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Basin, China
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1Sinopec North China Petroleum Bureau, Zhengzhou, China, 2State Key Laboratory of Petroleum
Resources and Prospecting, China University of Petroleum (Beijing), Beijing, China, 3College of
Geoscience, China University of Petroleum (Beijing), Beijing, China, 4Exploration and Development
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Tight sandstone reservoirs have become a focal area in the exploration
and development of oil and gas in recent years. However, the complexity
of their geological conditions and the significant heterogeneity of reservoir
properties make the identification of sweet spots challenging. Traditional
methods heavily rely on the experience and judgment of geologists and
engineers, which introduces considerable subjectivity and uncertainty. The
advent of artificial intelligence offers new avenues for identifying sweet spots
in tight sandstone reservoirs. This study, based on an integrated geological-
engineering perspective and utilizing data analysis and multiple machine
learning methods, innovatively proposes a regression prediction model that
integrates the Triangulation Topology Aggregation Optimizer (TTAO) algorithm,
Random Forest (RF), and Multi-Head Self-Attention Mechanism (MSA), aiming
to enhance the accuracy of oil and gas sweet spot identification. The case
study utilizes actual data from the He8 section in the Ordos Basin, China. The
results indicate that sweet spots are influenced by a combination of geological,
rock mechanical parameters, and hydraulic fracturing operation parameters.
The dominant reservoir properties affecting post-fracture productivity include
gas saturation, porosity, and permeability, while the principal rock mechanics
factors are fracture toughness and the difference in horizontal stresses.
The critical fracturing operation factors are total fluid volume, total sand
volume, and pre-pad fluid. Based on the analysis of dominant factors
affecting productivity, the proposed hybrid machine learningmodel achieved an
accuracy of 86.7% in identifying sweet spots. A three-dimensional geological-
engineering sweet spot model considering lithology, physical properties, and
rock mechanics characteristics was established, offering targeted areas for
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future well placement. Future applications of this model could achieve cross-
regional adaptability by adjusting input parameters according to specific
geological and engineering conditions.

KEYWORDS

ordos basin, tight sandstone reservoir, geological-engineering sweet spot, triangulation
topology aggregation optimizer algorithm, random forest, multi-head self-attention
mechanism

1 Introduction

Tight sandstone gas reservoirs, a key component of
unconventional oil and gas resources, have garnered significant
attention amid the global transformation of energy structures and
the increasing demand for clean energy, particularly in regions
such as the Ordos Basin (Yang et al., 2012; Li, 2004). However,
due to the low porosity and permeability of tight sandstone
reservoirs, their development poses considerable challenges.
Horizontal well with volumetric fracturing is a crucial technique
for enhancing production (Wang et al., 2009; Wang et al., 2014;
Han et al., 2019). Despite this, post-fracturing performance varies
markedly among wells, with some failing to meet expectations
(Jiang et al., 2017; Zou et al., 2013; Du et al., 2022). This uncertainty
introduces risks in well placement and fracturing plan formulation.
Consequently, accurately identifying the “sweet spot” areas within
the reservoir—regions with high reservoir quality and production
potential—is essential for optimizing drilling layouts, enhancing
development efficiency, and reducing development costs (Zou et al.,
2015). Thanks to the advancements driven by the North American
shale gas revolution, sweet spot identification technology has seen
notable improvements in recent years (Zou et al., 2020). Traditional
methods of identifying sweet spots generally rely on geological
interpretation and geophysical techniques, such as parameter
truncation based on geological properties like porosity, permeability,
and gas saturation, as well as engineering parameters such as Young’s
modulus, brittleness index, and the stress difference coefficient
(Clarkson et al., 2012; Buller et al., 2010; Liao, 2020; Rickman et al.,
2008; Ross and Bustin, 2007), with additional approaches, including
sedimentary diagenesis-reservoir facies analysis (You et al., 2014),
petrophysical inversion of reservoir parameters (Zhou et al., 2019;
He, 2018), and the integration of micro-core experimental data
with high-resolution 3D seismic data (Sun et al., 2019), also
depending on similar techniques for sweet spot identification and
prediction.While traditional geological and geophysical approaches
have achieved significant progress, they largely depend on expert
judgment and qualitative analysis to assess reservoir physical
properties and production potential. Although this approach works
in small-scale datasets and simple geological settings, it often falls
short in large-scale, complex geological environments due to its
strong subjectivity and lack of quantitative analysis (Ji et al., 2019).
Furthermore, while geophysical methods provide valuable reservoir
insights, their resolution and accuracy are often limited in deep
reservoirs and complex geological conditions. Traditional methods
also struggle to efficiently handle multivariable, high-dimensional
data, and fail to capture all the factors influencing sweet spot
formation, making it difficult to quantify uncertainty.

