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Introduction: Over the past few decades, China has vigorously advanced
its strategy to build a powerful transportation network, constructing and
maintaining numerous slope engineering projects. However, frequent major
safety incidents caused by slope failures highlight the urgent need for automated
identification of failure events during the operational phase of slopes.

Methods: This study integrates rainfall, surface displacement, and vertical
displacement monitoring data, and proposes an automatic failure mode
identification method based on deep convolutional autoencoder technology.
Themodel is trained onmonitoring data collected during the normal operational
phase of slopes, extracting features from normal data to reconstruct the original
data. The trained model is then utilized for structural anomaly detection by
leveraging the characteristic that reconstruction errors for failure mode samples
are significantly higher than for normal samples.

Results: A case study was conducted on a specific slope where, on 24 May
2024, the displacement development rate in some areas increased significantly,
ultimately leading to collapse. The proposed model accurately identified the
time and evolution of the landslide, demonstrating its capability to detect failure
events effectively.

Discussion: Validation results confirm that the model can effectively distinguish
previously unseen abnormal modes, offering significant practical value for
identifying similar structural anomalies. This approach provides a reliable
tool for slope monitoring and anomaly detection, enhancing safety in slope
engineering projects.
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multi-source data fusion, deep convolutional autoencoder, slope displacement, rainfall,
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1 Introduction

In recent years, slope safety issues have garnered widespread
attention. Research has shown that the key factors influencing
slope stability primarily include rainfall and groundwater levels
(Zhang et al., 2011; Jiang et al., 2020; Yang and Zhang, 2024;
Zhao et al., 2024). From the perspective of structural forces,
the types of forces acting on slopes are relatively simple. Under
normal circumstances, when the response remains within a stable
range, it indicates that the slope is in a stable state. However,
accidents caused by rainfall and changes in groundwater levels have
become increasingly common (Arslan Kelam et al., 2024; Jing et al.,
2024; Qin et al., 2024), making it imperative for managers to
monitor the real-time operational status of critical slopes. Existing
studies suggest that slope failure pattern identification methods
can be broadly categorized into model-driven (Yuan et al., 2020;
Wang et al., 2021; Liu and Wang, 2023; Chand and Koner, 2024;
Garo et al., 2024; Huber et al., 2024; Shehadeh et al., 2024;
Wang et al., 2024) and data-driven approaches (Bui et al., 2020;
He et al., 2022; Alam et al., 2024). Model-driven techniques
are limited by the specific characteristics of the studied objects,
which restricts their applicability. To develop a more generalizable
method for slope failure pattern recognition, health monitoring
technology has been introduced. In recent years, the introduction
of new monitoring technologies has significantly accelerated the
rapid development of slope monitoring, such as the application
of multi-field information monitoring technologies (Fang et al.,
2023) and multi-smartphone photogrammetric monitoring systems
(Fang et al., 2024). This technology provides an effective means of
acquiring real-time data on slope environments and forces, enabling
data-driven identification of slope failure patterns based on real-
time monitoring data (Alam et al., 2024).

Extracting key indicators that characterize the operational
status of slopes using observational data has become a focal point
for researchers. For instance, mixed artificial intelligence models
have been utilized to predict slope failure (Bui et al., 2020), and
continuous random forests have been employed to automatically
classify seismic signals related to slope instability (Wenner et al.,
2020). A notable advantage of data-driven methods is their
independence from specific structural forms, allowing for the
exploration of the inherent features of the data based on
structural characteristics, thereby yielding robust indicators with

strong generalization capabilities to represent the structural
operational status.

