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This study introduces applies a Transformer-based method to correct daily
Sea Surface Temperature (SST) numerical forecasting products, addressing
persistent challenges in short-term SST prediction. The proposed approach
utilizes a Transformer model architecture to capture complex spatiotemporal
dependencies in SST error fields, enabling efficient prediction of forecast
errors across multiple time scales. The method was applied to SST hindcast
data from the First Institute of Oceanography (FIO-COM) ocean forecasting
system, focusing on the northwestern Pacific region. Results demonstrate
significant improvements in forecast accuracy, with Root Mean Square Error
(RMSE) reductions ranging from 38.8% for day 2 forecasts to 17.6% for day
5 forecasts. Spatial analysis reveals the method’s robust performance across
diverse oceanographic regimes, including complex coastal and shelf regions
where traditional models often struggle. The Transformer model showed
the ability to capture and reproduce error patterns, effectively addressing
both large-scale systematic biases and smaller-scale regional variations. The
consistent performance across different forecast horizons suggests potential
for extending the reliable forecast range of SST predictions. The findings have
important implications for applications requiring precise SST forecasts, including
operational oceanography, marine weather forecasting, and coupled ocean-
atmosphere modeling.

KEYWORDS

sea surface temperature, transformer model, numerical forecasting, error correction,
machine learning

1 Introduction

SST plays a pivotal role in the Earth’s climate system, serving as a fundamental
parameter in the complex interactions between the ocean and atmosphere (Deser et al.,
2010). Accurate SST forecasts, particularly within the short-term range, are crucial
for a wide array of applications, including weather prediction, marine operations,
fisheries management, and coastal ecosystem monitoring (Schade, 2000; Planque et al.,
2003; Kessler et al., 2022). The importance of daily SST forecasts has grown
significantly in recent years, driven by the increasing demand for high-resolution,
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timely oceanographic information in various sectors
(Xie et al., 2024; Patil and Deo, 2017).

Current SST numerical forecasting methods for short-term
predictions have evolved continuously, leveraging complex ocean
models that incorporate a diverse array of physical processes
(Chassignet et al., 2009; Wei et al., 2016; O’dea et al., 2012).
These include heat fluxes at the air-sea interface, three-dimensional
ocean currents, vertical and horizontal mixing processes, and
thermohaline stratification (Busecke et al., 2024; Ferrari et al.,
2008; Bennis et al., 2020; de et al., 2020). The accuracy of
these models has been greatly enhanced by advancements in
computational resources, allowing for higher spatial and temporal
resolutions, as well as the inclusion of more sophisticated physical
parameterizations (Zhu and Zhang, 2019). Furthermore, the
integration of improved data assimilation techniques, such as
ensemble Kalman filters and variational methods, has boosted
forecast skill by optimally combining observational data with
model predictions (Belyaev et al., 2021). Recent developments also
include the incorporation of coupled atmosphere-ocean models
and the assimilation of satellite-derived SST data, leading to
more accurate representations of air-sea interactions and improved
forecast accuracy (Miller et al., 2017; Manda et al., 2005).

Despite significant advancements, achieving high-accuracy
daily SST forecasts within the short-term range using numerical
models remains challenging (Barton et al., 2021). Persistent
issues include model biases, insufficient spatial resolution to
capture mesoscale features, and uncertainties in air-sea flux
parameterizations (Fyfe et al., 2021). The complex dynamics of
coastal regions and the impact of sub-mesoscale processes pose
significant difficulties (Stanev et al., 2020). While the integration
of satellite data and in-situ observations through advanced data
assimilation techniques has improved forecast accuracy, gaps
in observational coverage and data quality issues continue to
limit progress (de et al., 2022). Addressing these challenges requires
ongoing research in model physics, data assimilation methods, and
observational techniques to enhance the reliability of daily SST
forecasts.

In recent years, machine learning (ML) techniques have
shown great promise in complementing and enhancing traditional
numerical weather prediction (NWP) methods for SST forecasting
(Sarkar et al., 2020). ML approaches offer several potential
advantages, including the ability to capture complex, non-linear
relationships in oceanic and atmospheric processes (Ali et al.,
2021). These methods can efficiently assimilate and process vast
amounts of heterogeneous data from satellites, buoys, and numerical
models (Elafi et al., 2024; Zrira et al., 2024; Yu et al., 2020;
Shao et al., 2021). Additionally, ML algorithms have demonstrated
skill in reducing systematic biases and improving forecast accuracy
across various temporal and spatial scales. The integration of
ML with physics-based models through hybrid approaches shows
particular promise in leveraging the strengths of both paradigms,
potentially leading to more accurate and computationally efficient
SST forecasts (Fei et al., 2022).