To address these limitations, researchers have turned to new
technological approaches. Machine learning algorithms, including
random forests, support vector machines, and convolutional
neural networks, are capable of extracting features from complex
datasets. They demonstrate superior performance in handling
large-scale and high-dimensional data and have been applied
to sweet spot identification (Ji et al., 2019; Bansal et al., 2013;
Zhong et al., 2015; Lolon et al., 2016; Bowie, 2018). For instance,
data analysis has been used for sensitivity analysis of fracturing
parameters influencing sweet spots (Jianmin et al., 2019; Wu et al.,
2012; Yao et al., 2021; Wigwe et al., 2019; Hareland et al., 1993;
Kolawole et al., 2019; Xinfang et al., 2005); fuzzy mathematics
and support vector machines have been employed to correlate
seismic attributeswith petrophysical characteristics to identify sweet
spots in unconventional reservoirs (Qian et al., 2018); adaptive
boosting machine learning algorithms, neural network models,
and other methods have been utilized to explore the correlation
between productivity and factors such as rock mechanics, hydraulic
fracturing, well completion data, and reservoir properties, providing
a quantitative assessment of development impacts and refining sweet
spot distribution (Wang and Chen, 2019; Luo et al., 2018; Han et al.,
2020; Mohaghegh, 2013). Abdulaziz successfully predicted the
porosity distribution of the tight sandstone reservoir in the Farrud
field, Libya, by integrating artificial neural networks with well
logging and seismic attributes, achieving 89% accuracy in handling
reservoir heterogeneity (Abdulaziz et al., 2019). In the development
of the Bakken Shale in North America, Cipolla proposed a method
to separate the evaluation of reservoir quality from fracturing
effectiveness, significantly improving single-well productivity
throughmulti-objective optimization algorithms, thereby validating
the necessity of engineering parameter optimization (Cipolla et al.,
2010). In the Middle East, Balogun and Akintokewa conducted
a quantitative risk assessment for drilling in the TM oilfield
of the Niger Delta, demonstrating the feasibility of integrating
geological characteristics with engineering parameters (Balogun
and Akintokewa, 2023). Additionally, the rock brittleness evaluation
criteria proposed by Boris and Potvin have been widely applied in
tight gas reservoirs in Western Canada, emphasizing the critical role
of rock mechanical parameters in sweet spot identification (Tarasov
and Potvin, 2013). These cases illustrate that multidisciplinary, data-
driven optimization strategies are a key trend in the development of
complex reservoirs.

Despite these advances, machine learning methods still face
challenges when processing geological data, particularly due to
nonlinear relationships and complex spatial correlations between
variables, compounded by limitations in sampling density and
measurement accuracy, which introduce noise and uncertainty
into the data. To counter these problems, a composite model is
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proposed that integrates the Triangulation Topology Aggregation
Optimizer (TTAO), Random Forest (RF), and Multi-Head Self-
Attention Mechanism (MSA), using the tight sandstone gas field
in the Ordos Basin as a case study. This integrated approach fully
leverages the TTAO algorithm’s ability to balance global and local
search, the RF model’s stability and generalization capacity, and the
MSA model’s sensitivity to key features. The combined framework
enhances the accuracy of sweet spot identification and deepens the
model’s understanding of the underlying data structure.

2 Geological background

The Ordos Basin, located on the North China Craton, is
primarily a multi-cycle superimposed oil and gas cratonic basin.
Its crystalline basement consists of metamorphic rock formations
from the Archean to Proterozoic eras, with overlying sedimentary
deposits from the Paleozoic, Mesozoic, and Cenozoic periods
(Li, 2004; He et al., 2003; Li et al., 2014). Based on tectonic
characteristics, the Ordos Basin is divided into six tectonic units
the Yimeng Uplift, Western Thrusting Belt, the Weibei Uplift, the
Tianhuan Depression, the Yishan Slope, and the Jinxi Folding Belt
(Figure 1A) (Cao et al., 2013; Yang et al., 2012).

