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The northwest part of Hubei Province, China, is characterized by steep
topography, complex geological structures, and intense precipitation, providing
ideal natural conditions for landslide disasters. To address the lack of integration
of synthetic aperture radar interferometry (InSAR) and geological data for the
identification of latent landslide hazards, in this study, we incorporated InSAR
technology and geological data to identify potential landslides in Fang County,
northwest Hubei Province. With the aid of 10 ALOS-2 data scenes and high-
precision digital elevation models of the study area, a displacement rate map
with a maximum value of −70.6 mm/a was extracted. Then, according to the
displacement rate and optical images, the suspected latent landslide area was
delineated, and a comprehensive analysis of the slope map and fault and
watershed buffer zonemapwas performed to obtain the final results. Compared
to the existing latent landslide recognition method, the proposed method
integrating InSAR and geological data can eliminate areas where landslides are
geologically unlikely to occur, thereby enhancing the efficiency and accuracy of
latent landslide hazard identification. The results were verified using geological
and optical image features, which confirmed its effectiveness for identifying
latent landslide hazards. The results of this research can contribute to the
prediction and early warning of landslides and guide field investigations of
geological disasters.

KEYWORDS

landslide, InSAR, geological data, hazard recognition, Fang County

1 Introduction

Landslides, as one of the deadliest geological disasters, rank second only to
earthquakes in causing substantial economic and human losses annually (Bekaert et al.,
2020; Gelete et al., 2024; Dong et al., 2019; Strozzi et al., 2018). Consequently, early
and continuous monitoring of latent landslides over vast areas is paramount for
disaster prevention and mitigation strategies in numerous countries, including China
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FIGURE 1
Map of the study area and ALOS-2 data coverage.

(Zhao et al., 2010). China, in particular, experiences frequent
landslide disasters (Huang, 2007; Li et al., 2016; Tang et al., 2024),
with western Hubei Province being a hotspot due to its dense forests
and challenging accessibility (Lu et al., 2018; Shen et al., 2020;
Sheng et al., 2024). Furthermore, the complex terrain and persistent
cloud cover during the rainy season (Li et al., 2022; Ma et al., 2010)
hinder the effectiveness of traditional remote sensing methods such
as GPS, optical imaging, and UAV imagery.

Synthetic aperture radar interferometry (InSAR) is a
groundbreaking Earth observation technology that emerged at
the end of the 20th century. With its capability for all-day, all-
weather, cloud-penetrating observations, InSAR provides accurate
surface deformation measurements at centimeter resolution,
revolutionizing the early identification andmonitoring of landslides
(Colesanti and Wasowski, 2006; Soltanieh and Macciotta, 2022;
Tralli et al., 2005; Xiong et al., 2023). Differential InSAR (D-InSAR)
has been applied to monitor small-scale landslide deformation
(Achache et al., 1996; Fruneau et al., 1996). However, D-InSAR has
limitations, including its ability to only detect relative deformation
between two SAR images and susceptibility to temporal or
spatial decorrelation and atmospheric delays (Zhu W. et al.,
2019). To address these limitations, scholars have developed
advanced time-series InSAR methods, such as Permanent Scatterer
InSAR (PS-InSAR) (Ferretti et al., 1999), Small Baseline Subsets
InSAR (SBAS-InSAR) (Berardino et al., 2002), stacking (Sandwell
and Price, 1998), and SqueeSAR (Ferretti et al., 2011). These
methods leverage multi-temporal radar data from repeat-pass
observations, focusing on extracting and analyzing the phase
signals of stable scatterers to invert time-series deformation
data with millimeter-level accuracy. These methods have proven
highly reliable in monitoring known sliding slopes (Dai et al.,
2016; Dong et al., 2018; Liu et al., 2013; Sun et al., 2015;
Tomás et al., 2016).

In terms of latent landslide hazard screening over large
areas, InSAR has shown promising results. Zhao et al. (2012)

were the first to identify more than 50 active landslides over
an area of approximately 40 km2 on the west coast of the US
using InSAR. Subsequent studies have successfully applied InSAR
for similar purposes (Bekaert et al., 2020; Lian et al., 2024;
Strozzi et al., 2018; Yao et al., 2022). These studies primarily
rely on deformation rate maps extracted from InSAR data to
identify potential landslide hazards. However, it is important to
note that landslides are influenced by a multitude of factors beyond
deformation rate, including slope angle, precipitation, fault layer
activity, vegetation cover, and human activities (Arrara et al., 2010;
Bui et al., 2016; Gheshlaghi and Feizizadeh, 2021; Li et al., 2023;
Westen et al., 2008; Zhang et al., 2020). Therefore, relying solely on
InSAR results for landslide identification may lead to false positives,
for example, ground deformation in a flat zone is unlikely to develop
into a landslide.

