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The adoption of semi-automated image processingmethods to investigate geo-
petrological processes has grown quickly in recent years. Utilizing multivariate
statistical analysis of X-ray maps, these methods effectively extract quantitative
textural, chemical, and modal parameters from selected thin sections or micro-
domains in volcanic samples whose constituents can show peculiar textures
due to the magmatic processes involved. In this study, we have processed X-
ray maps of major elements from the 2021 basaltic lava rocks of Pacaya volcano
(Guatemala) through the Quantitative X-ray Map Analyzer (Q-XRMA) software.
The processing strategy is based on the sequential application of the Principal
Components Analysis and the supervised Maximum Likelihood Classification
algorithms that allowus distinguishing among rock constituents (mineral phases,
vesicles and glasses), quantifying their modal abundances, and identifying
textural and chemical variations in a simplified and quick process. Here, the
capability of the software has been applied to plagioclase crystals, whose textural
and chemical complexities are faithful recorders of the physical and chemical
conditions and processes controlling the evolution of the magmatic system.
Plagioclase displays a variable extent of disequilibrium at the core and rim, as
well as growth textures developed at different degrees of undercooling. This
variability makes it very difficult to establish how many crystal populations are
present in a sample, and to objectively decide whether there are crystals that can
be considered representative of a population. The procedure applied in this study
has proved to be effective for rapidly gathering chemical and textural data on
plagioclase, and quantitatively document the distribution of crystals according
to their size, shape, and compositions. Results demonstrate that the chemical
and textural variability of crystals can be fully discerned atmicroscopic scale, and
thus it can be adopted as a template for interpretation of magmatic processes.
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1 Introduction

Textural analysis of magmatic minerals, especially when
correlated with chemical changes, represents a very useful tracer
in reconstructing the physico-chemical modifications occurring
during the evolution of magmatic systems. Among volcanic
minerals, plagioclase is particularly useful for investigating
magmatic processes, being a very common mineral phase highly
sensitive to small changes in melt temperature, pressure, oxygen
fugacity, or water concentration during crystallization. This
behavior often results in a variety of specific textures, including
combinations of complex zoning patterns, skeletal, dissolution and
resorption features (e.g., Haase et al., 1980; Allegre et al., 1981;
Tsuchiyama, 1985; Kirkpatrick et al., 1979; Cashman, 1990; Nelson
and Montana, 1992; Streck, 2008 and references therein).

Distinguishing a huge set of plagioclase textures generated from
different magmatic processes and linked with varying chemical
zonings can be difficult via optical observations or traditional
high-resolution imaging methods only. This is due to the presence
of crystals with potentially complex growth patterns marked by
more than one type of texture, whose recognition requires a
combination of morphological and chemical clues. The use of
a single method is, therefore, not suitable to properly studying
and interpreting mineral textures. For instance, the mineral
inspection under the transmitted light polarizing microscope is
not appropriate to retrieve compositional information, although
the method is of great help to obtain an overview of the
available textural types at the thin-section scale. Instead, the back-
scattered electron (BSE) imaging and the Nomarski differential
interference contrast (NDIC) imaging techniques are able to reveal

very fine textural details otherwise invisible in transmitted light
(Pearce et al., 1987; Pearce and Kolisnik, 1990; Singer et al., 1995;
Stewart and Fowler, 2001; Ginibre et al., 2002). However, these
techniques do not readily indicate composition, but they give only
qualitative information. Using in-situ microanalytical techniques
(e.g., EMP, SEM-EDS/WDS analyses, laser interferometry), the
chemical variations throughout the crystal can be measured and
correlated to specific textural features, and thus one can have an idea
ofwhat processes have occurredwithin themagmaplumbing system
during the crystal growth.

Nowadays, the combined use of microanalytical techniques and
high-resolution imaging methods represents a routine procedure,
particularly helpful to obtain relevant information on the crystal
growth history (Ginibre et al., 2002; Viccaro et al., 2010; Nicotra and
Viccaro, 2012), though extremely time consuming.This has themain
disadvantage that morphological and quantitative compositional
information has to be collected in individual crystals, following a
meticulous analytical work and a careful selection of appropriate
zones for the analyses which is strictly dependent by the subjectivity
of the operator.