The study area is located in Ordos Basin. The primary
stratigraphic units in this region include the Benxi Formation,
Taiyuan Formation, Shanxi Formation, Lower Shihezi Formation,
Upper Shihezi Formation, and the Shiqianfeng Formation. This
study focuses on Section 8 of the Lower Shihezi Formation
(Figure 1B), which is delimited by the Camel Neck Sandstone and
the Shanxi Formation. The regional structure shows an eastward
uplift and a westward depression, with localized development
of gentle nose uplifts in the context of an overall monocline.
During the sedimentary period of the Lower Shihezi Formation,
as regional tectonic activity intensified, the northern source area
of the basin continued to uplift, thereby increasing the supply of
terrigenous detrital material. This led to the southward migration
of the deltaic depositional system, which resulted in delta plain
deposits dominating the study area. The primary sedimentary
facies developed are distributary channel microfacies (Figure 1C),
characterized by high sedimentary heterogeneity and complex
superimposed relationships, which make sweet spot identification
particularly challenging (Zhang and Lan, 2006).

3 Research data and methods

3.1 Data sources and processing

In this study, based on production capacity, the sweet
spot areas of Section 8 of the Lower Shihezi Formation (He-8)
are categorized into four types. Category I includes wells with
a first-year gas production ecxeeding 10,000 m³/day; Category
II includes wells with daily production in the range of 8,500 to
10,000 m³/day; Category III includes wells with daily production in
the range of 7,500 to 8,500 m³/day; and Category IV includes wells
with daily production less than 7,500 m³/day. Data from 20 coring
wells in the study area were selected for this study, comprising
12 features (porosity, permeability, gas saturation, clay content,

fracture toughness, minimumhorizontal principal stress, brittleness
index, total sand volume, total liquid volume, number of fracturing
clusters, cluster spacing, and fracturing discharge), resulting in
a dataset of 1,700 samples. Of these, 70% (1,190 sample points)
were used for the training set, and 30% (510 sample points) were
used for the test set. To ensure the quality and accuracy of the data
and subsequent analysis, a series of data preprocessing steps were
performed, including data cleaning and normalization.

3.2 TTAO-RF-MSA multivariable regression
algorithm

To effectively identify the most influential factors on production
capacity from a range of geological and engineering parameters,
this study compares the feature importance scores to determine
the key factors with a decisive impact on production capacity.
Based on the selected key feature parameters, the TTAO algorithm
is primarily designed to identify and filter the most significant
factors influencing production capacity from a multitude of
geological and engineering parameters through its unique triangular
topology aggregation optimization strategy. This step ensures that
only the most influential features are passed on to subsequent
models, thereby reducing model complexity and mitigating the
risk of overfitting. Subsequently, the feature subsets selected by the
TTAO algorithm are input into the Random Forest (RF) model.
The RF model then utilizes these optimized feature subsets to
further enhance the accuracy of production capacity predictions
by capturing nonlinear relationships and improving robustness
against noise and outliers.This ensemble learning approach not only
improves model stability but also strengthens the understanding
of each feature’s contribution to sweet spots through a feature
importance scoring mechanism. Finally, the Multi-Head Self-
Attention (MSA) mechanism is incorporated to improve the
model’s understanding of complex feature interactions. MSA learns
multiple sets of attention weights in parallel, enabling the model
to focus dynamically on different feature combinations and assign
appropriate weights to each feature, thereby enhancing the accuracy
of identification (Figure 2). During the model training phase, the
dataset is divided into training and test sets (7:3), with the training
set used for model learning and the test set used to evaluate
model performance. Hyperparameters are tuned through cross-
validation to achieve the best predictive performance. To validate
the model’s identification accuracy, several evaluation metrics,
including accuracy, recall, and F1 score, are employed.

3.2.1 Triangular topology aggregation optimizer
algorithm (TTAO)

The design inspiration for the TTAO algorithm is drawn
from the stability and similarity of triangles in nature. In
mathematics and engineering, triangular structures are widely used
in various optimization problems due to their unique geometric
properties. The TTAO algorithm aims to address this challenge
by simulating the similarity of triangles, thereby enhancing the
algorithm’s performance in multimodal, multi-objective, or large-
scale optimization problems (Zhao et al., 2024). The TTAO
algorithm transforms the optimization problem into a process of
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FIGURE 1
(A) Structural division and tectonic units of the Ordos Basin. (B) Comprehensive stratigraphic bar chart of the H8 Formation in the study area. (C)
Sedimentary facies distribution model of the study area.

constructing and optimizing triangular topology units in high-
dimensional space to simulate the search process. Each triangular
unit consists of four vertices, with three vertices representing feature
parameters that influence the sweet spot, and the fourth vertex,
located inside the triangle, is generated by linearly weighting the
three feature vertices. The addition of the internal vertex increases
the flexibility of the triangular unit, enabling the algorithm to
perform a more detailed search within the triangle (Zhao et al.,
2024). These triangular topology units dynamically evolve through
the iterative process in the search space, exploring and exploiting
regions with potential optimal solutions.