The Transformer model, introduced by Vaswani (2017), has
advanced the field of natural language processing and demonstrates
promising potential for SST forecasting (Alerskans et al., 2022).
This architecture offers several advantages, including bias correction
capabilities, an attention mechanism for identifying relevant

patterns, the ability to capture long-range dependencies, efficient
parallelization, and scalability (Dai et al., 2024; Zou et al.,
2023). Recent advancements in interpretability techniques further
enhance its potential for providing insights into SST dynamics
(Zhou and Zhang, 2023). Meng and Hakim (2024) utilized a
Transformer-based model to reconstruct the upper ocean of the
tropical Pacific through online data assimilation, demonstrating
superior performance over traditional methods in handling sparse,
high-noise observational data and improving forecast accuracy.
Agabin et al. (2024) proposed anNLP-inspired algorithm, combined
with high-fidelity ocean simulations, capable of reconstructing
missing SST data with an RMSE of ≲0.1K. Additionally, Goh et al.
(2024) introduced a deep learning-based Masked Autoencoder
(MAE)method, which efficiently fillsmissing data by learning ocean
frontal features, significantly reducing reconstruction errors and
improving computational efficiency by three orders of magnitude
compared to traditional methods.

The present study proposes a Transformer-based method for
correcting daily SST numerical forecasts, with the aim of enhancing
accuracy and reliability. This approach involves training the model
on historical numerical hindcast SST datasets in con-junction with
corresponding observational data.The evaluation will be conducted
using comprehensive metrics across extended time series and case
studies. In the following sections, we will detail the method,
including the data preprocessing steps, model architecture, training
procedure, and evaluation metrics. We will then present the results
of our experiments, discuss the implications of our findings, and
conclude with suggestions for future research directions in this
promising field of ML-enhanced SST forecasting.

2 Data and method

2.1 Data

The SST hindcast data utilized in this study is derived
from an advanced ocean forecasting system specifically designed
for the 21st-Century Maritime Silk Road (Qiao et al., 2019).
This system (FIO-COM) was developed by the First Institute of
Oceanography,Ministry of Natural Resources, China, and integrates
complex interactions between waves, tides, and circulation patterns,
providing a comprehensive representation of marine processes.
Its operational launch on 10 December 2018 represented a
advancement in China’s ability to model and forecast oceanic
conditions.

The dataset employed in this research spans from the system’s
inception date, 10 December 2018, to 31 December 2023, providing
a comprehensive temporal range for daily SST forecasting error
correction analysis. The hindcast process within this system is
executed daily at 12:00 UTC, ensuring a consistent and continuous
data stream. Data up-dates occur at 3-h intervals, with a spatial
resolution of 0.1 ° × 0.1 °. Based on this high-resolution output, daily
SST forecasts have been computed.

While the model is capable of global coverage, our study
strategically focuses on the northwestern Pacific region, defined by
the coordinates 100°E to 145°E and 0°S to 45°N. This delineation
optimizes computational efficiency and resourcemanagement while
encompassing an area of critical importance for China. The
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selected region includes all Chinese coastal areas, characterized by
intense marine economic activities, where accurate environmental
forecasting is crucial for safe and efficient operations.

For observational comparison, we employ the Group for High
Resolution Sea Surface Temperature (GHRSST) global Level 4
SST analysis, produced daily on a 0.25-degree grid by remote
sensing systems. This product utilizes optimal interpolation (OI)
from multiple microwave (MW) sensors, including the Global
Precipitation Measurement (GPM) Microwave Imager (GMI),
the Tropical Rainfall Measuring Mission (TRMM) Microwave
Imager (TMI), NASA’s AdvancedMicrowave Scanning Radiometer-
EOS (AMSRE), the Advanced Microwave Scanning Radiometer 2
(AMSR2) onboard the GCOM-W1 satellite, and WindSat on the
Coriolis satellite.The through-cloud capabilities of these microwave
radiometers provide a robust and comprehensive representation of
global SST patterns.

To maintain consistency with the numerical forecasting
products, we interpolate the observed SST data to match the grid
of the forecasting SST. This allows for direct comparison and error
calculation by subtracting the observed SST from the corresponding
fore-casted SST. The resulting error fields for each forecasting case
form the foundation for SST error training and evaluation.

The accuracy of numerical SST forecasting at different
prediction horizons (day 2 to day 5) is influenced bymultiple factors,
including inaccuracies in the representation of physical processes,
errors in air-sea fluxes, and uncertainties inmodel initial conditions.
However, our investigation reveals a significant correlation between
errors at different forecasting periods and those present in the initial
conditions. This observation motivates our approach to construct a
relationship between model errors on the first day and fore-casting
errors at subsequent time steps using transformer-based methods.

After training on historical datasets, we develop transformer-
based models capable of predicting forecasting errors for days 2–5
based on the errors observed on day 1. Given that the completion
of a full forecast typically lags real-time by approximately 1 day,
the model errors for day 1 can be calculated using available
observations. Subsequently, the predicted errors can be subtracted
from the numerical forecasting products, thereby enhancing the
model’s forecasting accuracy for daily SST across different prediction
horizons. This method represents an approach to improving SST
forecasting accuracy by leveraging advanced machine learning
techniques in conjunction with traditional numerical modeling.
The integration of these methods is expected to effectively enhance
our ability to predict SST patterns in the northwestern Pacific
region, further supporting maritime activities and environmental
monitoring in the area, delivering significant practical value.

2.2 Method

2.2.1 SST error prediction transformer methods
This study proposes a Transformer-based prediction model

specifically de-signed for SST error fields. Our approach builds
upon Zhou’s model for analyzing three-dimensional ocean thermal
distributions (Zhou and Zhang, 2023) and Kang’s method for
correcting wave significant forecasting errors (Kang et al., 2024).
The adaptedTransformermodel primarily focuses onpredicting SST

FIGURE 1
The workflow of the SST error prediction.

error fields at different forecasting periods by leveraging the global
feature extraction capabilities of the Transformer architecture.