In the last decades, image analysis based on the multivariate
statistical treatment of EDS/WDS X-ray multispectral images has
become a powerful tool for obtaining quantitative compositional
data (Lanari et al., 2014; 2019 and references therein). This
tool has the advantage of exploiting the intrinsic multispectral
characteristics of the X-ray maps which record the distribution
of the chemical elements (Launeau et al., 1994; Cossio et al.,
2002; Friel and Lyman, 2006). The widespread use of this
technique is supported by the availability of semi-automatized
tools that create mineral maps and quantify modal parameters

FIGURE 1
(A) The MacKenney cone and a portion of the lava field produced during the 2021 eruption, from the northwestern slope of Pacaya volcano. (B) Lava
sample from the 2021 eruption collected on the northwestern portion of the lava field, characterized by vacuolar structure and millimeter-sized
plagioclase phenocrysts. (C) One of the thin sections investigated for this study, within which vacuoles and mm-sized crystals of plagioclase and olivine
can be distinguished.
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FIGURE 2
Back-Scattered Electron (BSE) images of the different textural types of plagioclases found in the 2021 lavas of Pacaya volcano: (A) Type 1, oscillatory
zoning; (B) Type 2, coarse-sieved; (C) Type 3; rounded core; (D) Type 4, sieved-rim; (E) Type 5, swallow-tailed; (F) combined Type 3 + Type 4 textures.

from selected thin-section micro-domains (e.g., Cossio et al., 2002;
Lanari et al., 2014; Ortolano et al., 2018). These outputs assist
operators in making more informed decisions about microprobe
spot locations, thereby reducing the need for extensive decision-
making activity. Image analysis found wide application in several
branches of the geosciences (Ortolano et al., 2014a; Fazio et al.,
2018; Zucali et al., 2021; Belfiore et al., 2022; Acevedo Zamora et al.,
2024; Caso et al., 2024), and in the case of volcanic rocks it was
largely used for examining vesicle and crystal size distribution
(Shea et al., 2010; Gurioli et al., 2014; Neave et al., 2017) and
for investigating compositional variations (Perugini et al., 2004;
Shea et al., 2014; Yoshimura et al., 2019; Visalli et al., 2023), whereas
there are only few examples regarding textural characterization of
plagioclase (e.g., Higgins et al., 2021).

In this work, we adopted an advanced image analysis capable
of combining compositional, morphological and grain size
information of rock constituents, with the specific aim of identifying
and quantifying plagioclase textures in porphyritic volcanic rocks.
In doing this, we used the ArcGIS-based Quantitative X-ray Maps
Analyzer (Q-XRMA) software (Ortolano et al., 2018). This tool
can identify the rock-forming constituents and the existence of
mineral zonings at the thin-section scale through the multivariate
statistical treatment of an array of X-ray maps. Here, the potential of
this software has been verified for rapid acquisition of quantitative
textural and mineralogical information on basaltic rocks from the
2021 eruption of Pacaya volcano (Guatemala, Figure 1). These
basalts preserve a complex crystal cargo, with both individual
plagioclase and glomerocrysts showing large variations in crystal

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2025.1527797
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Visalli et al. 10.3389/feart.2025.1527797

FIGURE 3
(A–N) Outputs of the rock-constituents recognition through the first cycle of the Q-XRMA; (O) Histograms of the modal percentages derived in each
investigated microdomains. Pl: plagioclase; Ol: olivine; Gl: glass; Px: pyroxene; Bb: vesicle; Ox: oxide; avg: average. Field of view of each
microdomain: 1 mm.

habit, zoning and resorption, thus appearing as the perfect
candidates for such a kind of application.

2 Sample descriptions

Volcanic rocks inspected in this study are porphyritic basaltic
lavas (Figure 1B) emplaced in spring 2021 along the northwestern
flank of the Mackenney cone, the younger and only active of
the craters constituting the Pacaya volcanic complex (Western
Guatemala; Figure 1A). Pacaya is considered one of the most
active volcanoes in Central America. The volcano typifies for a
nearly continuous open-vent activity that has persisted since 1961,
alternating periods of mild intra-crateric activity at the Mackenney
cone with phases of more intense explosions (strombolian to lava
fountaining) and lava effusions (Rose et al., 2013).The latest eruptive
cycle covers the period June 2015-November 2021 (Gonzalez-
Santana et al., 2024). Flank fissures were the source of multiple lava

flows during 2019-2021. The effusive activity intensified by early
March 2021, producingmultiple lava flows covering large part of the
volcanic edifice (Gonzalez-Santana et al., 2024). The latest lava flow,
which is the source of the studied samples, began on 29 April 2021,
and run for over 2 kmbefore effusionfinally ceased onMay 17.These
lavas have been sampled during a field campaign in February 2024.