In recent years, artificial intelligence technologies have
gained widespread attention in the field of data mining and
have been applied in novel monitoring techniques. For example,
the introduction of InSAR monitoring technology enables the
acquisition of large-scale deformation data, and when combined
with deep neural network techniques, it can predict the spatial and
temporal trends of regional displacements (He et al., 2022; Lu et al.,
2024). These monitoring techniques have also found successful
applications in landslide monitoring (Anantrasirichai et al., 2020).
Neural network technologies are widely used in various fields,
such as object detection and natural language processing, and
have achieved remarkable results in civil engineering, particularly
in vision-based displacement monitoring. Drawing from these
successful experiences, this study introduces deep convolutional
autoencoder technology, which has been extensively used in the field
of structural damage identification in civil engineering (Chen et al.,
2024; Li et al., 2024; Teng et al., 2024). Compared to traditional
methods that derive structural state indicators through theoretical
analysis (Fan et al., 2024), deep convolutional autoencoders address
the challenge of feature selection. Furthermore, this approach
employs an unsupervised learning methodology, requiring only
monitoring data from structures during their normal operational
phase formodel training. Once trained, themodel can automatically
identify abnormal patterns that differ from the normal operational
state, effectively addressing the issue of data imbalance regarding
abnormal patterns in civil engineering (Bao et al., 2019). Of course,
there are many types of unsupervised learning methods, each
suited to different application scenarios, such as the K-nearest
neighbors algorithm (KNN) (Ramaswamy et al., 2000; Angiulli
and Pizzuti, 2002), variational autoencoders (VAE) (Dong et al.,
2018; Kim et al., 2018), and generative adversarial networks
(GAN) (Schlegl et al., 2017). However, the deep convolutional
autoencoder model (Cheng et al., 2018) employed in this study
integrates both feature extraction and damage identification
functionalities. With its end-to-end input-output structure,
the model was selected for its compatibility with the specific
characteristics of slope monitoring data and its strong modeling
capabilities. The autoencoder excels at feature representation,
effectively capturing both spatial and temporal patterns frommulti-
dimensional time series data, offering a deeper understanding of

FIGURE 1
Slope site and sensor layout diagram.
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FIGURE 2
Time history of each sensor during the monitoring period. (A) Vertical displacement of GNSS-A. (B) Surface displacement of GNSS-A. (C) Vertical
displacement of GNSS-B. (D) Surface displacement of GNSS-B. (E) Vertical displacement of GNSS-C. (F) Surface displacement of GNSS-C. (G) Vertical
displacement of GNSS-D. (H) Surface displacement of GNSS-D. (I) Rain-Gauge.

slope dynamics compared to traditional methods that may focus
solely on statistical or temporal features. Its built-in denoising
capability enhances the robustness of anomaly detection, enabling

the model to prioritize meaningful patterns while mitigating
the influence of noisy measurements commonly found in slope
monitoring datasets. Furthermore, the approach is highly scalable,
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FIGURE 3
Data samples generated using a 24-h non-overlapping sliding window.

making it ideal for handling high-dimensional data, which is
essential for complex monitoring scenarios.

Based on the aforementioned research, this paper employs deep
convolutional autoencoder technology to integrate multi-source
monitoring data of slopes, achieving precise identification of slope
failure modes. The organization of this paper is as follows. Section 1
reviews the development history of abnormal pattern recognition
in slopes and highlights the advantages of deep convolutional
autoencoders. Section 2 introduces the engineering background, the
characteristics of the monitoring data, the preprocessing methods
used in this study, and the framework of the proposed method.
Section 3 displays the results obtained from the study. Section 4
summarizes the findings of this paper.

2 Materials and methods

2.1 Data description and data
preprocessing

2.1.1 Engineering overview
This study focuses on a cut slope located in a region

characterized by tectonic erosion and hilly landforms.The slope has
a height of approximately 15–20 m, with a natural gradient ranging
from 20° to 50°. Based on borehole exploration and geological
surveys, the surface layer of the slope is covered with Quaternary
silty clay, with a thickness of 2–3 m and containing gravel,
as shown in Figure 1. Beneath this layer, the bedrock belongs to the
Cretaceous Jiangdihe Formation, consistingmainly of grayish-green
silty mudstone and red mudstone, with localized intercalations of
clay layers. The rock mass exhibits varying degrees of weathering,
ranging from strong to moderate. It typically features relatively
rough fractured textures and displays thin to medium bedding
structures. The geological structure of this section is significantly
influenced by tectonic activity, and the severe weathering of the rock
mass results in the predominance of soil layers in the slope.