The TTAO algorithm includes two primary aggregation
strategies: generic aggregation and local aggregation. Generic
aggregation focuses on global search by exchanging information
between different triangular units to discover new solutions.

Local aggregation focuses on local search by perturbing the
optimal individual within a unit to precisely find local optimal
solutions (Zhao et al., 2024). In each iteration, the algorithm first
performs generic aggregation. In each triangular topology unit,
the algorithm identifies the best-performing individual, which
possibly represents the optimal feature combination or solution
found in that unit during the current iteration. The algorithm then
exchanges information between different units, typically involving
the comparison of the optimal individuals in different units and
generating new individuals through crossover strategies. Based on
this information exchange, the algorithm generates new vertices that
represent potential new solutions, which may be located in different
regions of the search space, helping the algorithm explore areas
that have not been fully explored. These newly generated vertices
are added to the triangular topology units, and if they outperform
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FIGURE 2
Integrated Geological-Engineering sweet spot identification framework combining TTAO, Random Forest, and Multi-Head Self-Attention Mechanism.

the original vertices, they replace them. In this way, the algorithm
explores the search space to find better solutions. Figure 3 illustrates
the iterative exchange of information during the generic aggregation
process, where the numbering of each vertex in the triangular unit
represents its importance ranking. The information exchange in
the algorithm involves three distinct movement methods. The first
involves individuals generated after crossover that outperform the
original optimal individuals (e.g., the upper right unit and the lower
left unit, the upper left unit and the lower left unit). The second
involves individuals generated after crossover that outperform the
suboptimal individuals (e.g., the upper right unit with the lower
right unit, and the second unit from the upper with the lower left
unit). The third involves individuals generated after crossover that
perform worse than the original individuals (e.g., the upper unit
with the upper right unit, resulting in a worse solution).

Subsequently, the algorithm performs local aggregation. Within
each triangular topology unit, the algorithm first identifies the
current local optimal individual, which represents the best solution
found in that unit during the current iteration. Centered on the
local optimal individual, the algorithm defines a local search range
to ensure that the search does not deviate too far from the optimal
individual while allowing some degree of exploration. Within this
local search area, the algorithm introduces new mutations by
randomly perturbing the optimal individual through adding or
subtracting a small random number to its feature values, thereby
exploring the solution space near the optimal individual. Through
this perturbation, the algorithm generates new individuals that
represent other potential solutions in the vicinity of the local
optimal individual. The generation of new individuals can be
considered a minor adjustment to the local optimal solution,
aimed at discovering better solutions. If a new individual’s fitness
surpasses the fitness of the current local optimal individual, this
new individual will replace the previous local optimal individual.
This process is repeated until no further improvement is found
within the local search range. Through local aggregation, the
TTAO algorithm can perform a thorough exploration of local
areas while retaining its global search capability. This strategy

aids the algorithm in finding more accurate solutions in complex
optimization problems, especially when multiple local optima are
present, as local aggregation effectively prevents the algorithm from
getting trapped in suboptimal solutions. Figure 4 shows a schematic
of local aggregation for the triangular topology units, with the
dashed triangular topology unit indicating the temporary topology
structure formed by the optimal, suboptimal, and third vertexs
after generic aggregation. Within a certain local area, the optimal
individual in each unit is aggregated and updated to superior
positions. After local aggregation of each temporary unit, new
topology units (yellow dots) are constructed based on their optimal
positions.

3.2.2 Random forest with attention mechanism
(RF-MSA)

The Random Forest algorithm improves prediction stability and
accuracy by constructing multiple decision trees and integrating
their prediction results. In this study, model performance is further
optimized by incorporating an attention mechanism, enhancing the
model’s capability to identify and assign weights to key features,
thereby increasing the accuracy of sweet spot predictions.

Random Forest is an ensemble learning method that enhances
model stability and accuracy by combining the prediction results
from multiple decision trees (Lan, 2022; Fang et al., 2011). Each
decision tree is trained on different random subsets of the dataset,
using a method known as Bagging. In this process, assume the
original dataset D comprises N samples. For each tree, N samples
are randomly selected from D with replacement (Bootstrapping)
to create a new training dataset Di. Each tree’s training set may
contain duplicate samples, and roughly one-third of the samples
are not included in Di; these unselected samples can then serve as
Out-of-Bag (OOB) data, providing an unbiased estimate for model
validation. Additionally, Random Forest increases model diversity
and robustness by using a random subset of features, along with a
random subset of data, at each decision node split (Lan, 2022).

