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The mechanisms and processes of interaction between paleo-subducted slabs
and mantle plumes are not well understood, primarily due to the challenges
associated with direct observation. The Leiqiong Area (LQA), located in the
northwestern South China Sea (SCS), may provide an ideal site to study
the interaction between mantle plumes and paleo-subducted slabs. Extensive
Late Cenozoic volcanic activities are present in the LQA, encompassing the
Leizhou Peninsula (LP) and northern Hainan Island. This study conducted K-
Ar dating, major and trace element analysis, and Sr-Nd-Pb-Hf isotopic analysis
on volcanic rock samples from Naozhou Island, the largest volcanic island
in the northeastern part of the LQA. The dating results show two periods of
magmatic activities on Naozhou Island (3.6 Ma and 1 Ma). The geochemical
results indicate that the columnar jointed basalts from Naozhou Island mainly
show characters of oceanic island basalt (OIB). The isotopic data suggest
origins of depleted MORB mantle (DMM) and Enriched Mantle Ⅱ (EMⅡ), with
EMⅡ potentially originating from the Hainan mantle plume. In view of these
findings, the study further integrates data (Geochronology, trace elements and
isotopic composition) from other volcanic rocks in the LQA to explore the
deep mechanisms of extensive volcanic activity and plume-slab interactions
along the northwestern SCSmargin. We discovered that the volcanic rocks from
southern LP and northern Hainan Island are characterized by OIB, IAB and OIB-
IAB transition like, however, the volcanic rocks from Naozhou Island (northern
LP) and Weizhou Island (western LP) are characterized by OIB like merely. This
can be explained by a branched Hainan mantle plume model and may indicate
the interaction between Hainan mantle plume and paleo-subdected slab mainly
focuse on the center location of the plume rather than distal margin. This
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conjecture is also in accord with the subduction direction of the Late Mesozoic
subduction zone along the northern margin of the SCS.

KEYWORDS

South China sea, late Cenozoic, basaltic volcanics, Hainan mantle plume, Naozhou
Island

1 Introduction

The interaction between mantle plumes and subducted slabs is
a fundamental geodynamic process, exerting a significant influence
on magmatic differentiation, volcanic edifice formation, and
global geochemical fluxes (Foulger and Natland, 2003; Hofmann,
1997). The interaction may result in the flattening of subduction
zones (Dalziel et al., 2000), the deflection of mantle plumes
(Kincaid et al., 2013; Mériaux et al., 2015), extensive magmatic
activity (Druken et al., 2014; Gazel et al., 2011; Yang et al., 2023),
and compositional heterogeneity of mantle plumes (Xu et al., 2019;
Xu et al., 2021; Yu et al., 2022), etc. Seismic tomography studies
have revealed the presence ofmantle plumes near certain subduction
zones (Obrebski et al., 2010), suggesting potential interactions
betweenmantle plumes and nearby subducting slabs (Mériaux et al.,
2016; Toyokuni et al., 2022). Modern examples include the
Tonga subduction zone and the Samoa plume (Price et al., 2014;
Wendt et al., 1997; Chang et al., 2016), the Cascadia subduction zone
and Yellowstone plume (Smith et al., 2009), as well as the Kamchatka
subduction zone and the Kamchatka plume (Gorbatov et al.,
2001). However, tomography has limitations in reconstructing
slab-plume interactions from the pre-Cenozoic era. Evaluating
pre-Cenozoic slab-plume interactions requires alternative proxies.
Reconstructions of supercontinents and ancient large igneous
provinces have demonstrated a spatiotemporal coupling between
large igneous provinces and subduction abyssal systems (Wang et al.,
2013), potentially indicating that slab-plume interactions weremore
widespread in ancient times. However, the processes by which
subducted slabs are incorporated into mantle plumes and recycled
back into the lithosphere remain unclear. The South China Sea
(SCS), the largest marginal sea along the Western Pacific margin,
has a complex tectonic history shaped by convergent and transform
interactions among the Eurasian, Indo-Australian, and Pacific plates
(Li et al., 2015; Li and Li, 2007; Briais et al., 2012; Taylor and Hayes,
1983) (Figure 1A). Its northern continental margin preserves a
record of LateMesozoic subduction history (Li et al., 2018; Cui et al.,
2021), while the region is also characterized by the presence of the
Hainan mantle plume (Xia et al., 2016) (Figure 1B). This makes the
SCS a unique natural laboratory for studying interactions between
mantle plumes and paleo-subducted slabs.

Late Cenozoic basaltic rocks are extensively distributed across
the northwestern margin of the SCS, particularly in the Leiqiong
Area (LQA), which encompasses the Leizhou Peninsula (LP)
and northern Hainan Island, covering approximately 7,000 km2.
Previous studies have proposed three models to explain the magma
sources and volcanic activities in the LQA. ① Sub-continental
lithospheric mantle (SCLM) model. Tu et al. suggested that the late
Cenozoic volcanism on Hainan Island originated from the SCLM,
with magma generation primarily influenced by the dynamics of the

lithospheric mantle beneath the region (Tu et al., 1991). Similarly,
Zhu and Wang, and Huang et al. investigated the Quaternary
volcanoes in the LQA, in terms of geochronology, whole-rock major
and trace elements, and Sr-Nd-Pb isotopes, proposed that volcanic
activity was controlled by fault activities, with magma primarily
derived from the lithospheric mantle (Huang et al., 1993; Zhu and
Wang, 1989). ② Mantle plume model. Plenty of researchers have
suggested that the typical OIB-type basalts in the LQA were derived
from Hainan mantle plume, a deep-seated upwelling of hot material
from the lower mantle (Ho et al., 2000; Lei et al., 2009; Zou and Fan,
2010; Liu et al., 2015). ③ Mantle plume interacts with subducted
slab model. Recent studies suggest that the magma source is a
mixture of depleted MORB mantle (DMM) and Enriched Mantle
Ⅱ (EMⅡ) components (Zhang et al., 2020; Yung-Tan et al., 2022;
An et al., 2017), indicating the interaction between the Hainan
mantle plume and subduction slab. Wang et al. proposed that the
LQA represents a rare example of a young mantle plume interacting
with a deeply subducted slab. They suggested that the volcanic
activity on Hainan Island was influenced by subduction-related
processes (Wang et al., 2012). Zhao et al. proposed that, based on
whole-rock major and trace elements and olivine geochemistry,
the volcanic rocks in the LP range from typical OIB-type to IAB-
type, likely linked to the subduction of the Paleo-Pacific Plate
(Zhao et al., 2021). Futhermore, Chen et al. employed in situ Sr
isotope disequilibrium in plagioclases of late Cenozoic basalts to
show the influence of recycled subduction-related H2O-enriched
oceanic fluids/melts carried by the deepHainanmantle plume across
the entire LQA (Chen et al., 2023).

As mentioned above, the magma sources of the volcanic rocks
in the LQA remain controversial and the spatial distribution of the
interaction between Hainan mantle plume and subducted slab are
still unclear. Additionally, previous studies mainly focused on the
region of southern LP and Hainan Island, sparsely research on the
northern LP. Considering these volcanics on the northern LP are
located in the distal margin of the Hainan mantle plume, therefore,
their geochemical features and ages may provide some valuable
constraints about the evolution and spatial pattern of the plume,
even the plume-slab interaction.

This study collected 20 volcanic rock samples from Naozhou
Island, the largest volcanic island in SouthChina Sea (Figures 1C,D).
Through detailed geochemical analyses of whole-rock major and
trace elements, coupled with high-precision Sr-Nd-Pb-Hf isotope
geochemistry and K-Ar geochronology. We aim to delineate the
magmatic sources and temporal evolution of the Naozhou Island
basalts and discuss the spatial distribution of magma sources in the
LQA combined with previously published data. This work fills the
gap in petrological and geochemical records in the northern LP,
where volcanic rock detail data have been lacking. By providing
new insights into this underexplored region, our work makes a
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FIGURE 1
Map of the geological setting of the LQA. (a) Geological setting of the SCS (Briais et al., 2012; Taylor and Hayes, 1983); (b) Distribution of volcanoes
ages in the LQA (Huang et al., 1993; Zhu and Wang, 1989; Zhang et al., 2020; Fan et al., 2006; Wang et al., 2021), Hainan Mantle
Plume location (Xia et al., 2016); (c) Nayan Coast; (d) Turtle Coast.

complementary contribution to the comprehensive understanding
of mantle dynamics and magmatic processes across the entire LQA.
This work not only refines our understanding of magmatic origins
and mantle dynamics in the northwestern SCS margin but also
provides a framework for future studies investigating plume-slab
interactions in analogous tectonic settings globally.