Based on the geological conditions and stability analysis of the
slope, combined with engineering analogies, the first level of the
slope is supported using an arched skeleton structure. Within the
skeleton, a combination of sprayed anchor mesh and grass planting
is employed to provide protection, enhancing both the stability and
ecological sustainability of the slope.

After the completion of the slope support structure
construction, manual inspection revealed significant displacement
and deformation trends at the designated measurement points.
Consequently, four surface displacement monitoring points
were set up. Additionally, to monitor the impact of rainfall
on slope displacement development, a rain gauge was installed
in an open area. To monitor the long-term stability of the
slope, this study introduced GNSS monitoring and rainfall
monitoring, establishing 4 GNSS measurement points and 1
rainfall measurement point, as shown in Figure 1. The sampling
frequency for the GNSS measurement points is 1/1,800 Hz,
while the sampling frequency for the rainfall measurement
point is 1/3,600 Hz. The GNSS measurement points can
monitor three-dimensional spatial displacements, and through
conversion, both surface displacement (denoted as “dxy” in the
following text) and vertical displacement (denoted as “dz” in
the following text) at the measurement points can be obtained.
This study selected monitoring data from 1 January 2022, to
31 May 2024, as the research object, with the time-series curve
illustrated in Figure 2.

2.1.2 Data preprocessing
Asmentioned above, the sampling rates of theGNSSmonitoring

points and rainfall monitoring points are not consistent, and
during the monitoring period, different sensors did not achieve
synchronized data collection. To align the data from various sensors,
we assume that the data between two observation points follow
a linear relationship. Therefore, linear interpolation is used to
estimate the data at any given time point. Based on the timestamps
of the sampled data, we interpolate to obtain the hourly sample
values within the selected time range, thereby completing the data
alignment for all monitored variables.

For the purposes of model training and testing described later,
the data is grouped into time frames of 24 h each. The timestamps
of the monitoring data across 9 channels are aligned, and then
the data from these 9 channels within the same time frame are
taken together to form a single sample, with a sample size of 9
× 24, as shown in Figure 3. After removing missing data, a total
of 710 samples were obtained over the entire monitoring period.
Of these, 70% (497 samples) were used as the training set, 10%
(71 samples) as the validation set, and 20% (142 samples) as
the test set.

To visually demonstrate the differences in monitoring data
before and after the landslide, this paper employs parallel coordinate
visualization. In this approach, each monitoring channel is
represented by a vertical axis, and the changes at each channel over
time are displayed based on the magnitude of the monitored data.
This allows for the identification of correlations between various
monitored quantities at the same timestamp. By analyzing the results
frommultiple sensors, it becomes apparent that during the landslide
event, significant displacement changes occurred inGNSS-B,GNSS-
C, and GNSS-D, while no significant rainfall was observed during
the period of large displacement changes. As shown in Figure 4,
the correlation between rainfall and displacement is relatively weak,
but the displacement correlation among the measurement points is
relatively strong.
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FIGURE 4
Correlation heatmap of slope monitoring sensors across different channels.

FIGURE 5
Model architecture diagram of the deep convolutional autoencoder.

2.2 Methods

2.2.1 Framework of the proposed method
Based on the characteristics of the monitoring data described

in the previous section, it can be observed that during the period

of slope failure, the displacement of the monitored slope shifts
rapidly, while the rate of displacement change remains relatively
slow during normal operation. Leveraging this phenomenon, this
paper proposes a slope failure mode identification method based on
a deep convolutional autoencoder. The method utilizes monitoring
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TABLE 1 Deep convolutional autoencoder configuration.