The examination has been carried out on seven samples
using optical and electron microscopy, revealing quite similar
petrographic characteristics. The rock texture is porphyritic and
highly vesicular containing phenocrysts of plagioclase, olivine,
clinopyroxene and opaque oxides, with clear dominance of
plagioclase crystals with respect to the other mineral phases. The
groundmass is composed of the same minerals in addition to
glass, and contains abundant, euhedral plagioclase laths. No fluidal
textures have been recognized in the studied rocks either for what
regards the phenocrysts or the microliths of the groundmass.

Plagioclase phenocrysts occur as euhedral to subhedral grains
up to 2 mm in size, sometimes forming glomerophyric structures
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TABLE 1 Modal percentages obtained through the two analytical cycles of the Q-XRMA.

Sample
MDs

1st Cycle - Modal Percentages 2nd Cycle – Modal Percentages∗

Pl Ol Gl Bb Px Ox Total Zone A Zone B Zone C Total

PCY_21_2
a 41.1 4.9 46.1 7.0 0.8 0.1 100 12.6 71.8 15.6 100

b 48.1 2.3 43.8 5.0 0.7 0.1 100 18.3 40.0 41.6 100

PCY_21_3
c 47.4 2.8 47.4 1.4 0.8 0.2 100 8.3 74.7 17.0 100

d 22.2 11.7 56.4 7.5 1.1 1.0 100 0.0 26.5 73.5 100

PCY_21_4
e 33.0 1.9 61.8 2.0 1.3 0.1 100 2.5 37.2 60.3 100

f 35.8 2.4 54.9 5.4 1.3 0.3 100 5.7 47.7 46.7 100

PCY_21_5
g 43.7 1.9 47.7 1.8 4.5 0.3 100 5.6 38.7 55.7 100

h 46.7 3.0 40.0 6.1 3.6 0.6 100 11.1 19.0 69.8 100

PCY_21_6
i 39.6 1.5 46.6 11.2 0.9 0.2 100 14.0 62.7 23.4 100

j 28.3 1.6 42.9 26.3 0.8 0.1 100 20.6 22.2 57.2 100

PCY_21_7
k 35.6 6.0 48.1 9.0 1.0 0.2 100 7.3 45.8 46.9 100

l 34.0 1.9 51.5 11.5 0.9 0.3 100 5.3 52.2 42.5 100

PCY_21_8
m 38.4 5.8 50.6 4.3 0.5 0.3 100 17.3 18.6 64.1 100

n 30.4 3.6 62.5 2.3 0.9 0.3 100 1.4 14.6 84.0 100

Average 37.4 3.7 50.0 7.2 1.4 0.3 100 9.3 40.8 49.9 100

MDs: microdomains; Pl: plagioclase; Ol:olivine; Px: clinopyroxene; Ox: oxides; Gl: glass; Bb: bubbles.
∗Values normalized to 100%

with olivine. Phenocrysts typically exhibit variable extent of
disequilibrium at the core and rim, which results in a variety
of textures that sometimes coexist within the same crystal. BSE
imaging (Figure 2) reveals geochemical contrasts across plagioclase,
thus providing an indication of the anorthite variation between
adjacent, texturally diverse plagioclase zones. Based on the observed
textural and compositional characteristics, an overall subdivision
of plagioclase phenocrysts into five main types was done, namely:
a) Type 1, clear, oscillatory zoned crystals with no evidence of
dissolution/resorption. In these crystals, the chemical zoning is
barely visible under electron microscope (Figure 2A); b) Type
2, coarse-sieve textures characterized by micrometric-scale glass
inclusions randomly distributed within the core of plagioclase
(Figure 2B); c) Type 3, rounded cores bounded by dissolution
surface (Figure 2C); d) Type 4, sieve textures formed by bands of
melt inclusions crosscutting the oscillatory zoning patterns at the
crystal rim (Figure 2D); e) Type 5, swallow-tiled crystals (Figure 2E).
The combination of these textures can also be observed (Figure 2F).

The An enrichment is evident in most of the observed sieved
zones, while in other crystals it is almost impossible to distinguish
from the adjacent zones due to theweak contrasting gray-scale color.

Overall, the largest crystals (>1 mm in size) exhibit the highest
degree of destabilization, being typically affected by pervasive
sieve textures at the core and rim. Coarse-sieved cores are also

common among the phenocrysts with sizes 0.3–1 mm.The smallest
crystals are instead dominantly euhedral oscillatory-zoned, only
rarely displaying disequilibrium textures in the form of coarse sieve
textures or dissolution surfaces.