2 Geological background and
sampling

The SCS is bordered by three major tectonic plates: the Eurasian
Plate, the Indo-Australian Plate, and the Pacific Plate (Taylor and
Hayes, 1983). The LQA, located on the northwestern margin of the
SCS, is a region characterized by extensive late Cenozoic volcanism
(Figure 1B) (Huang et al., 1993; Zhu and Wang, 1989; Zhang et al.,
2020; Fan et al., 2006; Wang et al., 2021). The LQA is intersected
by numerous faults trending in SE-NW and NE-SW directions, as
documented by (Zhang and Zhao, 1984). The volcanic activities in
this region span from the late Miocene to the Holocene, with a
notable peak in the Quaternary period (Huang et al., 1993; Zhu and
Wang, 1989; Zhang, 1990).

Naozhou Island, located in the northeastern part of the LQA,
stands as the largest volcanic island in South China. It spans an
area of approximately 56 km2 and extends in a northeast-southwest
direction. The island features a gently sloping topography. The
highest point, 81.6 m above sea level, is in the east, and the
elevation gradually descends towards the west. Naozhou Island
is mainly composed of late Cenozoic basaltic lava flows. These
lava flows are interbedded with tuffaceous layers and overlaid by
unconsolidated Quaternary sediments. Notably, on the seaward
side of the volcanic crater in the eastern part of the island,
there are two well-developed sets of columnar joints on display
(Figure 1).

A total of 20 fresh volcanic rock samples were collected
from Naozhou Island. The volcanic rocks exhibit a porphyritic
texture, with phenocrysts of olivine, pyroxene, and plagioclase
as revealed in the thin sections. For example, the sample NZ-
12 (Figure 2A) shows such a porphyritic feature with phenocryst
accounting for 15% and matrix for 85% (volume percentage).
The matrix consists mainly of acicular microcrystalline plagioclase
interspersed with finer pyroxene and magnetite. The phenocrysts
are dominated by subhedral olivine, pyroxene, and euhedral
plagioclase.
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FIGURE 2
Olivine, clinopyroxene, and plagioclase phenocrysts of volcanic rock samples from Naozhou Island. (a) Sample NZ-12, (b) Sample NZ-28. Left:
plane-polarised light; Right: orthogonal-polarised light.

TABLE 1 K-Ar dating results of volcanic rocks on the Naozhou Island.

Sample Area Lithology K2O (%) 40Arrad (g mol/g) 40Arrad (%) Age (Ma) ±1σ

NZ-12 Turtle coast Basaltic andesite 0.98 4.9E-12 2.18 3.6 0.05

NZ-22 Nayan coast Basaltic andesite 1.14 1.76E-12 2.47 1.11 0.02

NZ-28 Nayan coast Basaltic andesite 1.14 1.65E-12 4.98 1.04 0.02

aArrad: Radioactive Ar.

3 Methods

3.1 K-Ar chronology

K-Ar dating was performed at the Analytical Laboratory of
the Beijing Research Institute of Uranium Geology, China. Rock
samples were crushed to 60 mesh, and porphyritic minerals were
removed under a stereoscope. The samples were then cleaned using
ultrasonic oscillation in alcohol, deionized water, and acetone, and
subsequently divided into two portions.

One portion of the sample was precisely weighed (±0.001 mg)
and wrapped in pure aluminum foil. The sample was then
vacuum-baked for 48 h to remove adsorbed gases before being

placed in a double-vacuum furnace for complete melting and gas
extraction. The released gases were purified using a U-shaped
liquid nitrogen cold trap and two zirconium-aluminum getter
pumps operating at 450°C and room temperature, respectively.
A known quantity of 38Ar was introduced as a diluent, and
the sample’s Ar isotopic composition was analyzed using an
Argus VI rare gas mass spectrometer. The analysis results
were corrected for background, atmospheric Ar, and mass
discrimination. The radiogenic 40Ar∗content was calculated using
the measured Ar isotope ratios and the known amount of 38Ar
diluent.

The second portion of the sample was weighed, and its K
content was determined by atomic absorption spectrometry.The 40K
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TABLE 2 Major element compositions of the Naozhou Island volcanic rocks (%).

NZ-01 NZ-02 NZ-03 NZ-05 NZ-10 NZ-11 NZ-20 NZ-21 NZ-22 NZ-12

SiO2 52.41 51.19 52.01 50.67 52.01 52.27 51.84 52.32 52.45 52.32

TiO2 1.58 1.55 1.52 1.64 1.55 1.60 1.79 1.58 1.57 1.53

Al2O3 16.31 16.22 16.20 17.44 16.15 16.17 18.21 16.15 15.87 16.08

TFe2O3 8.78 8.91 8.92 9.61 9.11 9.09 7.90 9.05 8.90 8.43

MnO 0.11 0.10 0.10 0.12 0.11 0.11 0.09 0.12 0.11 0.13

MgO 5.40 5.50 5.77 5.68 6.08 5.81 3.60 5.99 5.91 5.68

CaO 8.73 8.70 8.58 8.82 8.60 8.54 9.31 8.50 8.53 9.22

Na2O 3.66 3.58 3.62 3.54 3.57 3.58 3.94 3.51 3.50 3.27

K2O 1.42 1.32 1.38 1.03 1.35 1.39 1.06 1.35 1.38 1.14

P2O5 0.33 0.31 0.32 0.33 0.33 0.34 0.35 0.33 0.33 0.28

SO3 0.00 0.01 0.01 0.01 0.08 0.06 0.07 0.01 0.04 0.27

LOIa 1.04 1.87 1.20 1.02 0.74 0.47 1.45 0.30 0.49 0.97

Total 99.75 99.23 99.62 99.90 99.67 99.41 99.59 99.20 99.07 99.34

NZ-13 NZ-15 NZ-16 NZ-23 NZ-24 NZ-25 NZ-27 NZ-28 NZ-17 NZ-18

SiO2 52.25 51.65 52.30 52.82 51.94 50.65 53.46 52.94 51.93 52.87

TiO2 1.52 1.46 1.47 1.60 1.55 1.72 1.68 1.62 1.67 1.51

Al2O3 16.06 15.41 15.53 16.22 15.95 15.62 16.54 16.45 17.13 15.56

TFe2O3 9.00 10.04 8.86 8.11 8.75 10.31 7.70 8.54 8.80 9.28

MnO 0.13 0.15 0.12 0.11 0.13 0.12 0.10 0.16 0.11 0.13

MgO 6.32 5.38 6.65 5.09 5.66 6.60 4.48 5.33 4.62 6.70

CaO 9.05 8.68 8.73 8.75 8.55 9.04 8.94 8.85 7.55 8.79

Na2O 3.24 3.06 3.14 3.59 3.55 3.52 3.49 3.56 3.04 2.98

K2O 1.17 1.10 1.14 1.36 1.41 1.06 1.36 1.45 1.27 1.08

P2O5 0.28 0.26 0.27 0.33 0.33 0.31 0.35 0.35 0.30 0.27

SO3 0.16 0.15 0.11 0.04 0.05 0.04 0.03 0.03 0.03 0.01

LOI 0.86 2.06 0.92 0.84 0.86 0.32 0.68 0.64 2.64 0.00

Total 100.03 99.40 99.23 98.85 98.73 99.28 98.80 99.90 99.09 99.17

aLOI: loss on ignition.

content was then derived from the measured K content, assuming
a constant 40K/K ratio within Earth’s lithosphere. The 40K-40Ar age
was calculated using the standard isotopic decay equation:

t = 1
λ
ln [1+( λ

λe
)∗ (40Ar∗/40K )]

Where λ is the total decay constant at 40K (Potassium).
The decay constant adopted the recommended value of 5.543
× 10−10 from Steiger and Jager (Steiger and Jäger, 1977).
Standard substance adopts ZBH-25 black mica. Standard
sample test results are included in the Supplementary
Information.
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FIGURE 3
Total alkali-silica diagram of the Naozhou Island volcanic rocks. TAS
grid is from Le Maitre et al. (2002).