To address the research gap in integrating InSAR data with
geological information for the identification of latent landslide
hazards, this study aims to combine InSAR and geological data
to identify potential landslides in Fang County, northwest Hubei
Province, China. Firstly, InSAR analysis is conducted to extract
the deformation rate map of the study area. By comparing
this map with high-resolution optical images, unstable areas
are delineated and defined as suspected landslide hazard areas.
Next, a slope map and a watershed map of the survey area
are generated using a high-precision digital elevation model
(DEM), while a fault distribution map is extracted from the
geological map. These maps are then integrated to refine the
preliminary results of suspected landslide areas by eliminating
unlikely landslide occurrence zones. The final latent landslide
hazard results are obtained through this integrated analysis.
Furthermore, optical images and geological maps are utilized to
verify the identified latent landslides, ensuring the reliability of the
proposed approach.

2 Materials and methods

2.1 Study area

Fang County lies in the northwest of Hubei Province. The
terrain is high in the west but low in the east, and steep in the
south but gentle in the north, with a flat river valley in the middle
area. The study area is dominated by high mountains with an
altitude of 400–1,500 m. The Qingfeng fault traverses the middle
of Fang County (Yin et al., 2019), forming a long and narrow
fault basin (Li et al., 2014). The average annual precipitation is
914 mm, and the rainy season lasts for 100–140 days. The river
system in Fang County is well-developed with a total length
of 2,612 km.

The study area has a steep terrain, numerous fault structures,
a well-developed water system, and intense anthropologic
activities due to ongoing development, resulting in a natural
propensity for landslide disasters and many previously recorded
landslide events. In addition, Fang County has a large
population. If a landslide occurred in a human settlement, the
consequences would be unimaginable. Therefore, it is necessary
to continuously monitor landslide hazard risk to ensure successful
early warnings.
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FIGURE 2
Comparison of the Ziyuan-3 (ZY3) DEM and SRTM DEM.

2.2 Data

In this study, 10 ascending scenes of ALOS-2 fine-mode dual
polarization (FDB) data from July 2015 toMarch 2019 were used for
the InSAR analysis. Each scene has a resolution of 10 m and covers
an area of 70 × 70 km2.The long wavelength of the L-band (23.8 cm)
can effectively penetrate through canopy and acquire more accurate
ground deformation (Abe et al., 2020; Zhu J. et al., 2019). The data
coverage area is shown in Figure 1.

As a DEM is required to remove the topographic phase during
InSAR processing, its accuracy has a direct and pivotal impact on
the accuracy of InSAR deformation inversion results (Zhang et al.,
2019; Zhu J. et al., 2019). Here, we introduced high-precision
DEM data generated from the Ziyuan-3 satellite, which is the
first civil high-resolution multispectral satellite with stereoimaging
capability in China (Jiang et al., 2014; Wang et al., 2014).The overall
elevation accuracy of the Ziyuan-3 DEM of Hubei Province is
2.3 m with a 5 m resolution (Zhou et al., 2018). Figure 2 shows
a comparison between the Ziyuan-3 DEM and the commonly
used the Shuttle Radar Topography Mission (SRTM) 30 m DEM,

where the details of houses, rivers, and mountains are effectively
preserved in the Ziyuan-3 DEM. The SRTM was measured by
NASA using the space shuttle in the early 2000s (Koch and Heipke,
2002; Sun et al., 2003) and has not been updated since, except
for hole filling. In the past 20 years, changes in the topography
are inevitable, particularly in landslide-prone mountainous areas.
Therefore, the use of more recent high-precision Ziyuan-3
DEM data can greatly reduce the impact of topographic errors
(Lazecký et al., 2015).

2.3 SBAS-InSAR approach

Considering the limited amount of L-band data, the SBAS-
InSAR method was used to extract the deformation as it requires
less data. Firstly, an appropriate threshold was set for the temporal-
spatial baseline to generate the differential interferogram, and the
topographic phase was removed using Ziyuan-3 high-precision
DEM data. To ensure alignment with the resolution of the SAR data
and mitigate any uncertainty, the Ziyuan-3 DEM was resampled to
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FIGURE 3
Schematic of the proposed latent landslide recognition approach.