Network layer Input dimension Output dimension Parameter Activation function

Input layer 9 × 24

Convolutional layer 9 × 24 16 × 24 Kernel size: 3 × 1
Stride: 1
Padding: 1

ReLU

Pooling layer 16 × 24 16 × 12 Kernel size: 2 × 1
Stride: 2

Convolutional layer 16 × 12 32 × 12 Kernel size: 3 × 1
Stride: 1
Padding: 1

ReLU

Pooling layer 32 × 12 32 × 6 Kernel size: 2 × 1
Stride: 2

Convolutional layer 32 × 6 64 × 6 Kernel size: 3 × 1
Stride: 1
Padding: 1

ReLU

Pooling layer 64 × 6 64 × 3 Kernel size: 2 × 1
Stride: 2

Flatten layer 64 × 3 192

Fully connected layer 192 48

Fully connected layer 48 192

Reshape layer 192 64 × 3

Upsampling layer 64 × 3 64 × 6 Scale factor: 2

Convolutional layer 64 × 6 32 × 6 Kernel size: 3 × 1
Stride: 1
Padding: 1

ReLU

Upsampling layer 32 × 6 32 × 12 Scale factor: 2

Convolutional layer 32 × 12 16 × 12 Kernel size: 3 × 1
Stride: 1
Padding: 1

ReLU

Upsampling layer 16 × 12 16 × 24 Scale factor: 2

Convolutional layer 16 × 24 9 × 24 Kernel size: 3 × 1
Stride: 1
Padding: 1

ReLU

Output Layer 9 × 24

data from the normal operation period as the training set, where
the deep convolutional autoencoder extracts features corresponding
to the normal operating state. Specifically, the encoder compresses
high-dimensional monitoring data to capture the essential features
of the slope’s normal behavior, while the decoder reconstructs
the original data from these compressed features. After training,
the model is applied to slope failure mode identification, where
anomalies are detected by analyzing the residuals between the
reconstructed data and the original data.

This approach falls under unsupervised learning algorithms,
which means that the model does not require prior knowledge
of any failure modes during the training process. It effectively
addresses the issue of insufficient failure samples commonly
encountered in civil engineering. By learning from normal
operating data, the trained model can directly identify abnormal
data features that deviate from the normal state, demonstrating
strong generalization capabilities. The architecture of the model
is shown in Figure 5.
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FIGURE 6
Mean squared error of the deep convolutional autoencoder model
over 500 epochs.

The input to the model is a 9 × 24 matrix, where 9 represents
the 9 monitoring channels: GNSS-A-dz, GNSS-A-dxy, GNSS-B-
dz, GNSS-B-dxy, GNSS-C-dz, GNSS-C-dxy, GNSS-D-dz, GNSS-
D-dxy, and Rain-Gauge, while 24 indicates that each data frame
contains 24 sampling points. After processing through the encoder,
the input reaches the bottleneck layer and is then reconstructed
by the decoder. Given the relatively small input dimensions, this
study employs a convolution kernel size of 3 to reduce the number
of parameters while preserving local features of the data. A stride
of 1 is used to retain as much data detail as possible. Various
architectures with 3, 4, and 5 convolutional layers were tested.
While deeper architectures slightly reduced training error, a 3-layer
design was ultimately chosen to balance computational efficiency
and parameter reduction. The structure of the encoder and decoder
is shown in Table 1. The encoder utilizes the ReLU activation
function, employs max pooling with a kernel size of 2 and a stride of
2; the upsampling layer has a scaling factor of 2, and all convolutional
kernels have a size of 3 × 1, with a stride of 1 and padding of 1.