3.2 Major and trace element

Major element analysis of whole-rock samples was performed
using an Axios MAX XRF at Nanjing Hongchuang Geological
Exploration Technology Service Co., Ltd. The procedure was as
follows: (Foulger and Natland, 2003): Sample powders (200 mesh)
were dried at 120°C for 8 h; (Hofmann, 1997); Approximately
0.5–1.0 g of dried sample was weighed in a constant-weight ceramic
crucible and heated in a muffle furnace at 1,000°C for 200 min. The
sample was then cooled to room temperature to calculate the loss
on ignition (LOI); (Dalziel et al., 2000); A mixture of Canadian
Claisse flux (6.0000 g ± 0.3 mg, 49.75% Li2B4O7: 49.75% LiBO2:
0.5% LiBr) and 0.6000 g ± 0.3 mg of dried sample was prepared and
homogenized using a quartz rod. The mixture was transferred to a
platinum crucible and melted at 1,100°C. After melting, the glass
bead was cooled and prepared for XRF analysis.

Trace element analysis was conducted using an ElanDRC-e ICP-
MS at Nanjing Hongchuang Geological Exploration Technology
Service Co., Ltd. The sample digestion procedure was as follows:
(Foulger and Natland, 2003): Sample powders (200 mesh) were
dried at 105°C for 12 h; (Hofmann, 1997); 50 mg of dried sample
was weighed and placed in a Teflon bomb; (Dalziel et al., 2000);
1.5 mL of HNO3, 1.5 mL of HF, and 0.1 mL of HClO4 (all ultrapure)
were added to the Teflon bomb; (Kincaid et al., 2013); The Teflon
bomb was sealed in a stainless steel pressure jacket and heated at
190°C for 48 h; (Mériaux et al., 2015); After cooling, the solution
was evaporated to near dryness on a hotplate at 140°C, and then
3 mL of HNO3 was added and evaporated again; (Druken et al.,
2014); 3 mL of 50% HNO3 was added, the bomb was resealed, and
heated at 190°C for 12 h; (Gazel et al., 2011); The final solution
was diluted to 100 g with Milli-Q water and spiked with 1 mL of
a Rh + Re mixed standard solution (1 mg/L). Major elements were
tested using GBW07104, GBW07105, GBW07310, GBW07312,
GBW07314, and GBW07316 standards, while trace elements were
tested using AGV-2 and BHVO-2 standards. Analytical precision
was better than 3% for major elements and 1% for trace elements.
Results of standard sample tests are included in the Supplementary
Information.

3.3 Sr-Nd-Pb-Hf isotope

High-precision isotopic measurements (Sr, Nd, Hf, Pb)
were conducted using a Nu Plasma II MC-ICP-MS at Nanjing
Hongchuang Geological Exploration Technology Service Co., Ltd.
(NHEXTS), Nanjing, China. Volcanic rock powders were digested in
high-pressure PTFE bombs with 0.5 mL of 60% HNO3 and 1.0 mL
of 40% HF. The bombs were steel-jacketed and heated at 195°C
for 3 days. The digested samples were then dried on a hotplate
and reconstituted in 1.5 mL of 0.2 N HBr +0.5 N HNO3 before ion
exchange purification (N: Normality).

1. Pb Separation: Pb was separated using a Biorad AG1-X8
anion exchange column. Lithophile elements, Hf, Sr, and
rare earth element (REEs) were washed out with 0.2 N HBr
+0.5 N HNO3, and Pb was eluted with Milli-Q water. Due
to impurities, a second anion exchange column was used for
further purification.

2. Hf, Sr, and REE Separation: A Biorad AG50W-X8 cation
exchange column was used to roughly separate Hf, Sr, and
REEs. After drying and re-dissolving the collected fraction in
1.5 NHCl, Hf was eluted with 1.5 NHCl, matrix elements with
2.0 N HCl, Sr with 2.5 N HCl, and REEs with 6.0 N HCl.

3. Hf Separation: Hf was separated from other high field strength
elements (HFSE) using HDEHP-coated Teflon powder (LN-
specific resin). After drying and re-dissolving the HFSE
fraction in 3.0 N HCl, Hf was eluted with 2.0 N HF.

4. Sr Purification: The impure Sr fraction was further purified
using Sr-specific resin after re-dissolution in 2.5 N HNO3.

5. Nd Separation: REE fractions were further processed using Ln-
specific resin. LREEs were removed with 0.12 N HCl, Nd was
collected with 0.18 N HCl, and Sm with 0.4 N HCl.

6. Final Preparation: The Sr, Nd, Pb, and Hf fractions were
evaporated to dryness and re-dissolved in 1.0 mL of 2%HNO3.
Elemental concentrations were measured using an Agilent
7,700x quadrupole ICP-MS. Diluted solutions were introduced
into the Nu Plasma II MC-ICP-MS through a Teledyne Cetac
Aridus II desolvating nebulizer.

7. Data Correction and Calibration: Isotopic ratios were
corrected for mass fractionation using internal standards:
86Sr/88Sr = 0.1194 for Sr, 146Nd/144Nd = 0.7219 for Nd,
179Hf/177Hf = 0.7325 for Hf, 205TL/203TL = 2.3885 for Pb.
Instrumental drift was monitored using international isotopic
standards (NIST SRM 987 for Sr, JNdi-1 for Nd, Alfa Hf, and
NIST SRM 981 for Pb).

Geochemical reference materials (USGS BCR-2, BHVO-2,
AVG-2, RGM-2) were used for quality control, with results
agreeing with previous publications within analytical uncertainty
(Weis et al., 2007; Weis et al., 2006). Detailed results of standard
sample tests are provided in the Supplementary Information.

4 Results

4.1 K-Ar chronology

This work performed K-Ar dating results for three
volcanic rock samples from Naozhou Island, which reveal
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TABLE 3 Trace and rare earth element compositions of the Naozhou Island volcanic rocks (ppm).