3 Methods

Thin (80 μm-thick) and polished sections were prepared for
petrographic, micro-chemical and image analyses. Preliminary
textural observations were performed on plagioclase crystals via
high-contrast back-scattered electron images (BSE, Figure 2; 1,024
× 864 pixels) obtained at the Dipartimento di Scienze Biologiche,
Geologiche e Ambientali of the University of Catania by means of
a Tescan Vega-LMU scanning electron microscope equipped with
an EDAX Neptune XM4-60 microanalyzer operating by energy
dispersive system (EDS) equipped by an ultra-thin Be window.
The EDS microanalyzer is coupled with an EDAX WDS LEXS
(wavelength dispersive low energy X-ray spectrometer) calibrated
for light elements (not used for this set of analyses on plagioclase).
Operating conditions were set at 20 kV accelerating voltage and
∼8 nA beam current.

Fourteen representative microdomains from seven lava samples
of the 2021 eruption of Pacaya were selected at the scale of
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FIGURE 4
(A–N) Outputs of the chemical zones recognized in plagioclase (PI) through the second cycle of the Q-XRMA; (O) Histograms of the modal
percentages derived in each investigated microdomain. avg: average. Field of view of each microdomain: 1 mm.

thin sections for quantitative textural analyses by Q-XRMA. X-
ray maps (see Supplementary Figures S1–S7) were acquired with
the same instrumentation described above, under high vacuum
conditions at an accelerating voltage of 20 kV, beam current of 8 nA
and working distance of 15.5 mm. The resolution of the output
images is 512 × 400 pixels for an average pixel size of 2 μm in 256
grey-scale levels (i.e., eight-bit images) obtained with a dwell time
of 500 μs per 128 frames, corresponding to an acquisition time for
each map array of 4 h and 30 min. X-ray maps were acquired to
obtain the distribution and the relative concentration of the major
elements (i.e., Al, Ca, Fe, K,Mg,Mn,Na, P, Si, and Ti) on the selected
microdomains.

The acquired maps were processed via the Q-
XRMA software (Ortolano et al., 2018) to identify the rock-
forming constituents, quantify their associated modal abundances,
and investigate the occurrence of compositional zonings within
plagioclase crystals to be linked with a specific textural type. These
goals are achieved using two analytical cycles: i) the first cycle is
applied to discriminate the main rock phases at thin section and

microdomain scales quantifying, at the same time, the related
modal percentage; ii) the second cycle provides the possibility
to pose attention on a specific phase recognized during the first
cycle, to highlight the potential occurrence of chemical variability
in zoned minerals.

Both cycles are based on a multivariate statistical data handling
of the X-ray raster maps employing the sequential application of the
Principal ComponentsAnalysis (PCA;Hotelling, 1933; Jolliffe, 2002;
Karl Pearson, 1901) and the Maximum Likelihood Classification
(MLC; Johnson andWichern, 1988; Ortolano et al., 2014b; Richards
and Jia, 2006). PCA is effective in data compression as it helps
in eliminating redundancy, emphasizing the variance within the
bands of a raster and making data more interpretable for an
improved classification. MLC enables the categorization of raster
pixels into clusters (for an unsupervised classification) or classes (for
a supervised classification). The MLC employs a spectral signature
file to analyze the statistical distribution of grayscale values ranging
from 0 to 255. It assigns a probability to each pixel, indicating its
likelihood of belonging to a specific class or cluster.This file contains
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FIGURE 5
Different zoning patterns recognized through the second cycle: (A) high-anorthite (An) core (A) to low-An rim (C) zoning; (B) intermediate-An core (B)
to low-An rim (C) zoning; (C) oscillatory zoning; (D) high-An “rings” (A) surrounding intermediate-An core; (E) rounded high-An core wrapped by
low-An rim; (F) low-An zoning.

a subset of pixels from the Principal Component (PC) maps that are
representative of any particular class or cluster. In the unsupervised
approach, Q-XRMA automatically classifies data grouping pixels
into a user-defined number of clusters.The supervised classification,
on the other hand, involves users’ creation of training areas on the
PCA multiband raster through the ArcGIS graphical user interface,
selecting pixels that best represent each class. Both approaches
allow for defining the a priori probability of pixel assignment to
a specific class or cluster as: i) equal, where each pixel is assigned
to the class with the highest likelihood of membership; ii) sample,
where the probability of a pixel belonging to a class or cluster
is proportional to the number of representative pixels associated
with each signature. The result is a classified map that divides the
study area into known classes or clusters, whose associated modal
abundances are calculated based on the total pixelmatrix of themap.
This output is accompanied by a confidence map showing the level
of classification confidence. The latter is based on a reject fraction
which determines whether a pixel will be classified based on its
likelihood of being correctly assigned to one of the classes. This
means that a pixel will be assigned to a class only if the associated
probability corresponds to a confidence level higher than a reject
fraction defined by the user. There are 14 levels of confidence,
where the first level consists of pixels with the shortest distance
to any mean vector stored in the input signature file, providing
the lowest uncertainty of pixels correctly classified. In contrast, the
last level provides the highest uncertainty. To minimize this effect,