In this study, the construction of the Random Forest follows
these steps: First, multiple distinct training subsets are drawn from
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FIGURE 3
General aggregation information iteration update process (modified after Shijie Zhao et al., 2024).

FIGURE 4
Iterative update process of local aggregation information (modified after Shijie Zhao et al., 2024).

the original training set through sampling with replacement. Next,
a decision tree is built for each training subset. A random subset of
features is selected when determining split nodes, rather than using
all available features. This process is repeated until the predefined
number of trees is constructed. Finally, the prediction results
from all decision trees are combined to make the final prediction
(Figure 5).

On the basis of Random Forest, we introduce the Multi-Head
Attention (MSA) mechanism (Figure 6) to enhance the model’s
capability to recognize key features. During each tree’s node split, the
model can select the most informative features for splitting, based

on attentionweights, thereby improving the prediction performance
of the tree.

The attention mechanism is a computational framework that
mimics human cognitive attention, enabling the model to focus on
the key parts of the input data when processing information. In
deep learning, the attention mechanism achieves this by assigning
different weights to different portions of the input data, which reflect
the importance of each part of the data. Multi-Head Attention is
an extension of the attentionmechanism, enhancing and combining
the scaled dot-product attentionmechanism. In thismechanism, the
input vector is first transformed bymultiple sets of linear projections
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FIGURE 5
Schematic diagram of the Random Forest construction process illustrating bootstrap sampling, decision tree generation, and majority voting
integration.

FIGURE 6
Architecture of the Multi-Head Self-Attention mechanism with parallel
query, key, and value transformations.

into Query, Key, and Value spaces, resulting in three matrices Q, K,
and V, where each transformation corresponds to a distinct “head.”
As a result, each head learns different feature representations from
the input data (Wang et al., 2024). Each head computes attention
independently, producing a set of attention scores that determine
the weighted sum of the value vectors in that head. Since each head
focuses on distinct aspects of the data, this parallel computation
enhances the model’s sensitivity to diverse input features. The
attention outputs from all heads are concatenated, and finally,
the concatenated output is passed through another set of linear
projections to produce the final output of the multi-head attention
layer.This output contains all the information themodel has learned
from the multiple “heads.”

4 Geological-engineering sweet spots
identification example

4.1 Analysis of key factors influencing
sweet spots

This study takes the Ordos Basin as a case example. First,
rigorous preprocessing is applied to the raw dataset, including

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2025.1535883
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Chen et al. 10.3389/feart.2025.1535883

FIGURE 7
Importance Ranking of Main Control Factors for Multi factor Capacity.

handling missing values and normalizing features, ensuring data
quality and eliminating dimensionality effects. Next, we performed
a Kendall correlation analysis to rank the importance of the 12
characteristic parameters affecting the gas reservoir’s production
capacity. As shown in Figure 7, a bar chart of parameter importance
is calculated based on correlation analysis. The results indicate that
gas saturation, permeability, and porosity are the primary geological
parameters affecting post-fracturing productivity. Additionally,
rock mechanical parameters also have a significant impact on
productivity. Specifically, fracture toughness and brittleness index
refer to the resistance of rock to fracture propagation. Areas
with a higher brittleness index and lower fracture toughness
exhibit higher productivity. Furthermore, the minimum horizontal
principal stress influences fracture propagation, which subsequently
affects the well’s operational range and, consequently, productivity.
In addition, fracturing operational parameters (such as total sand
volume, total liquid volume, number of fracturing clusters, cluster
spacing, and fracturing discharge) affect the effectiveness of the
fracturing operation and, to a certain degree, influence post-
fracturing productivity.