NZ-01 NZ-02 NZ-03 NZ-05 NZ-10 NZ-11 NZ-20 NZ-21 NZ-22 NZ-12

Li 5.78 7.01 6.76 9.74 5.13 5.18 6.84 6.19 5.66 4.11

Be 1.67 1.41 1.54 1.27 1.36 1.44 1.19 1.65 1.68 1.28

Sc 18.55 18.73 18.75 19.04 16.14 16.90 20.33 17.72 15.75 16.38

V 139.32 138.21 136.93 145.75 143.92 145.91 163.08 160.62 161.74 148.43

Cr 192.12 200.27 203.97 202.87 239.09 203.81 272.70 216.10 216.45 276.78

Co 32.66 34.20 34.33 34.38 37.36 36.87 21.96 39.38 38.34 41.38

Ni 79.90 90.47 89.34 86.85 1.15 0.13 85.50 9.59 0.52 1.16

Cu 72.93 58.82 64.31 49.32 63.85 68.56 80.16 74.21 73.03 67.22

Zn 83.97 83.73 106.02 90.42 80.12 83.38 97.84 103.94 104.16 82.95

Ga 19.87 19.76 19.72 20.95 19.04 19.92 22.43 22.16 21.71 19.21

Rb 25.67 15.53 26.49 8.01 21.46 23.57 8.07 23.00 22.27 26.52

Sr 489.26 471.64 484.92 508.14 521.24 540.50 592.01 538.02 528.31 515.58

Y 15.43 14.88 14.97 16.62 15.48 16.81 19.68 16.67 16.34 18.54

Zr 123.23 123.86 119.80 128.38 121.78 131.80 146.11 138.75 138.13 116.07

Nb 28.32 26.63 27.95 29.46 28.86 30.75 28.48 29.32 29.19 23.93

Cs 0.21 0.36 0.48 0.06 0.19 0.16 0.08 0.13 0.16 0.59

Ba 257.73 256.11 250.79 324.13 256.54 276.02 360.46 281.81 279.39 228.22

La 19.25 19.19 18.01 20.31 19.01 20.68 23.85 19.76 19.44 16.61

Ce 36.84 36.78 33.98 35.67 35.41 38.45 41.24 39.30 38.70 32.10

Pr 4.38 4.38 4.12 4.62 4.30 4.71 5.32 4.94 4.86 4.00

Nd 18.09 18.14 16.94 19.11 17.17 18.53 23.17 19.56 19.36 16.54

Sm 4.26 4.27 3.99 4.47 4.05 4.40 5.08 4.60 4.52 4.08

Eu 1.51 1.52 1.41 1.59 1.31 1.41 1.84 1.63 1.61 1.32

Gd 4.06 4.10 3.79 4.25 3.76 4.08 5.11 4.55 4.48 3.94

Tb 0.60 0.61 0.56 0.62 0.57 0.63 0.77 0.61 0.61 0.62

Dy 3.23 3.30 2.99 3.34 3.26 3.48 4.14 3.41 3.37 3.56

Ho 0.60 0.61 0.55 0.61 0.61 0.65 0.72 0.66 0.65 0.68

Er 1.45 1.50 1.36 1.50 1.41 1.51 1.86 1.50 1.46 1.60

Tm 0.20 0.20 0.18 0.20 0.19 0.21 0.24 0.21 0.20 0.22

Yb 1.15 1.19 1.05 1.17 1.07 1.16 1.42 1.24 1.21 1.23

Lu 0.17 0.17 0.15 0.16 0.16 0.17 0.21 0.17 0.17 0.18

Hf 2.98 3.03 2.73 2.96 2.85 3.04 3.79 3.29 3.30 2.79

(Continued on the following page)
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TABLE 3 (Continued) Trace and rare earth element compositions of the Naozhou Island volcanic rocks (ppm).

NZ-01 NZ-02 NZ-03 NZ-05 NZ-10 NZ-11 NZ-20 NZ-21 NZ-22 NZ-12

Ta 1.61 1.65 1.49 1.62 1.58 1.68 1.75 1.98 1.98 1.32

Tl 0.040 0.030 0.031 0.007 0.030 0.031 0.018 0.042 0.041 0.065

Pb 2.82 2.73 3.94 2.70 2.62 2.76 2.96 2.96 2.91 7.52

Th 3.35 3.42 2.97 3.21 3.00 3.29 3.60 3.29 3.22 2.77

U 0.73 0.62 0.65 0.49 0.62 0.67 0.71 0.74 0.68 0.73

NZ-13 NZ-15 NZ-16 NZ-23 NZ-24 NZ-25 NZ-27 NZ-28 NZ-17 NZ-18

Li 5.19 3.99 5.56 6.02 5.73 5.61 4.32 5.04 55.38 5.77

Be 1.23 1.22 1.09 1.63 1.61 0.97 1.53 1.32 1.43 1.08

Sc 14.29 20.73 13.75 15.54 17.90 20.16 18.45 15.35 18.80 20.60

V 140.95 147.77 152.65 161.76 152.50 225.22 157.56 152.13 167.51 157.35

Cr 245.32 351.45 260.45 217.37 216.58 282.99 221.97 202.81 357.10 271.42

Co 35.69 48.14 38.10 39.51 37.89 43.69 37.74 36.85 44.41 41.17

Ni 0.23 83.42 89.58 18.49 18.86 84.95 <0.000 <0.000 81.90 18.10

Cu 67.05 76.23 81.69 50.78 59.27 75.96 69.98 88.92 100.85 83.67

Zn 75.97 86.30 87.10 103.40 101.26 104.09 105.58 94.08 103.33 86.67

Ga 17.92 19.85 17.91 21.93 21.69 19.16 20.52 19.62 20.49 19.53

Rb 25.96 25.87 22.91 17.46 28.00 14.95 21.36 25.83 16.69 23.93

Sr 480.58 497.46 437.92 544.42 521.48 416.51 531.00 513.26 372.87 433.78

Y 16.10 19.80 13.96 16.83 16.21 17.53 17.14 14.93 18.42 15.62

Zr 111.96 113.41 113.30 138.87 135.67 107.83 141.52 134.91 132.72 116.38

Nb 22.95 23.16 19.38 29.74 28.53 18.38 27.76 26.42 24.06 18.75

Cs 0.54 0.54 0.56 0.31 0.30 0.14 0.44 0.49 0.28 0.61

Ba 219.26 229.60 219.94 284.75 267.76 214.20 372.69 289.05 304.69 224.54

La 15.67 17.74 14.53 19.78 18.95 15.23 21.10 19.56 18.36 15.49

Ce 30.56 32.84 28.56 39.63 37.49 29.25 38.67 36.14 32.43 29.69

Pr 3.80 4.06 3.56 4.96 4.75 3.88 4.83 4.53 4.30 3.74

Nd 15.55 16.79 15.93 19.76 18.63 17.76 21.40 19.74 19.21 16.76

Sm 3.87 4.14 3.73 4.60 4.37 4.19 4.71 4.41 4.39 3.96

Eu 1.24 1.33 1.35 1.64 1.56 1.47 1.68 1.53 1.60 1.43

Gd 3.69 4.05 3.74 4.55 4.31 4.34 4.64 4.24 4.45 4.03

Tb 0.58 0.63 0.59 0.62 0.59 0.70 0.70 0.65 0.70 0.63

Dy 3.32 3.70 3.23 3.44 3.26 3.91 3.75 3.42 3.80 3.47

Ho 0.63 0.71 0.56 0.66 0.63 0.70 0.65 0.59 0.67 0.61

(Continued on the following page)

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2025.1532124
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Xu et al. 10.3389/feart.2025.1532124

TABLE 3 (Continued) Trace and rare earth element compositions of the Naozhou Island volcanic rocks (ppm).

NZ-13 NZ-15 NZ-16 NZ-23 NZ-24 NZ-25 NZ-27 NZ-28 NZ-17 NZ-18

Er 1.46 1.67 1.46 1.50 1.43 1.83 1.69 1.54 1.75 1.60

Tm 0.20 0.23 0.19 0.21 0.20 0.24 0.22 0.20 0.23 0.21

Yb 1.15 1.27 1.15 1.24 1.18 1.44 1.29 1.19 1.37 1.26

Lu 0.17 0.18 0.17 0.18 0.17 0.21 0.19 0.18 0.20 0.19

Hf 2.69 2.72 2.98 3.31 3.11 3.07 3.61 3.44 3.44 3.09

Ta 1.26 1.27 1.17 2.01 1.94 1.17 1.67 1.56 1.46 1.14

Tl 0.066 0.074 0.055 0.035 0.050 0.022 0.053 0.062 0.035 0.062

Pb 2.81 2.92 5.24 6.55 2.97 2.10 2.77 2.72 2.69 2.54

Th 2.55 2.77 2.48 3.26 3.16 2.20 3.33 3.14 3.07 2.67

U 0.63 0.62 0.57 0.70 0.70 0.67 0.72 0.76 0.78 0.58

FIGURE 4
(a) Chondrite-normalized REE diagrams. Data for chondrites, OIBs, E-MORBs are from Sun et al. (1989). Data for IABs are from Niu and O'Hara (2003);
(b) Primitive mantle-normalized trace element diagrams. Data for primitive mantle, OIBs, E-MORBs are from Sun et al. (1989). Data for IABs are from
Niu and O'Hara (2003). Data for GLOSS are from Plank and Langmuir (1998).

two distinct periods of volcanic activity. The analytical data
are listed in Table 1. On the Nayan Coast, to east of the
volcanic crater, the age of upper part of the strata is 1.04 Ma
(NZ-28), while the age of lower part is 1.11 Ma (NZ-22)
(Figure 1C). On the Turtle Coast, to the southwest of the
crater at a relatively lower elevation, sample NZ-12 was
dated at 3.6 Ma (Figure 1D). These results suggest that volcanic
activity on Naozhou Island occurred from the late Pliocene to the
Pleistocene.