The SST error prediction system consists of four independently
trainedTransformermodels, with eachmodel specifically trained for
predicting errors at a different forecast day (Figure 1). We trained
Model one to predict day 2 errors,Model two for day 3 errors,Model
three for day 4 errors, and Model four for day 5 errors, with all
models using day 1 error fields as input. Each model was trained
separately with its corresponding target day’s error data to optimize
performance for that specific forecast period. After prediction, the
error fields generated by these four models are subtracted from their
respective day’s SST forecasts to obtain the corrected SST fields.
This distinct model approach ensures that each forecast day’s unique
error characteristics are captured by a dedicated model.

The SST error prediction and correction capability is grounded
in the core Trans-former model, which maintains a consistent
architectural structure. This core Transformer model employs
an encoder-decoder framework that consists of two overlapping
decom-position modules, two embedding modules, an encoder
module, a decoder module, and a linear output module (Figure 2a).

To address the issue of information fragmentation between
the edges of patches and adjacent patches, which affects the
overall continuity of SST predicted error fields, overlapping
decompositionmodules are positioned prior to the embedding layer,
as depicted in Figure 2b.Theoperation of thesemodules commences
with the acceptance of the input SST error field for day 1, represented
as Xin

T in×N lat×N lon
which are dimensioned at Tin ×Nlat ×Nlon = 1×

225× 225. Subsequently, each set of inputs is partitioned using a
sliding strategy from left to right and top to bottom, resulting in N
fixed-size patchesXin

T in×N×(h×w)
, whereN = (Nlat

h
) × (Nlon

w
) represents

the total count of decomposed patches, each patch measures h×w =
9× 9 (where h and w represent the number of grid points in the
height and width of the overlapping blocks, respectively), with an
overlap size of three between the patches.

Two embedding modules transform the decomposed inputs
Xin
T in×N×(h×w)

into more expressive feature representations by
employing various embedding techniques, including linear, time,
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FIGURE 2
Architecture of the Transformer model for SST error prediction. (a) Model Overview: Shows the encoder-decoder structure. (b) Decomposition with
Overlap modules: Segments the SST error field into patches. (c) Embedding Module: Adds linear, spatial, and temporal embeddings. (d) Attention
Mechanism: Uses multi-head attention for spatial and temporal patterns.

and space embeddings (Figure 2c), which capture complex patterns
across both time and space.

The linear embedding transforms the inputs into more
expressive feature vectors X l

T in×N×d
, with the embedding

dimension set to d = 512. The formula for the linear embedding
is shown in Equation 1:

y =Wx + b (1)

Where x is the decomposed input data, W is the weight matrix for
the linear transformation, and b is the bias vector.

In the time embedding process, a zero-initialized positional
encoding matrix PEtime = X

t
T in×1×d

is first initialized based on the
shape of the input data, with its length corresponding to the
temporal dimension Tin. Subsequently, the temporal positional
encoding function is applied to encode the data at each time step,
and the resulting encoded values are filled into the corresponding
positions of the temporal positional encoding matrix. The formulas
for temporal positional encoding and spatial attention are shown in
Equations 2, 3, respectively.

PE(timepos,2i) = sin(
timepos

10000
2i
d

) (2)

PE(timepos,2i+ 1) = cos(
timepos

10000
2i+1
d

) (3)

Where timepos represents the position of the current data in the
temporal dimension for the 2i or 2i+ 1 region, d = 512 is the feature
dimension, 2i represents the even dimensions of the regional data,
and 2i+ 1 represents the odd dimensions.

In the space embedding process, an embeddingmatrixPEspace =
Xs
1×N×d is defined, where N represents the number of spatial

positions, and d = 512 denotes the dimension of the embedding
vector. The embedding matrix PEspace is initially generated by
randomly sampling from a uniform distribution within the interval
[−√k,√k], where k = 1

d
. During each training iteration, PEspace is

updated according to the learning rat η and the gradient of the loss
function L. After backpropagation, PEspace gradually converge to
the optimal solution, effectively capturing spatial dependencies.The
update formula is shown in Equation 4:

PE(t+1)space = PE
(t)
space − η

∂L
∂PE(t)space

(4)

where ∂L
∂PE(t)space

is the gradient of the loss function L with respect to
the embedding vector.
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Upon receiving the high-dimensional data vectors XT in×N×d =
X l
T in×N×d
+Xs

1×N×d +X
t
T in×1×d

, The encoder module commences its
analysis (Figure 2d). First, XT in×N×d is transformed into XT

T in×Nt ,
where Nt = N × d. Then, temporal self-attention is computed using
the attention formula. Next, the adjusted data XT

T in×Nt is mapped
to Xs

N×N s ,whereNs = T in × d, and spatial self-attention is computed
using the attention formula, ultimately generating a feature matrix
through a linear transformation. After undergoing n = 4 iterations
of feature extraction within the encoding blocks, the final feature
matrix Xencode−out

T in×N×d
is produced and passed to the subsequent

decoder. The attention formula is shown in Equation 5:

Attention(Q,K,V) = SoftMax(
QKT

√d
)V (5)

The vectors Q, K, and V are the query, key, and value vectors
generated along the spatiotemporal dimension, respectively, with
Q = K = V, and d = 512 is the feature dimension ofQ  and K.