2.2.2 Performance evaluation
The unsupervised model used in this study for the identification

of abnormal patterns in slopes can be viewed as a binary
classification model, determining whether a structure is in a normal
or abnormal state. Therefore, the model’s classification results can
be evaluated using metrics such as accuracy, precision, recall, and
F1 score. Accuracy measures the overall correctness of the model by
dividing the number of correct predictions (true positives and true
negatives) by the total number of predictions. Precision indicates
how many of the positively predicted samples were actually correct.
It focuses on the correctness of positive predictions. Recall measures
howwell themodel can identify actual positive cases. It calculates the
proportion of true positives out of all actual positives. The F1 score
is the harmonic mean of precision and recall. It provides a balanced
measure when you want to consider both false positives and false
negatives. The calculation formulas are shown as Equations 1–4.

accuracy = TP+TN
TP+ FN+ FP+TN

× 100 (1)

precision = TP
TP+ FP

× 100 (2)

recall = TP
TP+ FN

× 100 (3)

F1 = 2×
precision× recall
precision+ recall

× 100 (4)

Where TP represents the count of samples that are genuinely
positive and accurately classified as positive by the model. TN refers
to the number of genuinely negative samples that themodel correctly
identifies as negative. FP indicates the count of samples that are truly
negative but mistakenly classified as positive by themodel. FN refers
to the number of truly positive samples that the model incorrectly
labels as negative.

2.2.3 Model training
In this study, 497 samples were used as the training set, 71

samples as the validation set, and 142 samples as the test set.
The model was trained for 500 epochs with a batch size of 8.
The loss function adopted was the mean squared error (MSE)
loss, and the optimization algorithm used was Adam, with an
initial learning rate of 1e-3 and a weight decay of 1e-5. The
training loss during the process is shown in Figure 6. As observed,
starting from the 100th epoch, the training loss stabilized. The
final model parameters were selected based on the epoch where
the sum of the training and validation losses was minimized. The
model was trained on a machine equipped with a 6-core CPU,
16 GB of memory, and a GTX1650 GPU, completing the process
in 5 min and 12 s. Built using PyTorch, the model can be deployed
in engineering applications by creating a web-based microservice
using the Flask framework. Real-time data can be processed by
invoking themicroservice, enabling themodel to determinewhether
structural anomalies are present.

3 Results

3.1 Anomaly pattern identification methods
and results

The trained model was applied to the test dataset to identify
slope failure patterns. The test dataset contains 134 samples from
the slope’s normal operational state and 8 samples from the failure
development or failure stage. To use the model’s reconstruction
error for identifying slope failure patterns, the mean and standard
deviation of the reconstruction error from the training samples
were calculated to establish a threshold evaluation system. The
prediction results of the trained model on both the training and
validation datasets were collected and visualized using a bar chart,
as shown in Figure 7A. It can be observed that the frequency
distribution of errors resembles the shape of a normal distribution.
A quantile-quantile (Q-Q) plot was further used to assess the
deviation of the error distribution from a normal distribution, as
depicted in Figure 7B. Apart from the data at both ends, most points
lie approximately on a straight line, supporting the assumption that
the errors follow a normal distribution. Based on this, the mean of
the error samples plus three times the standard deviation was used
as the threshold to determinewhether data anomalies exist, enabling
the identification of abnormal patterns in slopes.
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FIGURE 7
Frequency distribution and quantile-quantile plot of reconstruction loss for training and validation datasets. (A) Frequency distribution. (B)
quantile-quantile plot.

FIGURE 8
Slope anomaly pattern recognition results based on threshold and deep convolutional autoencoder reconstruction error. (A) Test sample recognition
results with non-overlapping sliding window. (B) Test sample recognition results with overlapping sliding window.

In the test dataset, the 8 abnormal samples were derived from the
monitoring data collected between 24 May 2024, and 31 May 2024.
During these 8 days, the slope displacement gradually increased,
with the rate of change accelerating each day. Using the anomaly
detection method proposed in this study to determine whether
the slope exhibited abnormal behavior, the model was able to
accurately identify both the progression of the slope failure and
the final failure event, as shown in Figure 8A. The site of the slope
failure is shown in Figure 9. However, in the early stages of failure,
specifically on 24 May 2024, when the displacement change was
minimal, the model failed to detect the anomaly accurately. This
is primarily because, in the early stages of a landslide, not all
sensors are affected, and the mean squared error (MSE) metric
inherently lacks sensitivity to early-stage anomalies. To enhance
the timeliness of warnings, it is recommended to use a deep
autoencoder as a feature extraction model, utilizing the features
from its bottleneck layer as input to build an anomaly detection

model that is more sensitive to fused features. For instance, an
anomaly detectionmodel based on Support VectorMachines (SVM)
or a GaussianMixture Model (GMM) could be employed to address
the insensitivity of MSE, which relies on averaging operations, to
early-stage anomalies.