The columnar joints observed on Naozhou Island serve as
clear indicator of magma solidification process. The ages obtained
from these joints provide reliable constraints on the timing of
volcanic eruption cycles. Our findings corroborate the stratigraphic
contact relationships observed in the field (Wang et al., 2023).
Based on these results, it can be inferred that magmatic activity on

Naozhou Island occurred at least two periods: about 3.6 Ma and
1 Ma (1.11–1.04 Ma).

4.2 Major elements

The major element data are summarized in Table 2. SiO2
content ranges from 50.2 to 54.11 wt%, TiO2 from 1.46 to 1.8 wt%,
Al2O3 from 15.32 to 18.13 wt%, total Fe2O3 (TFe2O3) from 7.8
to 10.38 wt%, MgO from 3.61 to 6.75 wt%, Na2O from 2.85 to
3.95 wt%, K2O from 1.03 to 1.45 wt%, and Mg# from 47.44 to
59.8. The loss on ignition (LOI) values are generally low, less
than 2 wt% (Table 2). In the total alkali-silica (TAS) diagram
(Figure 3) (Le Maitre et al., 2002), these volcanic rocks classified as
basalt and basaltic andesite. The 1 Ma volcanic rocks have higher
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TABLE 4 Sr-Nd-Pb-Hf isotope results of volcanic rocks from the Naozhou Island.

Sample 87Sr/86Sr 2σ 143Nd/144Nd 2σ 176Hf/177Hf 2σ

NZ-1 0.703757 0.000013 0.512896 0.000012 0.283072 0.000007

NZ-2 0.703878 0.000014 0.512882 0.000013 0.283054 0.000005

NZ-10 0.703764 0.000010 0.512792 0.000016 - -

NZ-11 0.703733 0.000008 0.512830 0.000018 - -

NZ-12 0.704173 0.000010 0.512788 0.000016 0.283076 0.000006

NZ-13 0.703746 0.000013 0.512896 0.000008 0.283076 0.000006

NZ-21 0.703747 0.000012 0.512835 0.000016 - -

NZ-22 0.703764 0.000010 0.512822 0.000018 0.283086 0.000006

NZ-28 0.703755 0.000016 0.512802 0.000018 - -

Sample 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ

NZ-1 18.672847 0.001078 15.647043 0.000970 39.006286 0.003208

NZ-2 18.655040 0.000872 15.649815 0.000756 39.028549 0.002089

NZ-10 18.616720 0.000472 15.630390 0.000400 38.876240 0.001266

NZ-11 18.577210 0.000488 15.628410 0.000416 38.832660 0.001260

NZ-12 18.437220 0.000522 15.701080 0.000464 38.666350 0.001456

NZ-13 18.638660 0.000865 15.638792 0.000732 38.898419 0.001981

NZ-21 18.612230 0.000496 15.631480 0.000400 38.877150 0.001204

NZ-22 18.592390 0.000514 15.631120 0.000434 38.851440 0.001426

NZ-28 18.600470 0.000496 15.638890 0.000448 38.871430 0.001504

alkalinity, with combined Na2O + K2O values around 5%, while the
3.6 Ma volcanic rocks have values closer to 4%.

The TAS diagram shows that most of the 3 Ma rocks fall
within the basaltic andesite field, indicating that these magmas were
relatively more evolved, with moderate SiO2 content and lower
alkalinity. The 3 Ma samples show similar SiO2 contents with those
of 1 Ma samples. Some of the 1 Ma samples fall into the basalt
field and exhibit higher Na2O+ K2O values, indicating a trend
toward higher alkalinity. Overall, the TAS diagram illustrates a clear
distinction between the 3 Ma and 1 Ma volcanic rocks, with the latter
showing evidence of higher alkalinity.

4.3 Trace elements

Despite two distinct periods of volcanic activity, the trace
element patterns of these samples show no signifcant differences,
indicating a stable mantle source over time (Table 3).

The total REE contents (ΣREEs) of the samples range from
92.71 to 134.66 ppm, with a mean of 111.13 ppm, which is lower
than the typical OIB average of 198.9 ppm (Sun et al., 1989).

In the chondrite-normalized REE diagram (Figure 4) (Sun et al.,
1989; Niu and O'Hara, 2003; Plank and Langmuir, 1998), these
volcanic rocks exhibit a clear enrichment in light REEs (LREEs),
with (La/Yb)N values ranging from 7.58 to 12.79, averaged at
10.98. The Eu anomalies (Eu/Eu∗) range from 0.98 to 1.10,
with a mean of 1.06, indicating minimal Eu anomalies. The
slight enrichment in Eu relative to typical OIB values may
reflect a weak influence of fractional crystallization, particularly
involving plagioclase. The REE distribution patterns resemble the
typical OIB.

The trace elements, patterns are also consistent with OIB, are
featured by enrichment in large-ion lithophile elements (LILEs, such
as Ba) and LREEs. Moreover, a few samples show a positive Pb
anomaly.No significant negativeNb anomaly andUanomaly display
in our samples.

Overall, the trace element and REE patterns observed in the
Naozhou Island volcanic rocks suggest a mantle source that has
remained stable across different volcanic episodes. The geochemical
signatures are consistent with those of typical OIBs, indicating a
mantle source enriched in LREEs and showing typical trace element
behaviors associated with OIBs.
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FIGURE 5
Sr-Nd-Pb-Hf isotope diagrams. (a) 143Nd/144Nd vs 87Sr/86Sr (b) 87Sr/86Sr vs 206Pb/204Pb, (c) 143Nd/144Nd vs 206Pb/204Pb, (d) 176Hf/177Hf vs 143Nd/144Nd.
Combined with data from the northern Leizhou Peninsula (This study and Zhao et al. (2021)), southern Leizhou Peninsula (Huang et al., 1993; Zhu and
Wang, 1989; Zhao et al., 2021), Weizhou Island (Zhang et al., 2020; Fan et al., 2008; Li et al., 2014), and northern Hainan Island (Huang et al., 1993; Zhu
and Wang, 1989; Wang et al., 2012; Zhao et al., 2021). The Naozhou Island data are included in the Northern Leizhou Peninsula. DMM, EMⅠ, EMⅡ and
HIMU end-member (Zindler and Hart, 1986), Shaded areas representing end-members are from the data set (www.earthchem.org). OIBs end-member
(Staudigel et al., 1984). SCS data (Yan et al., 2008; Yan et al., 2014; Yan et al., 2015). Northern margin SCS data (Tu et al., 1991; Zou and Fan, 2010;
Zou et al., 2000). Indochina block data (An et al., 2017; Hoàng et al., 2013; Hoang et al., 1996). Indian ocean-type MORB end-member
(Mahoney et al., 2012).

4.4 Sr-Nd-Pb-Hf isotopes

The Sr-Nd-Pb-Hf isotope ratios for the Naozhou Island
volcanic rock samples are as follows (Table 4): 87Sr/86Sr =
0.703733–0.704173, 143Nd/144 Nd=0.512788–0.512896, 206Pb/204Pb
= 18.43722–18.672847, 207Pb/204Pb = 15.62841–15.70108,
208Pb/204Pb = 38.66635–39.028549, and 176Hf/177Hf =
0.283054–0.283086. These isotope ratios are characteristic of
OIB-type compositions (Figure 5).

In the 207Pb/204Pb and 208Pb/204Pb vs 206Pb/204Pb
diagrams (Figure 6), the Naozhou Island samples plot
above the Northern Hemisphere Reference Line (NHRL),
resembling the Dupal anomaly observed in the Southern
Hemisphere (Tu et al., 1991; Hart, 1984; Flower et al.,
1992). The Dupal anomaly typically indicates the
presence of EMII in the mantle source, and the position
above the NHRL suggests that these rocks contain
components that are more enriched than those from
a DMM.