The decoder module processes the feature matrix Xencode−out
T in×N×d

generated by the encoder for analysis. In this process, the decoder
uses the encoder’s output as both the query (Q) and the key (K),
while the value (V) is computed from the attention calculation
based on the decoder’s input. By applying function 5, the decoder
effectively integrates the rich feature information extracted by
the encoder and passes it to the feedforward neural network for
further refinement. After detailed processing through four decoder
blocks and the linear output module, the resulting SST error field
Xout
Tout×N lat×N lon

maintains consistency in both spatial and temporal
resolution with the initial input SST data.

2.2.2 Model training strategy
For model training, we utilized hindcast datasets spanning

from 10 December 2018, to 31 December 2022, with datasets
from 1 January 2023, to 31 December 2023, reserved for testing.
This approach was chosen to systematically evaluate the method’s
generalizability and universal applicability, specifically assessing
its potential for implementation in daily operational forecasting
corrections. Land points are excluded from the calculations,
enhancing the model’s ability to capture the spatiotemporal
variability of SST errors specifically in oceanic environments. This
focused approach improves the overall effectiveness of the analysis
in marine settings.

TheHuber loss functionwas employed to quantify the difference
between transformer-predicted and actual SST forecasting errors.
This loss function is defined in Equation 6:

Huber loss =
{{
{{
{

1
2
X2, i f |X| ≤ θ

θ(|X| − 1
2
θ), i f |X| > θ

(6)

where, X represents the residual error, calculated as the true value
minus the predicted value. For SST prediction, X is in units of
degrees Celsius (°C). The parameter θ = 0.5 is a threshold used to
distinguish between small and large errors, optimizing the model’s
performance. The Huber loss function provides robustness against
outliers while maintaining sensitivity to smaller errors.

Model optimization involved several key strategies. We
implemented weight sharing for consistency and stability across the
four Transformer models. The Adam optimizer was employed with

an initial learning rate of 1.5× 10−4 , a batch size of 1, an attention
dimension of 256, and a feedforward network dimension of 512.
To prevent overfitting, we implemented Dropout regularization
with a rate of 0.2 and early stopping, halting training if validation
performance did not improve over four consecutive epochs.

Model accuracy was assessed using RMSE on the
validation set after each training epoch. The RMSE function is
defined in Equation 7:

RMSE = 1
Tout

Tout

∑
t=1
√ 1
Nlat ×Nlon

Nlon

∑
i=1

Nlat

∑
j=1
(Xout

t.j.i −X
tg
t.j.i)

2 (7)

where, Xtg represents the target predictand field, and Xout denotes
the output fields. Tout refers to the forecast time steps, Nlat and
Nlon  denote the number of grid points in the latitude and longitude
directions, respectively.

This comprehensive approach to SST error prediction,
combining advanced Transformer architectures with rigorous
training and evaluation strategies, aims to improve the accuracy
and reliability of SST forecasts, addressing key challenges in
oceanographic modeling and prediction.

3 Results

Our study aimed to address the persistent challenges in short-
term SST forecasting through the application of a Transformer-
based correction method. The results presented here demonstrate
significant improvements in forecast accuracy across various
temporal and spatial scales, addressing key limitations of traditional
numerical forecasting approaches.

3.1 Evaluation of correction effects

Figure 3 presents a comparison of the original FIO-COM
and corrected SST forecasts for the year 2023, illustrating the
improvements achieved through our Transformer-based correction
method. This analysis addresses a primary challenge in SST
forecasting: maintaining accuracy over different forecast horizons
while adapting to varying oceanic conditions. Figure 3a displays the
time series of spatially-averaged RMSE for forecast intervals from
day 2 to day 5, revealing several insights into the performance of
our correctionmethod.Notably, the corrected forecasts demonstrate
consistently lower RMSE values compared to the original FIO-COM
forecasts across all forecast periods, underscoring the robustness
of our Transformer-based approach in mitigating systematic biases
inherent in the numerical model. This persistent improvement
is particularly significant given the complex and dynamic nature
of oceanic systems, which often pose substantial challenges to
traditional forecasting methods.

The temporal variability observed in the RMSE for both original
and corrected forecasts throughout the year reflects the dynamic
nature of oceanic conditions and their impact on forecast complexity.
This adaptability is crucial for real-world applications, where oceanic
states can change rapidly and unpredictably. As anticipated, the RMSE
generally increases with the forecast horizon for both original and
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FIGURE 3
Comparison of original FIO-COM and corrected SST forecasts in 2023. (a) Time series of spatially-averaged RMSE (°C) for day 2 to day 5 forecast
intervals (Dashed lines represent corrected RMSE, while solid lines indicate original FIO-COM RMSE). (b) RMSE skill difference between corrected and
original SST forecasts (negative values indicate effective correction, while positive values suggest ineffective correction). Different colors represent
forecasting results for various lead times. The red dots indicate a specific hindcast case initiated at 1200 UTC 4 January 2023, selected for detailed
case analysis.

corrected forecasts, aligning with the growing uncertainty in longer-
range predictions and the compounding effects of model errors over
time. However, the consistent performance of our correction method
across all horizons suggests its efficacy in addressing both short-term
and long-term forecast challenges, a significant advancement in SST
prediction capabilities.