According to the performance evaluation metrics, the
prediction accuracy in this case reached 99.30%, with a high
accuracy for alarms, as shown in Table 2. With limited data,
this study applies L1 regularization in the loss function by
adding a regularization term to constrain the number of model
parameters. Additionally, the Adam optimizer and weight decay
mechanism are used to minimize the impact of overfitting.
It should be noted that the most effective approach remains
increasing the data volume. In the future, the dataset will be
further expanded to establish a standardized anomaly detection
sample set, providing a solid data foundation for training
similar models.
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FIGURE 9
The on-site real image of the final slope collapse.

TABLE 2 Performance evaluation metrics of the model on the test set
with non-overlapping sliding window.

Performance evaluation metrics Result

Precision 100.00%

Recall 87.50%

F1 93.33%

Accuracy 99.30%

Results demonstrate that themodel can accurately detect unseen
data anomalies. This unsupervised learning algorithm has broad
applicability, requiring only normal data samples for training. It
effectively addresses the issue of insufficient anomalous data samples
in structural monitoring.

3.2 Further improving the timeliness of
anomaly pattern identification

To further enhance the timeliness of anomaly detection, the
non-overlapping sliding window was replaced with an overlapping
sliding window, as shown in Figure 10. The sliding step was set
to 1 h, allowing a new sample to be constructed whenever new
data arrived for the model to evaluate for anomalies. Validation
on the test dataset using this approach revealed that the previous
non-overlapping sliding window mode struggled to accurately
detect anomalies due to small displacements on the first day,
requiring 48 h to identify anomalies. In contrast, the overlapping
sliding window mode successfully detected anomalies within 30 h,
significantly reducing the anomaly detection time and improving
the potential for practical engineering applications. The test set,
constructed using overlapping sliding windows, contains a total of

3,385 samples, of which 192 samples correspond to monitoring
data during the landslide occurrence process, while the remaining
samples represent the normal operational stage of the slope. The
model accurately classified 3,356 samples, while the remaining 29
samples, belonging to the early development stage of the landslide,
were not correctly identified as landslide anomaly patterns. The
classification results of the samples are detailed in Figure 8B, and
the evaluation metrics are presented in Table 3. Since the sliding
window includes more monitoring data from the early stages of
landslide occurrence, which were not accurately identified, the
accuracy, F1 score, and recall of themodel have decreased compared
to previous results.

4 Discussion

In this study, a deep convolutional autoencoder-based
unsupervised failure mode recognition algorithm is proposed
to identify and alert slope failure modes. This algorithm
integrates surface displacement, vertical displacement, and
rainfall monitoring data from the slope. By training the model
with normal operation phase data, it assesses the proximity
of the structure to failure by comparing the reconstruction
error between the reconstructed and observed data. Validation
through a slope case study revealed that the model can accurately
identify the development stages of slope failure, achieving a
recognition accuracy of 99.30%. However, this method has
certain limitations. First, the current monitoring data contains
many missing values, leading to insufficient model training.
Further data collection is needed to establish a standardized
dataset. Second, early detection of slope failure remains a
challenge, largely due to the reliance on reconstruction error
as the main assessment method. Future research will focus on
using the bottleneck layer features of the model for anomaly
recognition to further improve the accuracy of failure mode
identification.
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FIGURE 10
Schematic diagram of non-overlapping and overlapping windows.

TABLE 3 Performance evaluation metrics of the model on the test set
with overlapping sliding window.

Performance evaluation metrics Result

Precision 100.00%

Recall 84.90%

F1 91.83%

Accuracy 99.14%
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