Based on this, sweet spots are classified into four categories
according to productivity. The TTAO algorithm is then applied to
construct a triangular topological structure, mapping the feature
space into an optimization problem. In this optimization problem,
each vertex represents a feature, edges represent relationships
between features, and triangles represent feature subsets. The
algorithm evaluates the contribution of each feature subset to the
sweet spot through an iterative search process and selects the
optimal subset to reduce the complexity and overfitting risk of
the subsequent model. The results show that porosity, permeability,
gas saturation, clay content, minimum horizontal principal stress,
brittleness index, fracture toughness, number of fracturing clusters,
total sand volume, and total liquid volume form the optimal
feature subset. Following this, a classification model is constructed
using the Random Forest algorithm based on the feature subset
selected by the TTAO algorithm. The integration of multiple
decision trees enhances the model’s ability to capture non-linear

relationships and improves robustness against noise and outliers.
In this process, the Random Forest algorithm’s feature importance
score mechanism further confirms each feature’s contribution to
the sweet spot, providing a stable basis for prediction. Finally,
the multi-head attention mechanism is introduced to enhance the
model’s understanding of complex feature interactions. By learning
in parallel from multiple attention weight sets, the model can
dynamically focus on different feature combinations and assign
corresponding weights to each feature. This coherent algorithmic
fusion framework not only improves the accuracy of sweet spots
identification but also enhances the model’s understanding of the
underlying structure of the data.

4.2 Hyperparameter settings for the
TTAO-RF-MSA model

To achieve optimal performance of the TTAO-RF-MSA
model, its hyperparameters were carefully tuned, with particular
focus on three key parameters that significantly influence model
performance.

The first hyperparameter is the leaf size, also known as the
minimum leaf size, which determines the minimum number of
samples required in a leaf node. This parameter controls the growth
of decision trees. A smaller leaf size enables the model to capture
finer-grained data patterns but increases the risk of overfitting
due to sensitivity to noise. Conversely, a larger leaf size enhances
generalization ability but may result in underfitting. Experimental
analysis comparedmodel errors for leaf sizes of 3, 6, and 9 (Figure 8).
The results indicate that a leaf size of three yields the smallest error,
demonstrating optimal model performance.

The second hyperparameter is the number of features. The
dataset in this study includes 12 parameters related to geology,
geomechanics, and engineering. Models were constructed using
varying numbers of input features, ranging from 2 to 12 (Random
feature selection), and their performance was evaluated (Figure 9).
Each model underwent independent training and validation to
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FIGURE 8
Comparison of training performance for the Random Forest model
under varying minimum leaf sizes.

FIGURE 9
Impact of feature subset size on Random Forest model accuracy.

ensure the accuracy and reliability of the results. Comparative
analysis of performancemetrics, including but not limited to relative
error, revealed that the model achieved the lowest error when it
included 10 features: porosity, permeability, gas saturation, clay
content, minimum horizontal principal stress, brittleness index,
fracture toughness, number of fracturing clusters, total sand volume,
and total liquid volume. This indicates that this number of features
provides the optimal balance for our model, allowing it to capture
key information in the data while avoiding overfitting.

The third hyperparameter is the number of iterations, which
defines the number of optimization cycles in the TTAO algorithm.
Increasing the iteration count allows the algorithm to explore
the search space more thoroughly, potentially identifying better
solutions. However, excessive iterations can lead to significantly
higher computational costs and may cause the algorithm to
converge prematurely in a local optimum. Carefully determining
the optimal number of iterations plays a critical role in achieving

FIGURE 10
Training and validation loss curves of the TTAO-RF-MSA model.

a balance between model performance and computational
efficiency. Figure 10 presents the loss curves for the training and
test sets at the highest accuracy. The analysis indicates that the
optimal number of iterations is 138.

4.3 Model evaluation metrics

To comprehensively assess the performance of the proposed
TTAO-RF-MSA multivariable regression model, we employed
multiple evaluation metrics to measure the model’s prediction
accuracy and reliability, including but not limited to accuracy, recall,
precision, and F1 score.

4.3.1 Accuracy
Accuracy is the ratio of correctly predicted samples to the total

number of samples. It offers a straightforward evaluation of model
performance, particularly in classification tasks. The formula is:

A = TP+TN
TP+TN+ FP+ FN

where TP refers to the number of true positive predictions, TN refers
to the number of true negative predictions, FP refers to the number
of false positive predictions, and FN refers to the number of false
negative predictions.