Of particular note is the method’s performance during periods of
extremeevents or anomalousoceanic conditions, evidencedby several
pronounced RMSE spikes in the time series. Our correction method
demonstrates effectiveness during these critical periods, reducing the
magnitude of these error spikes. This capability is of importance for
improvingforecastreliabilityduringextremeoceanicevents,whichcan
have substantial impacts onmarine ecosystems, weather patterns, and
human activities in coastal regions. Furthermore, the RMSE exhibits
discernible seasonal patterns, with generally higher errors observed
during the summermonths (approximately July-August).This pattern
aligns with the known challenges of forecasting SST during periods of
increased stratificationandhigher variability characteristic of summer
months, further highlighting the adaptive nature of our Transformer-
based approach.

Figure 3b provides additional insights into the effectiveness
of our correction method by illustrating the RMSE skill
difference between the corrected and original SST forecasts. The
predominantly negative values across all forecast horizons indicate
a persistent reduction in forecast errors throughout the study
period, demonstrating the robust and consistent performance of our
Transformer-based method. The magnitude of this improvement is
commonly falls below 0.1°C, particularly for day 2 forecasts. The
temporal consistency of the improvement, maintained throughout
the year with no prolonged periods of degraded performance,
is crucial for operational forecasting systems, ensuring reliable
enhancement of SST predictions across all seasons.

Notably, the largest improvements often coincide with periods
of higher original RMSE, indicating that our method is most
impactfulwhentheoriginal forecastsencounterdifficulties,potentially
due to complex oceanographic conditions or extreme events.
This characteristic is particularly valuable, as it suggests that
the Transformer-based approach can provide the most significant
benefits during the most challenging forecasting scenarios. While
rare instances of slight negative RMSE skill differences occur,
indicatingminor performance degradations, these are infrequent and
small in magnitude compared to the overall improvements. This
robustness further validates the reliability and operational viability
of our correction method.

The observed improvements align with the theoretical
advantages of machine learning techniques in SST forecasting,
as discussed in our introduction. The Transformer’s ability to
capture complex spatiotemporal dependencies translates effectively
into tangible forecast enhancements, complementing physics-
based models in representing various oceanic processes. This
analysis demonstrates that our Transformer-based method not
only improves SST forecasts consistently but also adapts to varying
oceanographic conditions throughout the year.

The spatial variability of RMSE for daily SST forecasts from
day 2 to day 5 provides crucial insights into the performance
of our Transformer-based correction method across diverse
oceanographic regimes (Figure 4). This comprehensive analysis
allows for a detailed assessment of the method’s efficacy in
addressing spatial heterogeneity in forecast errors, a key challenge
in SST prediction.

In the original FIO-COM forecasts (Figures 4a–d), areas
of higher uncertainty are evident, particularly in coastal and
shelf regions, which exhibit notably higher RMSE values
compared to open ocean areas. This spatial variability in forecast
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FIGURE 4
Spatial variability of RMSE (°C) for daily SST forecasts from day 2 to day 5. (a–d) FIO-COM forecasts; (e–h) Post-corrected forecasts; (i–l) RMSE
difference between corrected and original forecasts. This figure compares SST forecast accuracy before and after correction.

TABLE 1 Average RMSE (°C) comparison between FIO-COM and
corrected forecasts for day 2 to day 5, with post-correction
improvement percentages.

Forecast interval day2 day3 day4 day5

FIO-COM(°C) 0.49 0.53 0.56 0.59

Corrected (°C) 0.30 0.38 0.44 0.48

Improvement (%) 38.8 27.7 21.6 17.6

accuracy underscores the inherent challenges in modeling regions
characterized by complex bathymetry and intricate coastal
processes. A clear trend of increasing RMSE values is observed
as the forecast horizon extends from day 2 to day 5, reflecting the
growing uncertainty associated with longer-range predictions. This
progressive degradation of forecast skill aligns with the expected
accumulation of errors in numerical models over time.

The Transformer-predicted error variability (Figures 4e–h)
demonstrate the model’s capacity to capture and reproduce complex
error patterns. These predictions closely mirror the original FIO-
COM forecast errors across all forecast days, indicating the model’s
success in capturing both large-scale systematic biases and smaller-
scale regional variations. The evolution of predicted error patterns
from day 2 to day 5 closely follows that of the original forecasts,
suggesting that the Transformer model effectively captures not

only spatial but also temporal dependencies in the error structure.
Notably, the model exhibits comparable skill in predicting error
patterns in both open ocean and coastal regions, demonstrating
its versatility in handling diverse oceanographic regimes. This
capability addresses a key limitation of traditional SST forecasting
methods, namely, the challenge of accurately representing processes
across different spatial scales.