5 Discussion

5.1 Geochemical insights into crustal
contamination and magmatic sources

5.1.1 Crustal contamination and fractional
crystallization on Naozhou Island

Evaluating whether the magma experienced crustal
contamination during its ascent is crucial for accurately determining
the magma source and understanding the magma evolution process
(Xu et al., 2005; Dai et al., 2018; Zeng et al., 2013; Wang et al.,
2019). Nb/U and Ce/Pb ratios are sensitive indicators of crustal
contamination, as crustal material typically lowers these ratios. The
geochemical data of volcanic rocks from Naozhou Island exhibit
primitive Nb/U ratios (30.88–60.21, average: 39.87) and Ce/Pb
ratios (4.2–14, average: 11.6). These ratios are significantly higher
than those typical of continental crust (Nb/U ≈ 6.15, Ce/Pb ≈ 3.91),
suggesting that the magma was not significantly contaminated
by crust (Rudnick and Gao, 2003; Salters and Stracke, 2004). The
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FIGURE 6
207Pb/204Pb and 208Pb/204Pb vs 206Pb/204Pb isotope diagrams. The Dupal anomaly is from Dupré and Allègre (1983). The NHRL is North Hemisphere
reference line (Hart, 1984).

FIGURE 7
Correlations between trace element ratios (Nb/U, Ce/Pb) and isotopic ratios (87Sr/86Sr, 206Pb/204Pb) with MgO and SiO2.
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FIGURE 8
Variations in selected major-element oxides of Naozhou Island volcanic rocks.

absence of negative Nb anomalies in the trace element diagrams also
suggests minimal crustal contamination (Figure 4). Furthermore,
the ratios of sensitive elements (Nb/U, Ce/Pb) and isotopic data
(87Sr/86Sr, 206Pb/204Pb) are plotted against the contents of MgO
and SiO2 (Figure 7). The results demonstrate that there are no
systematic trends of variation in these relationships, providing
evidence that the influence of crustal contamination is limited
(Zhang et al., 2020; Yan et al., 2018).

Fractional crystallization represents a crucial process in the
evolution of magma. The Naozhou Island volcanic rocks exhibit
Mg# contents ranging from 44.8 to 57.2 and Cr contents spanning
from 192 to 357 ppm. These values are lower than those of primitive
basalts (Mg# value >70, Cr contents >1,000 ppm) (An et al.,
2017; Wilkinson and Maitre, 1987), which clearly indicates that
these volcanic rocks have experienced fractional crystallization.
Mg# displays a positive correlation with TFe2O3, SiO2, and
CaO/Al2O3, a negative correlation with K2O and Al2O3, and no
significant correlation with CaO (Figure 8). This pattern implies an
evolutionary sequence of fractional crystallization, starting with the
early crystallization of Olivine and pyroxenes and then transitioning
to a medium stage dominated by plagioclase.

5.1.2 Magmatic source characteristics on
Naozhou Island

Given that fractional crystallization does not alter the isotopic
composition of magma (Staudigel et al., 1984; Hamelin and
Allègre, 1985), the isotopic ratios thus can be used to indicate
the characteristics of their magma source. The volcanic rocks’

isotopic ratios can be used to infer the characteristics of their
magma source. The Sr-Nd-Pb-Hf isotope data of volcanic rocks
from Naozhou Island, showing between DMM and EMⅡ reference
values (Figure 5). Combined with those from adjacent regions (Zou
and Fan, 2010; Zhang et al., 2020; Wang et al., 2012; Zhao et al.,
2021; Yan et al., 2008; Yan et al., 2014), may suggest that basalt
can be explained by a binary mixed model involving DMM and
EMⅡ endmember components. The DMM endmember represents
a depleted mantle source, likely originating from the Indian MORB
mantle, which is prevalent in late Cenozoic intraplate volcanism
across Southeast Asia (An et al., 2017; Yan et al., 2018; Hoàng et al.,
2013; Hoang et al., 1996). The EMⅡ endmember is characterized by
high 87Sr/86Sr (>0.705), low 143Nd/144Nd ratios (<0.5125) (Figure 5),
and high Pb isotopic ratios (206Pb/204Pb = 18.5–19.5) (Figure 6),
they are usually associatedwith recycled continental or oceanic crust
and sediments (von Huene et al., 2004; Wang et al., 2018). Previous
studies have suggested that EMⅡ in this region could originate from
the SCLM or a mantle plume (Zhang et al., 2020; An et al., 2017;
Yan et al., 2018; Yan et al., 2014; Yan et al., 2015).

The geochemical data from Naozhou Island suggest that the
EMⅡ corresponds to the mantle plume (Figure 5). The lithospheric
mantle exhibits significant Nd-Hf isotopic decoupling due to fluid-
driven metasomatism (Choi and Mukasa, 2012). The volcanic rocks
on Naozhou Island exhibit the same linear array as those in the
surrounding areas (Zhang et al., 2020; An et al., 2017; Yan et al.,
2018; Yan et al., 2015) (Figure 5D). This indicates that EMⅡ is more
likely to originate from amantle plume rather than SCLM. Secondly,
the Nd-Hf isotopic composition of the SCLM is typically different
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FIGURE 9
Primitive mantle-normalized trace element diagrams. (a) Northern Leizhou Peninsula (including this study), (b) Southern Leizhou Peninsula, (c)
Weizhou Island, (d) Northern Hainan Island. Lines integrated from regional data average and the shadows were fields ranges. Weizhou Island data
(Zhang et al., 2020; Fan et al., 2008); Leizhou Peninsula and Northern Hainan Island data (Ho et al., 2000; Liu et al., 2015; Yung-Tan et al., 2022;
Wang et al., 2012; Zhao et al., 2021). Lines integrated from regional data average and the shadows were fields ranges.

from that of oceanic island basalts. The samples from Naozhou
Island all fall within the OIB range (Figure 5D), further ruling out
the influence of the SCLM. Additionally, SCLM often shows more
enriched Sr isotopic signatures, which are not observed in Naozhou
Island. Based on seismic tomography studies, a low-velocity conduit
extending from the lowermantle to the shallow lithosphere has been
identified, indicating the presence of theHainanmantle plume in the
region (Figure 1B) (Toyokuni et al., 2022; Xia et al., 2016; Lei et al.,
2009; Lebedev and Nolet, 2003; Chen et al., 2021; Hua et al., 2022).
In summary, geochemical and geophysical evidence suggests that
the EMⅡ endmember in Naozhou Island may originate from the
Hainan mantle plume, consistent with findings from surrounding
areas (Figures 5, 6, 9).

5.2 Temporal evolution of volcanic
activities in the Leiqiong Area

This study conducted K-Ar dating revealing two major periods
of volcanic activity on Naozhou Island: approximately 3.6 Ma
(late Pliocene) and 1 Ma (Pleistocene). These K-Ar dating results
provide a reliable framework for understanding the timing of
volcanism Naozhou Island. The volcanic rock ages across the
LQA (Table 5; Figure 10A) reveals that the volcanic activities
period predominantly occurred during the Quaternary period

(Huang et al., 1993; Zhu and Wang, 1989; Zhang et al., 2020;
Fan et al., 2006; Wang et al., 2021). The volcanic rocks in northern
Hainan Island display the widest age span, ranging from 34.78 Ma
to 0.013 Ma. In contrast, the volcanic rocks in the southern LP
range from 12.46 Ma to 0.48 Ma, while those in the northern LP
range from 11.51 Ma to 0.1 Ma. The shortest age span is observed
on Weizhou Island, where volcanic rocks date from 1.42 Ma to
0.036 Ma. This distribution suggests that volcanic activity of LQA
has persisted into modern times, with the earliest activity beginning
in the southern region and gradually progressing toward the
northwest.

The earlier onset and longer duration of volcanic activity
in northern Hainan Island are likely due to the mantle plume.
In contrast, the southern LP, northern LP, and Weizhou Island,
being relatively further from the plume’s core, experienced volcanic
activity later as magma migrated through distal branches of the
plume (Figure 1). This spatial and temporal pattern may indicate
that the initial phase of volcanism was driven by lithospheric
thinning due to tectonic extension, while later phases were
predominantly influenced by upwelling of theHainanmantle plume.
The progressive northward expand of volcanic activity concurs
with the hypothesis that magma generation and eruption were
increasingly controlled by the mantle plume as tectonic influences
related to the SCS extension diminished (Xie et al., 2023). This
transition from tectonically-driven to plume-dominated volcanism
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TABLE 5 Age data set of volcanic rocks in the LQA.

