types has isolated pores.
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FIGURE 8
Distributions of coordination numbers and pore sizes in the three types of OM.

FIGURE 9
3D REV-size reconstruction of the three shale samples. The first column shows the cross-sections of the reconstructed digital rocks (refer to the input
2D images in Figure 5). The second column shows the 3D reconstructed OM digital rocks. The third column shows the watersheds of the three types
of OM, and their 3D connectivity.

Connectivity statistics along the Z direction by Avizo show that the
OM content in HOM-LP is 13.26%, with connected OM content
of 12.66%. For MOM-HP, the OM content is 9.3%, with 7.85%
connected OM. In the LOM-LP sample, the OM content is 4.25%,
with least connected OM of 2.02%.

4 Conclusions and outlook

OM serves as the basis for hydrocarbon generation in shale
gas, and plays an important role in gas transport. Understanding
the connectivity of REV-size OM is crucial to assess the potential
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TABLE 3 Information of the 3D reconstructed REV-size digital rocks of OM.

Shale
samples

All OM Type A OM Type B OM Type C OM

Content (%) Mean
CN

Content (%) Mean
CN

Content (%) Mean
CN

Content (%) Mean
CN

HOM-LP 9.31 7.56 1.70 1.42 4.88 2.02 2.73 2.10

MOM-HP 13.26 4.77 0.00 0 1.85 0.12 11.41 2.94

LOM-LP 4.25 3.01 0.00 0 0.30 0 3.95 2.97

and production capacity of shale gas. In this work, we have
developed a novel workflow for numerical reconstruction of
REV-size OM digital rocks, which can integrate high-resolution
information of pore structures in large-view MAPS images. OM
in the MAPS images is segmented, classified, and reconstructed
to determine its REV size. By using the SliceGAN model, the 3D
structures of different types of OM (termed as Type A with high
porosity, Type B with medium porosity, and Type C with low
porosity) are presented, and their connectivity at the REV size is
extensively analyzed.

Three in-situ shale samples with different OM contents are used
for illustration. Our results show that the REV size of OM in the
2D MAPS images is approximately 100 μm, and OM is generally
disconnected throughout the domains. In the 3D reconstructed
REV-size digital rocks of OM, as a whole, the three types of OM
form connected pathways throughout the domains, but each type
of OM is not inherently connected. The Type A and Type B OM
hold poor connectivity, while the type C OM with low porosity
holds the best connectivity, dominating gas transport in OM at
the REV scale.

As a first attempt, this work focuses on the characterization and
evaluation of REV-size OM connectivity, neglecting the influence
of clay minerals. It is known that porous clays will enhance
the connectivity of OM, particularly at high clay contents (e.g.,
the LOM-LP sample in this work). In the future studies, two
research questions may be addressed: (1) how does clays contribute
or impact gas transport pathways and capacity? (2) Besides the
overall connectivity of different types of OM, how does the
Type A OM influence REV-scale gas apparent permeability and
gas occurrence?
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