FIGURE 4
Map of deformation rate in the study area.

a 10-meter resolution. Then, phase unwrapping is conducted with
the minimum cost flow method. At this time, the corresponding
unwrapping phase at any pixel in the N th interferogram can be

expressed as Equation 1:

δφj = φ(tB) −φ(tA) = δφ
def
j + δφ

topo
j + δφ

atm
j + δφ

noise
j (1)

where δφj is the interferometric phase at this pixel, φ(tB) and φ(tA)
are the phase values at tB and tA, respectively, δφ

def
j , δφtopoj , δφatmj , and

δφnoisej are the phase differences caused by line-of-sight deformation,
topographic error, atmospheric delay, and noise, respectively. The
cumulative deformation along the radar line-of-sight at times tB and
tA can be mathematically expressed as Equation 2:

φ(tB) −φ(tA) = vi(tB − tA) (2)

Here, vi represents the average deformation rate along radar line-
of-sight during the interval between tA and tB. In scenarios involving
multiple interferometric pairs, this relationship can be generalized in
matrix form, as Equation 3:

Bv = δφ (3)

Due to the rank deficiency of matrix B, the singular value
decomposition (SVD) method is employed to derive the minimum
norm solution for the deformation rate. Subsequently, the time
series deformation is obtained by integrating the velocity over each
respective period.

To improve the accuracy and reliability of the results, it is
necessary to estimate and eliminate these errors effectively. By
introducing Ziyuan-3 DEM and constructing the linear relationship
model between the elevation error and baseline, the topographic
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FIGURE 5
Slope rate (A) and watershed of the study area (B).

FIGURE 6
Geological map of the study area (A); watershed and fault buffer zones (B).

error was estimated by the least square method. According to
the different characteristics of nonlinear deformation and the
atmospheric delay and noise in the space and time domains,
the atmospheric delay phase was separated by temporal-spatial
filtering, whereas noise could be addressed using multi-looking and
filtering approaches. After removing the above-mentioned phase
error components, the deformation rate along the line-of-sight was
obtained by singular value decomposition.

2.4 Latent landslide recognition

A schematic diagram of the proposed method for recognizing
latent landslide hazards, which integrates both InSAR and geological

data, is depicted in Figure 3. Initially, single-look complex data,
after being registered, along with an external high-precision
DEM, are employed to implement the SBAS-InSAR process,
resulting in a deformation rate map of the study area. This
data reveals the dynamic changes of the ground surface during
the data acquisition period and serves as a direct indicator for
identifying landslides, as latent landslides often precede large-
scale movements with a creep process, characterized by slow
deformation, which can be effectively captured by InSAR. This
step harnesses InSAR’s capability to detect surface deformation.
Subsequently, the slope map and watershed buffer zone are
extracted using the same high-precision DEM data, providing
insights into topographical features that may contribute to landslide
risk. Additionally, the fault buffer zone is extracted from the
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FIGURE 7
Suspected latent landslides in the study area.

geological map, adding crucial geological information about fault
lines that could impact slope stability. Within the study area, slope,
watershed, and fault activity are significant factors contributing
to potential landslides (Wang et al., 2025). The latent landslide
hazards are then identified by integrating all these data types,
emphasizing areas where deformation, slope angle, proximity to
watersheds, and fault lines converge, thereby indicating potential
landslide hazards.

3 Results

The deformation rate map of the study area extracted by SBAS-
InSAR is shown in Figure 4. Overall, the study area is relatively
stable, but exhibits small-scale severe deformation. The overall
coherence is better in the central human settlement, which has better
InSAR coverage, and the relatively small deformation rate indicates
that this area is stable. However, many null values are interspersed
in the northern and southern mountainous areas, which indicate
the influence of decorrelation as well as the shadowing effect
of steep terrain, with the latter as the main reason for such
values. In complex mountainous terrains within the study area,
the propagation path of radar signals is affected by topographic
relief, leading to occlusion or distance compression. This results
in multipath effects or shadow areas in radar signals, manifesting
as voids in InSAR results. Meanwhile, due to the missing data in
these areas, we will refer to the pixel values surrounding them for
subsequent processing.