TheRMSEvariability of the corrected SST forecasts (Figures 4i–l)
provides critical insights into the effectiveness of the Transformer-
based correction approach. A marked decrease in RMSE values
is observed throughout the domain across all forecast days,
indicating the method’s success in addressing both systematic biases
and region-specific errors in the original FIO-COM forecasts.
The correction appears particularly effective in coastal and shelf
regions, where the original forecasts showed the highest errors. This
improvement is especially significant given the known challenges
in modeling these complex areas. While improvements are evident
across all forecast days, the magnitude of error reduction appears to
decrease slightly from day 2 to day 5, aligning with the increasing
uncertainty inherent in longer-range predictions and suggesting
potential areas for future refinement of the method.

This spatial analysis demonstrates the Transformer-based
method’s robust performance in improving SST forecast accuracy
across diverse oceanographic conditions and forecast horizons.
By effectively capturing and correcting complex error patterns,
particularly in challenging coastal anddynamically active regions, this
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FIGURE 5
Temporal evolution of median SST forecast errors from the original FIO-COM (a) and after bias correction (b) throughout 2023. Different colored lines
indicate varying forecast lead times.

FIGURE 6
Temporal evolution of correlation coefficients throughout 2023 comparing (a) FIO-COM forecast SST with observational data and (b) bias-corrected
SST with observations at various forecast lead times (colored lines). The analysis quantifies the model’s predictive skill before and after bias correction
across multiple temporal scales.

approach addresses several key limitations of traditional numerical
SST forecasting methods. The results have significant implications
for various applications requiring accurate SST predictions, including
potential improvements in coupled ocean-atmosphere models and
enhanced decision support for marine operations.

A quantitative assessment of the Transformer-based correction
method’s effectiveness across different forecast horizons is

provided through a comparative analysis of average RMSE
between the original FIO-COM and corrected forecasts for day
2 to day 5 (Table 1). This numerical representation demonstrates
a substantial reduction in RMSE across all forecast intervals,
with the most pronounced improvement observed in the day 2
forecast, exhibiting a 38.8% reduction in RMSE. Such a significant
enhancement in short-term forecast accuracy has immediate and
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FIGURE 7
Spatial error variability (Units: °C) in daily SST forecasts initiated at 1200 UTC 4 January 2023. (a–e) Original FIO-COM forecast errors from day 1 to day
5; (f–i) Transformer-predicted error patterns; (j–m) Corrected SST errors after Transformer adjustment.

TABLE 2 RMSE (°C) comparison of daily SST forecasts among the
original FIO-COM, day1 error correction, and retrieved-error correction
methods for the case initiated at 1200 UTC 4 January 2023.

Forecast interval (hour) day2 day3 day4 day5

FIO-COM(°C) 0.63 0.64 0.65 0.67

Corrected with Day1 (°C) 0.32 0.40 0.46 0.50

Corrected with retrieving errors
(°C)

0.28 0.37 0.42 0.46

far-reaching implications for applications necessitating precise near-
term SST predictions, including operational oceanography and
short-term marine weather forecasting.

While the improvement remains noteworthy across all forecast
days, a gradual decrease in the percentage of improvement is
observed for longer forecast intervals. Notably, day 5 forecasts still
exhibit a 17.6% reduction in RMSE, a considerable improvement
given the inherently increased uncertainty associated with longer-
range predictions. This persistent enhancement, even at extended
forecast horizons, underscores the robustness of the Transformer-
based method in capturing and correcting systematic errors across
multiple time scales.

Figure 5 presents a comprehensive temporal analysis of
median SST forecast errors throughout 2023, demonstrating the
substantial improvements achieved through our Transformer-
based correction method across different forecast horizons. The
original FIO-COM forecasts (Figure 5a) exhibit significant error
magnitudes frequently exceeding 0.05°C, with notable temporal
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variations across the year. After applying our Transformer-based
correction (Figure 5b), we observe remarkable enhancements
in forecast accuracy across all temporal scales. The corrected
forecasts demonstrate significantly reduced error magnitudes,
consistently maintaining values within ±0.03°C. Most notably, the
correction method effectively mitigates the oscillations present in
the original forecasts while preserving essential temporal variability
patterns, indicating its robust capability to capture and correct
both systematic biases inherent in the numerical model. This
improvement is particularly evident in shorter-term predictions,
where the corrected forecasts exhibit remarkable stability and
consistency throughout the forecasting period.

Figure 6 presents a temporal analysis of correlation coefficients
betweenforecastedandobservedSSTthroughout2023,demonstrating
the effectiveness of our Transformer-based correction method.
While the original FIO-COM forecasts (Figure 6a) show moderate
to strong correlations with notable temporal fluctuations, the
Transformer-corrected forecasts (Figure 6b) maintain consistently
higher correlations across all temporal scales. This improvement
persists across various oceanic conditions and seasonal transitions,
though both models exhibit relatively reduced performance
during summer months due to increased ocean stratification and
variability. The consistent enhancement in forecast accuracy across
different temporal scales validates the operational viability of our
approach, while also identifying summer predictions as an area
for future optimization. These results quantitatively demonstrate the
method’s capacity to improve SST forecast reliability for operational
oceanographic applications.