4.3.2 Recall
Recall, or true positive rate, measures the model’s ability to

correctly identify positive samples. It is calculated as the proportion
of actual positive samples correctly predicted by the model.
The formula is:

R = TP
TP+ FN

4.3.3 Precision
Precision is the proportion of positive predictions that are

actually correct. t focuses on the accuracy of themodel’s predictions,
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aiming to reduce false positives. The formula is:

P = TP
TP+ FP

4.3.4 F1 score
The F1 score is the harmonic mean of precision and recall,

balancing the two metrics. It ranges from 0 to 1, with higher values
indicating better model performance. The formula is:

F1 = 2∗P∗R
P+R

4.4 Sweet spots identification results

In this study, the proposed TTAO-RF-MSA model was
applied to identify sweet spots at the single-well scale. First,
the TTAO algorithm was employed to optimize input features.
By constructing and optimizing triangular topology units, the
algorithm effectively selected the 10 factors most influencing
productivity from geological and engineering parameters. These
selected features were then used as inputs for the Random Forest
(RF) model, which enhanced the ability to capture nonlinear
relationships by integratingmultiple decision trees, while improving
robustness to noise and outliers. Building on the RF model, the
Multi-Head Self-Attention mechanism (MSA) further refined the
identification and weighting of key features, enabling the model
to prioritize factors with decisive impacts on the output during
sweet spot identification. Through this integrated framework, the
TTAO-RF-MSA model successfully achieved single-well sweet
spot identification. Analysis of the confusion matrix (Figure 11)
revealed that the model accurately predicted 442 out of 510 samples,
achieving an identification accuracy of 86.7%, which demonstrates
good predictive performance. To further validate the model’s
predictive capability, Horizontal Well A was selected as a case study.
It is important to note that the data for HorizontalWell A is included
in the dataset of the 20 coring wellsmentioned earlier.This approach
ensures the representativeness of the case study and allows a direct
comparison between the model’s predictions and actual drilling
data. Using the proposed TTAO-RF-MSA model, sweet spots in
Horizontal Well A were identified. The results showed that the
actual sweet spot length encountered in the horizontal section was
1,460 m, while the model predicted a sweet spot length of 1,510 m,
resulting in a prediction error of less than 3% (Figure 12).This result
demonstrates themodel’s predictive accuracy at the single-well scale.

In practical applications, this paper integrates geological
modeling techniques. Based on the existing sedimentarymicrofacies
model, it samples the single-well sweet spot identification results
into the model grid and performs variogram analysis. Sequential
indicator simulation is employed 100 times, with the sweet spot type
having the highest probability taken as the final result. This method
utilizes the spatial correlation of geological features to provide
reasonable estimates in areas with sparse well data. It achieves
inter-well prediction of sweet spots and ensures the reliability of
the prediction results, ultimately establishing a three-dimensional
geological-engineering sweet spot model that comprehensively
considers multiple factors and scales, such as lithology, physical

FIGURE 11
TTAO-RF-MSA model confusion matrix.

properties, and rock mechanics characteristics (Figure 13). It not
only depicts the spatial distribution of predicted sweet spots but
also visualizes the spatial variations in different characteristic
parameters, providing detailed and intuitive information for oil and
gas exploration and development. As shown in the figure, Category
I and II sweet spots are predominantly distributed in the central part
of the channel, while Category III and IV sweet spots are mainly
located along the channel edges.

4.5 Comparative experimental results of
different models

Ensuring fairness in experimental setups and credibility of results
is critical when comparing model performance. To this end, in
addition to extensive hyperparameter optimization for the proposed
TTAO-RF-MSAmodel,weperformed similar hyperparameter tuning
for other models used in the comparison (e.g., RF, KNN, CNN,
XGBoost, and SVM). The selection of hyperparameters for each
modelwas informedby comprehensive literature reviewandextensive
experimental validation to ensure that all models operated under
optimal or near-optimal configurations.

For the RF model, we adjusted the number of trees, maximum
depth, and minimum leaf size. For the KNN model, different
numbers of neighbors and distance metrics were tested. For the
CNN model, adjustments were made to the number and size of
convolutional layers and pooling strategies. The hyperparameters
for the XGBoost model included learning rate, maximum tree
depth, and regularization parameters. For the SVM model, we
optimized the penalty parameter and kernel function types. All
hyperparameter settings were determined through cross-validation
and grid search to identify the best configurations for the dataset.

Following hyperparameter optimization, we reevaluated the
models to ensure that each demonstrated its best performance.
By calculating accuracy, precision, recall, and F1 scores for
different sweet spot categories, we found that the TTAO-RF-MSA
model consistently outperformed the other models across multiple
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FIGURE 12
Comparison between actual drilling and predicted sweet spots in horizontal well A.

FIGURE 13
3D sweet spot model. (A) 3D Sweet Spot Model. (B) Spatial Distribution of Gas Saturation and Porosity for Category I and II Sweet Spots.

evaluation metrics. These results not only demonstrate the superior
performance of the TTAO-RF-MSA model but also highlight the
critical role of hyperparameter optimization in enhancing model
performance.