Sample id Site Detailed location Age (Ma) Methods References

NZ-12 NLP South Nayan Beach 3.6 K-Ar

This studyNZ-22 NLP North Nayan Beach 1.11 K-Ar

NZ-28 NLP North Nayan Beach 1.04 K-Ar

81-H-15 NHI Jinniu Ridge 16.77 K-Ar

Zhu and Wang (1989)

81-H-16 NHI ZK1 16.04 K-Ar

81-H-13 NHI Jinniu Ridge 11.68 K-Ar

81-H-14 NHI ZK1 6.62 Ar-Ar

81-H-3 NHI Niumu Ridge 5.34 K-Ar

81-H-18 NHI Qiongshan 5.08 K-Ar

81-H-26 NHI Jinji Ridge, Dinan 4.11 K-Ar

81-H-1 NHI Luyuan Village, Penglai 4.05 K-Ar

81-H-24 NHI Fu Mountain, Chengmai 1.93 K-Ar

81-H-22 NHI Bochang 1.65 K-Ar

81-H-25 NHI Fu Mountain, Chengmai 1.64 K-Ar

81-H-20 NHI Lingkou 1.45 K-Ar

81-K-21 SLP Hole 275 12.46 K-Ar

81-K-11 SLP Stone Ridge 6.12 K-Ar

81-K-38 SLP Hole 725 5.62 K-Ar

81-K-4 SLP Western Xingfu Farm 3.61 K-Ar

81-K-10 SLP Eastern Nanhua Farm 3.09 K-Ar

81-K-12 SLP Haian Port 3.04 K-Ar

81-K-18 SLP Hole 275 2.96 K-Ar

81-K-2 SLP Wushi Port 2.28 K-Ar

81-K-15 SLP Bijia Mountain 1.05 K-Ar

81-K-31 SLP Hole 722 in Yongshi Farm 1.05 K-Ar

GS2-1 WZ Weizhou Island 1.42–0.49 Stratigraphy

Zhang et al. (2020)

GS4-1 WZ Weizhou Island 1.42–0.49 Stratigraphy

GS5-1 WZ Weizhou Island 1.42–0.49 Stratigraphy

GS5-2 WZ Weizhou Island 1.42–0.49 Stratigraphy

GS6-1 WZ Weizhou Island 1.42–0.49 Stratigraphy

GS6-2 WZ Weizhou Island 1.42–0.49 Stratigraphy

WZ-1 WZ Weizhou Island 1.42–0.49 Stratigraphy

(Continued on the following page)
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TABLE 5 (Continued) Age data set of volcanic rocks in the LQA.

Sample id Site
∗

Detailed location Age (Ma) Methods References

- NHI Jinniu Ridge, Haikou 3.82 K-Ar

Huang et al. (1993)

- NHI Meixia Coast, Lingao 0.73 K-Ar

- NHI Wenge Lake, Wenchang 0.6263 K-Ar

- NHI Eman Ridge 0.21 K-Ar

- NHI Changliu, Haikou 0.0983 K-Ar

- NLP Longshui Ridge, Donghai Island 0.1125 K-Ar

- NLP Longshui Ridge, Donghai Island 0.1 K-Ar

- SLP Tianxi, Xuwen 2.05 K-Ar

- SLP Youhao Farm, Xuwen 1.579 K-Ar

- SLP Yongshi Farm, Xuwen 1.11 K-Ar

- SLP Youhao Farm, Xuwen 0.8374 K-Ar

HSL-1 NHI Heishan ridge 5.3–2.58 Stratigraphy

Wang et al. (2021)

HSL-4 NHI Heishan ridge 5.3–2.58 Stratigraphy

HSL-5 NHI Heishan ridge 5.3–2.58 Stratigraphy

HSL-6 NHI Heishan ridge 5.3–2.58 Stratigraphy

CTC1-1 NHI Chitu Village 2.58–0.77 Stratigraphy

CTC1-2 NHI Chitu Village 2.58–0.77 Stratigraphy

CTC1-4 NHI Chitu Village 2.58–0.77 Stratigraphy

CTC2-1 NHI Chitu Village 2.58–0.77 Stratigraphy

CTC2-4 NHI Chitu Village 2.58–0.77 Stratigraphy

CTC2-5 NHI Chitu Village 2.58–0.77 Stratigraphy

LHL-1 NHI Leihu ridge 0.01 Stratigraphy

LHL-2 NHI Leihu ridge 0.01 Stratigraphy

LHL-5 NHI Leihu ridge 0.01 Stratigraphy

YX-1 NHI Yongxing 0.01 Stratigraphy

YX-3 NHI Yongxing 0.01 Stratigraphy

YX-4 NHI Yongxing 0.01 Stratigraphy

YX-5 NHI Yongxing 0.01 Stratigraphy

- SLP Tianyang, Xuwen 0.4775 K-Ar Chen (1990)

- NHI Fu Mountain, Chengmai 34.78 K-Ar

Feng (1992)
- NHI Duowen Ridge, Lingao 8.97 K-Ar

- NHI Xiuying village, Haikou 6.27 K-Ar

- NHI Yongxing, Qiong Mountain 5.19 K-Ar

(Continued on the following page)
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TABLE 5 (Continued) Age data set of volcanic rocks in the LQA.

Sample id Site
∗

Detailed location Age (Ma) Methods References

- NHI Yongxing, Qiong Mountain 4.26 K-Ar

- NHI Lingbei, Suixi 2.8 K-Ar

- NHI Lingbei, Suixi 2.1 K-Ar

- NHI Jinniu Ridge, Haikou 2 K-Ar

- NHI Fu Mountain, Chengmai 0.99 K-Ar

- NHI Yanzhi village, Qiong Mountain 0.83 K-Ar

- NHI Deyi Ridge, Danzhou 0.64 K-Ar

- NHI Ding village, Qiongshan 0.35 K-Ar

- NHI Miao Ridge, Wenchang 0.21 K-Ar

- NHI Leihu ridge 0.013 K-Ar

- NLP Huguangyan, Zhanjing 0.127 K-Ar

- SLP Yongshi Farm, Xuwen 6.31 K-Ar

- SLP Yongshi Farm, Xuwen 2.9 K-Ar

- SLP Qianlong Ridge, Xuwen 2.68 K-Ar

- SLP Yongshi Farm, Xuwen 1.7 K-Ar

- SLP Yongshi Farm, Xuwen 1.2 K-Ar

- SLP Yongshi Farm, Xuwen 0.85 K-Ar

- WZ Eastern Weizhou Island 1.26 K-Ar

- NHI Mutang, Danzhou 28.4348 K-Ar

Sun (1991)

- NHI Penglai, Wenchang 11.829 K-Ar

- NHI Penglai, Wenchang 6.9222 K-Ar

- NHI Wenke village, Qiong Mountain 5.5543 K-Ar

- NHI Rongtang village, Qiong Mountain 3.8072 K-Ar

- NHI Penglai, Wenchang 2.7415 K-Ar

- NHI Huangzhu, Dinan 1.3158 K-Ar

- NLP Lingbei, Suixi 11.5107 K-Ar

- NLP Lingbei, Suixi 0.9043 K-Ar

- SLP Huoju Farm, Haikang 2.3002 K-Ar

- SLP Tianyang, Xuwen 1.8799 K-Ar

2–2 NHI Hainan 5.3–2.58 Stratigraphic

Zhao et al. (2021)
3–1 NHI Hainan 5.3–2.58 Stratigraphic

4–8 NHI Hainan 5.3–2.58 Stratigraphic

5–1 NHI Hainan 5.3–2.58 Stratigraphic

(Continued on the following page)
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TABLE 5 (Continued) Age data set of volcanic rocks in the LQA.