3.2 Case evaluation of correction effects

While theRMSE effectively quantifies the overall performance of
the FIO-COM numerical forecasting and subsequent transformer-
based corrections, it does not provide information about the
directional bias of the forecasting error, specifically whether
the forecast systematically overestimates or underestimates actual
observations. This directional bias, which we refer to as the “phase
characteristic” of the forecasting error, is crucial for understanding
the nature of forecast inaccuracies. To gain a more comprehensive
understanding of the forecasting effectiveness, additional error
statistical metrics and further analysis of error distributions are
necessary to capture these directional tendencies in forecast errors.

To provide a more detailed insight into the performance of
our correction method, an in-depth case study was conducted,
focusing on a forecast initiated at 1200 UTC 4 January 2023. This
specific case was chosen as it demonstrates a clear and pronounced
correction effect, allowing for a more distinct visualization of the
method’s capabilities. While this case exhibits better-than-average
performance, it serves to highlight the potential of our approach
under favorable conditions. This case study examines the spatial
and temporal characteristics of the correction effects at a higher
resolution, offering insights into the method’s performance under
specific oceanic conditions. A comprehensive visualization of the
spatial error variability for this case study (Figure 7) illustrates how
the Transformer-based method performs in correcting SST forecast
errors across different regions and forecast horizons.

Figure 7a illustrates the spatial distribution of FIO-COMmodel
forecast errors at day 1, which serves as input for the transformer
model to predict forecast errors from day 2 to day 5. The original
FIO-COM forecast errors (Figures 7b–e) exhibit intricate spatial
patterns of over- and under-prediction across the study domain,
particularly pronounced in coastal areas, near strong currents, and
in regions of known mesoscale activity. A clear trend of increasing
error magnitude is observed as the forecast horizon extends from
day 2 to day 5, consistent with the expected degradation of forecast
skill over time. Certain regions consistently show larger errors across
all forecast days, likely indicating areas where the original model
struggles to capture local dynamics accurately.

The Transformer-predicted error patterns (Figures 7f–i)
demonstrate themodel’s remarkable capability to capture the overall
spatial structure of forecast errors.The high similarity between these
predicted patterns and the original FIO-COM errors attests to the
model’s feature extraction and attention mechanisms.The predicted
error patterns show sensitivity to both large-scale systematic biases
and smaller-scale regional variations, indicating the model’s ability
to correct errors across different spatial scales. Furthermore, the
logical evolution of predicted error patterns from day 2 to day
5 suggests that the model captures both spatial and temporal
dependencies in the error structure.

The residual errors after applying the Transformer-based
correction (Figures 7j–m) provide critical insights into the method’s
effectiveness. A marked decrease in error magnitude is observed
across the entire domain, with notable improvements in areas that
initially had the largest errors. The correction addresses large-
scale biases while retaining small-scale variability. Although greatly
reduced, some error patterns persist in the corrected forecasts,
particularly at longer lead times, likely representing the limits of
predictability or indicating areas for potential further improvement.
Notably, the correction appears particularly effective in coastal
and shelf regions, addressing a key challenge in SST forecasting.
It's worth noting that differences between the model’s coastline
representation and the observed coastline, due to model resolution
limitations, can generate systematic errors that our bias correction
mechanism aims to identify and address.

This detailed spatial analysis demonstrates the Transformer-
based method’s ability to provide targeted, spatially-aware
corrections to SST forecasts. The model’s success in capturing
and correcting complex error patterns across different regions
and forecast horizons addresses many challenges associated with
traditional numerical SST forecasting methods, particularly in areas
of complex ocean dynamics. These results underscore the potential
of the Transformer-based approach to enhance the accuracy and
reliability of SST forecasts across diverse oceanographic conditions.

An interesting pattern emerges from the analysis of FIO-
COM forecast errors from day 1 to day 5 (Figures 7a–e), revealing
remarkable spatial similarity in error distribution patterns. This
observation led to an investigation of whether the day 1 forecast
errors could serve as a proxy for error correction in subsequent
days. We explored this hypothesis by implementing two correction
strategies: (1) directly applying day 1 errors to correct forecasts from
day 2 to day 5, and (2) using our transformer model to retrieve
specific forecast errors for each day.

Table 2 presents a quantitative comparison of RMSE (°C)
among three approaches: the original FIO-COM forecasts, forecasts
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FIGURE 8
Error variability comparison (°C) between FIO-COM forecasts and Transformer-predicted errors for the case initiated at 1200 UTC 4 January 2023.
Variabilities for day 2 to day 5 forecasts.

TABLE 3 Percentage of effectively corrected grid points in FIO-COM SST
forecasts initiated at 1200 UTC 4 January 2023, for forecast horizons
from day 2 to day 3.

Error range (°C) day2 day3 day4 day5

Error < − 1 98.9 96.3 94.3 94.8

−1 ≤ Error ≤ 1 78.9 74.1 73.0 69.6

Error > 1 97.8 95.6 92.1 89.9

corrected using day 1 errors, and forecasts corrected using
retrieved errors. The original FIO-COM forecasts show a gradual
increase in RMSE from 0.63°C at day 2°C to 0.67°C at day 5,
reflecting the expected degradation in forecast accuracy over time.
Both correction methods demonstrate substantial improvement
in forecast accuracy, with the transformer-based error retrieval
method consistently outperforming the direct day 1 error correction
approach. Specifically, while the day 1 error correction reduces
RMSE to 0.32°C at day 2°C and 0.50°C at day 5, the transformer
model achieves even lower RMSE values of 0.28°C and 0.46°C
for the same forecast days, respectively. The superior performance
of the transformer-based approach demonstrates its capability to
capture the temporal evolution of forecast errors more accurately
than the simple persistence assumption underlying the day 1 error
correction method. This advantage becomes particularly evident at
longer forecast horizons, where the transformer model maintains
better forecast skill through its ability to learn and adapt to the
dynamic nature of error patterns across different forecast lengths.