This deformation rate map of the study area is considered
as a benchmark for subsequent identification of latent landslide
hazards. To date, many studies have analyzed and discussed
landslide factors in northwest Hubei, which predominantly include
precipitation, vegetation coverage, slope rate, distance from the
watershed, and geological faults (Fu et al., 2019; Long et al.,

2020; Tang et al., 2020). The precipitation pattern in northwest
Hubei is approximately constant each year, featuring a rainy season
from April to September, and the precipitation variation within
the study area is minimal (less than 100 mm). The vegetation
coverage pattern is also constant; except for the central area
with intense human activities, the southern and northern parts
are largely covered with vegetation. Therefore, we focus on the
slope rate, watershed location, and presence of faults, which are
closely related to the occurrence of geological disasters. The slope
rate of the study area is generated by the Ziyuan-3 DEM, and
the results are shown in Figure 5A. We also use the Ziyuan-
3 DEM to generate the watershed map of the study area after
determining the threshold value of watershed extraction to delineate
the most accurate watershed impact range. Here, we use local
data to calculate the threshold using a formula described in
previous literature (Sun et al., 2013). The extracted watershed data
are shown in Figure 5B.

Fault data were obtained from a 1:500,000 geological map of
Hubei Province archived on the GeoCloud website (http://geocloud.
cgs.gov.cn/), as shown in Figure 6A. Regarding the impact of
watersheds and faults on landslide hazards, the most direct impact
will occur in the area within the respective buffer zones. Upon
examining previous studies on the impacts of watersheds and faults
on landslides in Hubei Province (Fu et al., 2019; Long et al., 2020;
Tang et al., 2020), it was found that the impact of these factorial
layers on landslide occurrence does not exceed 1,000 m. Therefore,
the range of the watershed and fault buffer zones is conservatively
set to 1,000 m, and the influence range of watersheds and faults is
obtained, as shown in Figure 6B.

After all data are prepared, latent landslides are identified in
the study area. First, the deformation rate map obtained by InSAR
is used with optical images to circle suspected latent landslides (as
shown in Figure 7). Then, these results are refined using the fault
and watershed buffer zones and the slope rate map to exclude the
following types of suspected landslides: 1) those with a slope rate of
less than 20° and 2) those outside the buffer zones. Thus, the final
recognition results are determined; the specific process is shown
in Figure 8. After interpretation of the deformation rate map of
the study area obtained by InSAR, a total of 44 suspected latent
landslide hazard areas are identified. After a comprehensive analysis
with the various geological maps, 32 are defined as latent landslide
hazards. Due to the limitations of image size, Figure 9 shows the
deformation rate map of each identified area superimposed onto
a 1-m resolution optical image from the GF-2 satellite for a more
detailed display. Below each sub-image is the center coordinate
and the category, where “1” denotes a latent landslide, “2” is a
suspected landslide area excluded due to a small slope rate, and
“3” is a suspected landslide area excluded for being outside the
watershed/fault buffer zones. Finally, to verify the accuracy of
the latent landslide identification results, we combined the optical
images and geological data to analyze why these areas may be prone
to landslides.

4 Discussion

In terms of their geology, the unstable areas are predominantly
distributed in the northwest and northeast parts of the study area.
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FIGURE 8
Schematic of the process for refining the suspected landslide results.

The northwest areas (No. 1, 3, 4, 5, and 6) are located on Silurian
and Sinian strata. Silurian strata are predominantly a combination
of siltstone and sandstone, characterized by an inclined bedding
structure and a soft rock texture. These properties, combined with
the geological faulting, contribute to the instability of the area.
Meanwhile, Sinian strata are predominantly composed of volcanic
rocks and clastic rocks, interbedded with soft and hard rocks.
The direct contact between these two sets of strata along faults,
coupled with numerous secondary faults within the layers, suggests
a strong tectonic stress influence in the region. Furthermore, the
erosion of the well-developed water system indicates a heightened
susceptibility to landslides. The northeast areas (No. 8, 9, 10, 35,
36, and 38) predominantly occur in the Mesoproterozoic Wudang
group, which is divided into three lithofacies: the upper and lower
metapyroclastic rock formation and sedimentary rocks with a
lithologic association of schist, gneiss, metasandstone, metatuff,
and other lithologies. The soft rock and well-developed faults,
along with intense tectonic activity, make this region prone to
landslides. Additionally, there are also a few unstable areas (No.
25, 26, 27, 28) in the south of the study area, located within
Cambrian strata. The exposed lithology is predominantly slate and
limestone, which possess a relatively hard rock texture. However,
the dense watershed and steep slopes, as well as the strong
erosional forces of the terrain, exacerbate the landslide hazard in
this region.