Sample id Site
∗

Detailed location Age (Ma) Methods References

7–6 NHI Hainan 5.3–2.58 Stratigraphic

11–8 NHI Hainan 5.3–2.58 Stratigraphic

14–1 NHI Hainan 5.3–2.58 Stratigraphic

16–1 NHI Hainan 5.3–2.58 Stratigraphic

17–1 NHI Hainan 5.3–2.58 Stratigraphic

22–1 NLP Leizhou 1.8–0.7 Stratigraphic

23–2 NLP Leizhou 1.8–0.7 Stratigraphic

19–1 SLP Leizhou 1.8–0.7 Stratigraphic

19–3 SLP Leizhou 1.8–0.7 Stratigraphic

20–8 SLP Leizhou 1.8–0.7 Stratigraphic

19–4 SLP Leizhou 1.8–0.7 Stratigraphic

20–3 SLP Leizhou 1.8–0.7 Stratigraphic

20–4 SLP Leizhou 1.8–0.7 Stratigraphic

20–9 SLP Leizhou 1.8–0.7 Stratigraphic

20–10 SLP Leizhou 1.8–0.7 Stratigraphic

18–1 SLP Leizhou 1.8–0.7 Stratigraphic

03WZ-08 WZ Intertidal zone north of the Hengling Mountains 0.49 K-Ar

Fan et al. (2006)

04WZ-12 WZ Xieyang village 0.57 K-Ar

03WZ-19 WZ West Cape intertidal zone 0.58 K-Ar

03WZ-13 WZ channel marking tower 0.59 K-Ar

04WZ-07 WZ Guogai Ridge 0.6 K-Ar

04WZ-21 WZ North Harbour intertidal zone 0.75 K-Ar

04WZ-06 WZ Guogai Ridge 0.79 K-Ar

03WZ-12 WZ Lower part of the crocodile mouth erosion platform 0.86 K-Ar

03WZ-14 WZ Eastern Shangshilokou Village 1.42 K-Ar

06WZ-BK WZ Shells from the Xieyang Island Accumulation 0.036 14C

provides crucial insights into the geological evolution of the LQA
and the underlying mechanisms driving volcanic activity across
the region.

5.3 Interaction between Hainan mantle
plume and paleo-subducted slab

Previous studies have shown that the volcanic rocks in the
LQA are predominantly of the OIB type with certain IAB type,

mainly originating from the Hainan mantle plume or as a
result of mixing between mantle plume materials and ancient
subducted slab components (Ho et al., 2000; Zou and Fan, 2010;
Zhang et al., 2020; Zhao et al., 2021). Geochemical analyses indicate
that the volcanic rocks in the LQA predominantly exhibit OIB
characteristics, reflecting the pivotal role of the mantle plume
in controlling the chemical composition and eruption patterns
of the magma. Sr-Nd-Pb-Hf isotope data further reveal that the
mantle source of these volcanic rocks reflects the geochemical
heterogeneity of a mantle plume, with isotopic characteristics
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FIGURE 10
(a) All type age data set of volcanic rocks in the LQA (Huang et al., 1993; Zhu and Wang, 1989; Zhang et al., 2020; Fan et al., 2006; Wang et al., 2021).
The boxes indicate the range between the first (25%) and the third (75%) quantiles. The solid lines in the boxes indicate the median. The two caps
indicate the age data of 10%–90% range; (b) DMM-EMⅡmixing end-member proportions derived from Sr-Nd isotope calculations versus K-Ar ages
(Huang et al., 1993; Zhu and Wang, 1989; Zhang et al., 2020; Wang et al., 2012; Zhao et al., 2021; Fan et al., 2008; Li et al., 2014); (c) Schematic diagram
of slab and Hainan Mantle Plume mixing (Li et al., 2018; Xia et al., 2016).

commonly associated with DMM and EMⅡ signatures observed
across nearly entire study areas (Ho et al., 2000; Zou and Fan,
2010; Zhang et al., 2020; Zhao et al., 2021). Based on the linear
mixing model of DMM and EMⅡ end-members calculated from
the 87Sr/86Sr-143Nd/144Nd isotopic diagram, combined with K-
Ar geochronological data (Figure 10B), it is shown that since
6 Ma, the contribution of the EMⅡ to the source of Cenozoic
volcanic rocks in the LQA has increased. A possible mechanism
is the progressive upwelling of the mantle plume, which leads
to an enrichment of the EMⅡ component. Another possibility
is the incorporation of residual Mesozoic subducted slabs during
the upwelling process, allowing recycled materials to enter the
mantle and occupy a larger proportion in the magma source
region.

The temporal and spatial distribution characteristics of
volcanic rocks in the region provide new insights into the
possible mechanisms of ancient subduction zones' involvement
in magmatic activities. Temporally, volcanic activity in the
region initiated earlier in the south and progressively became
active toward the north. The volcanic rocks on Weizhou Island,
located west of the same latitude as northern LP, are generally
younger, while volcanic activity in the southern LP occurred
earlier than the northern LP, with northern Hainan Island
showing the earliest volcanic activity. This temporal difference
is closely related to the spatial distribution pattern. The Hainan
mantle plume is generally believed to be located in northeast
of Hainan Island, which suggests that volcanic activity in
northeastern Hainan Island, being closer to the core of the
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plume, occurred earlier, while Weizhou Island and northern
LP, being relatively farther from the plume, experienced later
volcanic activity. This trend is consistent with the position of the
Hainan mantle plume (Toyokuni et al., 2022; Xia et al., 2016;
Lei et al., 2009; Lebedev and Nolet, 2003; Chen et al., 2021;
Hua et al., 2022).

The volcanic rocks in the southern LP, as well as northern
Hainan Island, display characteristics of OIB, IAB and OIB-
IAB transition types (Zhang et al., 2020; Yung-Tan et al., 2022;
An et al., 2017; Wang et al., 2012; Zhao et al., 2021; Chen et al.,
2023), which differ from the typical OIB rocks associated with
mantle plumes. Previous studies suggested that the mantle source
regions in these areas were not only influenced by the mantle
plume but also possibly mixed with recycled materials from
ancient subducted slabs (Zhang et al., 2020; Yung-Tan et al.,
2022; An et al., 2017; Wang et al., 2012; Zhao et al., 2021;
Chen et al., 2023). This hypothesis is further supported by our
combined isotopic data, particularly in Sr-Nd and Pb isotope
diagrams, where samples from southern LP and northern Hainan
Island show greater dispersion (Figures 5, 6), indicating that the
mantle source regions in these areas may have undergone complex
mixing processes. However, the Naozhou Island located in northern
LP (this study) and the Weizhou Island located in western LP
(Zhang et al., 2020) merely show OIB type basalts which may
indicate deriving from the Hainan mantle plume rather than paleo-
subducted slab. This distribution can be explained by the branched
Hainan mantle plume model suggested by Xia et al. (Xia et al.,
2016) and concurs with the subduction direction of the Late
Mesozoic subduction zone along the northern SCS margin, which
trends approximately from southeast to northwest (Li et al., 2018),
implying that the influence of ancient subducted slab materials
focused on the center location of the Hainan mantle plume merely
(Figure 10C).

6 Conclusion

This study conducted K-Ar dating on basalt samples from
Naozhou Island, revealing two periods of volcanic activities:
approximately 3.6 Ma (late Pliocene) and 1 Ma (Pleistocene),
providing a refined temporal framework for volcanic activity on
the island. The basalts on Naozhou Island have undergone limited
crustal contamination but intermediate fractional crystallization.
Geochemical and isotopic analyses indicate that the volcanic
rocks on Naozhou Island are of the OIB-type, primarily derive
from a mixture of DMM and EMⅡ, may originate from the
Hainan mantle plume. By integrating data from other volcanic
rocks in the LQA, this study further elucidates the temporal
and spatial evolution of volcanic activity across the entire
LQA region. The results demonstrate that the Hainan mantle
plume is the primary driver of magmatic activity in the LQA.
Moreover, isotopic analysis across different regions reveals
dispersion, particularly in southern LP and northern Hainan
Island, coupled with the presence of IAB and OIB-IAB transitional
characteristics, suggests a significant role of recycled subducted slab

material may participate in the magma source. However, the
Naozhou Island located in northern LP and the Weizhou Island
located in western LP merely show OIB type basalts which may
indicate deriving from the branched Hainan mantle plume rather
than paleo-subducted slab. The spatial distribution feature of the
interaction between branched Hainan Mantle Plume and paleo-
subducted slab is in accord with the subduction direction of
the Late Mesozoic subduction zone along the northern margin
of the SCS.
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