Theerrorvariability comparisonbetweenFIO-COMforecasts and
Transformer-predicted errors (Figure 8) provides a comprehensive

evaluation of the correction method’s effectiveness across different
forecast horizons.The scatter plots reveal that the Transformer-based
method is particularly adept at correcting larger FIO-COM errors, as
evidenced by the tighter clustering of points along the diagonal in the
first and third quadrants for larger error magnitudes. This pattern is
consistent across all forecast days (day 2 to day 5), highlighting the
method’s robustness in addressing significant forecast discrepancies.
Conversely, for smaller FIO-COM errors, the correction effects are
less pronounced, as indicated by the wider scatter of points near the
origin. However, this reduced effectiveness for minor errors is less
critical from an operational perspective, as these errors are already
within an acceptable range. Notably, the gradual increase in point
dispersion from day 2 to day 5 aligns with the decreasing percentage
improvement in RMSE observed in Table 1, reflecting the growing
challenges in error correction over extended forecast periods. Despite
this trend, the predominance of points in the first and third quadrants
across all forecast days demonstrates the model’s consistent ability to
provide corrections, even for longer-range forecasts. These findings
underscore the Transformer-basedmethod’s potential to enhance SST
forecast accuracy, particularly in scenarios with larger initial errors.

To provide a more rigorous quantitative assessment of the
correction effectiveness beyond visual scatter plot analysis,
we conducted a detailed statistical evaluation examining the
proportion of successfully corrected grid points across different
error magnitude ranges. Table 3 provides a granular analysis of
the correction effectiveness, categorizing the results based on the
magnitude of FIO-COM forecasting errors. For errors exceeding
±1°C, the correction method achieved remarkable effectiveness,
with success rates of 98.9% and 97.8% for negative and positive
errors respectively at day 2 forecasts. This high correction rate
persisted even at longer forecast horizons, maintaining above
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89% effectiveness through day 5. For moderate errors (−1°C ≤
Error ≤1°C), the method demonstrated solid performance with
correction rates of 78.9% at day 2, gradually decreasing to 69.6%
by day 5. These results quantitatively confirm the visual patterns
observed in the scatter plots and underscore the Transformer-
basedmethod’s particular strength in addressing significant forecast
deviationswhilemaintaining effectiveness for smaller errors, further
validating its potential for operational implementation in SST
forecasting systems.

4 Conclusion

This study demonstrates the effectiveness of a Transformer-
based method for correcting daily SST numerical forecasting
products through comprehensive quantitative analysis. Our method
achieved significant and consistent RMSE reductions compared to
the original FIO-COM forecasts, with improvements ranging from
38.8% for day 2 forecasts to 17.6% for day 5 forecasts. Spatial
analysis revealed robust performance across the study region, with
particularly strong improvements in coastal and shelf areas where
the original model exhibited higher RMSE values. The temporal
analysis further validated the method’s reliability, with correlation
coefficients between forecasted and observed SST showing sustained
improvement across all forecast horizons. Notably, for errors
exceeding ±1°C, the method achieved correction rates of 98.9% and
97.8% for negative and positive errors respectively at day 2 forecasts,
maintaining above 89% effectiveness through day 5.

The demonstrated improvements have significant implications
for operational oceanography and marine forecasting applications.
While the correction effectiveness gradually decreases for longer
forecast intervals, as evidenced by the reduction in improvement
from 38.8% to 17.6% between day 2 and day 5, the method
maintains substantial benefits throughout all analyzed periods.
These enhancements in forecast accuracy directly address key
limitations in current SST forecasting capabilities, particularly
in operational settings where rapid and accurate predictions are
essential for decision-making processes. The method’s consistent
performance across varying conditions supports its potential
integration into operational forecasting systems.

The practical applications of these improvements extend to
various sectors dependent on accurate SST predictions. Enhanced
forecast accuracy could significantly benefit fisheries management,
maritime operations, and resource management activities. The
method’s ability to provide more reliable SST forecasts, particularly
in challenging coastal regions, offers potential for improving
operational decision-making processes across multiple maritime
sectors. While this approach does not directly enhance our
understanding of physical processes, its demonstrated capability to
correct systematic errors in existing models makes it a valuable tool
for improving operational SST forecasting.

Future research directions should focus on several key areas
to further advance this methodology. Priority areas include
extending the approach to other oceanographic variables and
regions, investigating performance enhancements for extended
forecast periods through additional parameter incorporation,
and comparing the method’s effectiveness with other machine
learning approaches such as CNNs and PCA. Additionally,

evaluating the method’s integration into operational systems
warrants careful investigation. These findings contribute to the
growing evidence supporting the integration of machine learning
techniques with traditional numerical modeling approaches
in oceanographic forecasting, while maintaining emphasis on
quantifiable improvements and practical applications.
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