Table 1 summarizes the performancemetrics of differentmodels
under their optimized hyperparameter configurations.The results of
this detailed comparative experiment illustrate that the TTAO-RF-
MSA model delivers the best sweet spot identification performance.

5 Discussion

In this study, the TTAO-RF-MSA model exhibited exceptional
predictive performance, likely due to its innovative design in
ensemble learning and optimization methodologies. Specifically,
the TTAO algorithm balances global and local searches, enabling
the discovery of optimal solutions across the entire search space.
The stability and generalization capability of RF further enhanced
prediction accuracy and robustness. Additionally, the incorporation
of MSA assigned higher weights to critical features, enabling the

model to prioritize factors with decisive impacts on the output
during prediction. This approach partially emulates the decision-
making processes of experienced geological engineers, enhancing
the model’s adaptability to complex geological and engineering
scenarios. The high accuracy (86.7%) of the TTAO-RF-MSA model
proposed in this study for sweet spot identification is not only
applicable to the Ordos Basin but also demonstrates methodological
universality for other regions. For instance, Saputra identified
fracturing fluid volume and rock brittleness index as critical
parameters through an economic model in the Permian Basin,
United States (Saputra et al., 2021), which aligns closely with the
dominant controlling factors in this study. Research on the Volador
Formation in the Gippsland Basin, Australia (Kamalrulzaman et al.,
2024), revealed the control mechanism of sedimentary microfacies
on sweet spot distribution, supporting the innovation of integrating
sedimentary facies models with machine learning in this work.
Additionally, the widely adopted “dual sweet spot” theory in North
American shale gas development (Cipolla et al., 2010) shares
similarities with the 3D modeling approach in this study, as
both emphasize the synergistic optimization of reservoir physical
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TABLE 1 Accuracy, recall, and F1 score of sweet spot recognition for different models.

Model Sweet spot label Accuracy/% Recall/% F1 scores/% Sample size

KNN

1 63 79 70 121

2 82 52 63 190

3 82 94 88 105

4 44 68 53 94

CNN

1 84 81 82 121

2 84 84 82 190

3 81 92 86 105

4 69 44 52 94

XGBoost

1 68 69 70 121

2 71 69 72 190

3 58 61 58 105

4 46 37 42 94

SVM

1 73 79 75 121

2 80 72 76 190

3 69 84 75 105

4 80 57 64 94

RF

1 61 75 66 121

2 85 52 64 190

3 71 83 78 105

4 82 62 69 94

TTAO-RF-MSA

1 84 86 85 121

2 89 90 90 190

3 85 85 85 105

4 84 88 86 94

properties and engineering fracability. Future applications could
achieve cross-regional adaptability by adjusting input parameters
(e.g., region-specific rock mechanical indices).

Although this study is exemplified by the actual conditions in
the Ordos Basin in China, the proposed TTAO-RF-MSA model
exhibits extensive applicability. The crux of the model is to capture
the intricate relationships between geological and engineering
parameters by integrating various algorithms, thereby precisely
identifying the “sweet spots” within the reservoir.

This data-driven and machine learning-based methodology is
not contingent upon specific geological conditions or reservoir
types, and thus, in theory, it can be applied to other oil and gas
fields with analogous complexities. For its application in other

regions, it is merely necessary to gather corresponding data in
accordance with local geological and engineering conditions, and
to make suitable adjustments and train the model, in order to
achieve accurate identification of the reservoir “sweet spots” in
those areas.

6 Conclusion

(1) TheTTAO-RF-MSAmodel integrates the Triangular Topology
Aggregation Optimizer algorithm (TTAO), Random Forest
(RF), and Multi-Head Attention Mechanism (MSA). This
integrated framework effectively leverages the advantages
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of these algorithms, significantly improving the accuracy and
reliability of reservoir sweet spots identification, with an
identification accuracy of 86.7%.

(2) The study identified reservoir permeability, porosity, and gas
saturation as the dominant geological parameters influencing
post-fracturing productivity. Rock mechanical parameters,
such as fracture toughness and minimum horizontal principal
stress, were also found to have significant impacts on
productivity.

(3) By combining geological modeling techniques with the
TTAO-RF-MSA model, a three-dimensional geological-
engineering sweet spot model was developed, accounting for a
comprehensive range of factors. This model not only provides
intuitive and detailed information for oil and gas exploration
and development, but also extends sweet spot predictions
from single-well to three-dimensional scales, demonstrating
its potential applications in real-world oil and gas exploration
and development.
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