According to the optical images, there are a few deformation
areas (No. 2 and 5) caused by infrastructure construction in the
study area, as well as some open-pit mines (No. 1, 8, and 33) leading
to mining-induced subsidence. However, construction and open-
pit mining areas are generally located in the region with gentle
terrain and hence, unlikely to generate landslides. Nevertheless,
construction andmining activities have a large impact on the ground
surface, which requires continuous monitoring of these areas and
their surroundings.There are many abandoned underground mines
in the south of Fang County, which are identified as potential
landslide areas (No. 20, 21, and 38). Although mining areas are
backfilled before they are abandoned, subsidence is inevitable under
the action of gravity. In addition, these underground mines are
covered with steep slopes; thus, subsidence would contribute to
the generation of landslides. In addition, the identified hazard

areas include some terraced fields (No. 3, 4, 9, 12, 13, 17, 24,
and 32). Because of large topographic fluctuations, there are
few farmland areas available for cultivation in Fang County. As
such, terraced fields are considered more suitable for local crop
cultivation, as the root system of crops can fix water and soil.
However, the relatively large gradient of terraced fields indicates
that irrigation will remove soil and water and increases the risk
of landslides; therefore, special research attention is required in
these areas.

To validate the effectiveness of the method proposed in this
paper, we utilized the commonly used Random Forest method to
extract and map the landslide susceptibility of the study area. The
selected factors were the same as the geological factors used in
our method, including slope rate, distance to watershed and faults.
The resulting landslide susceptibility map is shown in Figure 10.
Since only three factors were used for mapping, it can be
observed that the areas with very high and above susceptibility
are closely concentrated around steep mountain slopes and water
bodies. Moreover, the landslide susceptibility map provides a
raster result of the susceptibility level across the entire study
area, while our method yields specific landslide locations, which
are more targeted and can significantly improve the efficiency of
subsequent field survey. Quantitatively speaking, all 32 potential
landslides identified using our method are located within the very
high and extremely high susceptibility zones obtained from the
Random Forest results, which further supports the effectiveness of
our method.

It should be noted that our research focuses on the recognition
and extraction of latent landslide areas rather than existing
landslides because once landslides occur, decorrelation will
appear on the interferograms, resulting in null values on the
deformation rate map. Moreover, while optical images can
readily distinguish surface differences in landslides that have
already occurred, they are less effective in identifying latent
landslides. Consequently, this study places a particular emphasis
on recognizing latent landslide hazards. Smart measurement
technologies, however, offer significant advantages in this regard.
They provide real-time data, enhance the accuracy and precision
of measurements, and enable the implementation of early
warning systems, ultimately improving safety and response
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FIGURE 9
Detailed images of each suspected landslide hazard area.

times in landslide-prone areas (Fang et al., 2024a; Fang et al.,
2024b). These technological advancements serve as a valuable
supplement to the data collected by landslide disaster

management departments, offering scientific support for
future disaster prevention strategies and decision-making
processes.
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FIGURE 10
Landslide susceptibility map using random forest method.

5 Conclusion

Time-series InSAR is an invaluable method for remotely
identifying and monitoring landslide disasters, which pose
significant threats to human life and property. In this study, we
employed the InSAR technique in conjunction with geological
data to identify latent landslide hazards. By utilizing 10 scenes of
ALOS-2 data of Fang County, we generated a deformation rate map
of the study area. Our analysis revealed that the basin located in
the central part of the study area exhibited relative stability, whereas
localized subsidence was observed in the northern and southern
regions, with a maximum subsidence rate of −70.6 mm/year. By
overlaying the deformation rate map with optical images, we
delineated suspected latent landslide areas. Furthermore, we created
a slope map and watershed buffer map using high-precision DEM
data, and extracted a fault buffer map from archived geological
maps. These maps were then integrated to analyze the suspected
landslide areas and identify the final potential landslide hazard
zones, excluding those areas that are not geologically susceptible to
landslides. Our results demonstrated that the integration of InSAR
and geological data can enhance the efficiency and accuracy of
the result. Verification through geological data and optical images
confirmed the effectiveness of our proposed method in identifying
latent landslides.

In this research, we only use ascending SAR data, which leads
to many null pixels in InSAR results, as certain regions may be
obscured by topographic features or other obstacles when viewed
from this single angle. Joint processing of both ascending and
descending SARdatawill be adopted in a follow-up study.Due to the
different observation geometries of ascending and descending SAR
data, they capture different components of ground deformation. By
combining these two types of data, we can improve the coverage of
InSAR results and obtain a more comprehensive understanding of
the deformation patterns and their underlying causes. Meanwhile,

longer time-series data will enable us to accurately track the long-
term evolution of landslides, which is also the work we plan to
carry out in our future study. Meanwhile, we will also strive to
establish closer cooperation with the local authorities to obtain
real field survey data on the scope of landslides, in order to better
validate our results. These efforts will enable a more comprehensive
identification and extraction of latent landslide hazards in the
study area.
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