post-classification filters operating on a 3 × 3 pixel matrix (such
as focal median and maximum frequency) can be applied to the
classified image.

In this work, the first cycle was applied individually in each
investigated domain to automatically recognize the rock-forming
constituents (i.e., plagioclase, olivine, pyroxene, oxide, vesicle, and
glass) and derive the associated modal abundances. This implies
that the comparison between the microdomains of the different thin
sections aremade on the classified images that are yet the final results
of the procedures that bring to an interpretation supported by a
statisticallymeaningful dataset. Ultimately, the comparison between
different samples, or between different microdomains, is perfectly
consistent as it is done between images classified in advance with
the propaedeutic aid of PCA, which is useful “simply” to guide the
operator in the choice of training areas.

Theprocessing time of this cycle is 30–40 min permicrodomain.
The second cycle was instead applied to detect compositional
variations within plagioclase, accomplishing this in 20–30 min per
microdomain. The first five PC maps were selected as most
informative in the first cycle for all of the analyzed microdomains,
whereas four PCmaps were selected in the second cycle considering
Al, Ca, Na, and Si as the elements of interest. The supervised
classification has been adopted in both analytical cycles by choosing
the sample a priori probability and zero as reject fraction, whereas
the maximum frequency filter has been applied in the post-
classification phase.
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TABLE 2 Representative analyses of the chemical zones recognized through the Q-XRMA.

Chemical zone Zone A Zone B Zone C

SiO2 47.5 47.4 46.2 52.7 53.8 53.8 56.7 56.4 56.3

TiO2 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.3 0.3

Al2O3 32.6 32.8 33.4 29.4 28.0 28.1 25.8 25.7 25.7

FeO 0.8 0.7 0.8 1.0 1.0 1.2 1.0 1.3 1.4

MgO 0.3 0.2 0.3 0.3 0.3 0.1 0.4 0.4 0.3

CaO 16.0 16.3 16.6 12.1 11.0 11.3 8.8 8.7 9.3

Na2O 2.1 1.6 1.3 4.1 4.7 4.5 6.2 6.1 5.6

K2O 0.1 0.2 0.2 0.2 0.3 0.3 0.5 0.5 0.5

Total 99.5 99.3 99.1 99.9 99.3 99.3 99.5 99.3 99.3

Si 2.2 2.2 2.1 2.4 2.4 2.4 2.6 2.6 2.6

Ti 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Al 1.8 1.8 1.8 1.6 1.5 1.5 1.4 1.4 1.4

Fe3+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Mg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ca 0.8 0.8 0.8 0.6 0.5 0.5 0.4 0.4 0.5

Na 0.2 0.1 0.1 0.4 0.4 0.4 0.5 0.5 0.5

K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

XAn 0.8 0.8 0.9 0.6 0.6 0.6 0.4 0.4 0.5

XAb 0.2 0.1 0.1 0.4 0.4 0.4 0.5 0.5 0.5

XOr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Chemical subdivisions obtained through the second cycle were
verified via spot analyses on different plagioclase crystals selected
to cover all the chemical variability recognized via the image
processing. Allmeasurementswere done at theUniversity of Catania
by SEM-EDS/WDS, using the same instrumentation described
above. Operating conditions were set at 20 kV accelerating voltage
with 2 nA beam current to obtain the analysis of major element
abundances. Repeated analyses on an internationally certified
An65 plagioclase (SPI 02753-AB Serial KF crystal #35) during
the analytical runs ensured precision of around 3%–5% for all
elements, while accuracy is ∼5%. The major element abundances
were measured along core-to-rim traverses. Analytical traverses
were done parallel to the longest side of plagioclase with spacing
between individual analytical spots of ∼5 µm.

Finally, a Raster to Polygon conversion function implemented
within theArcGIS environmentwas used to vectorize the plagioclase
crystals, identified through the first cycle of the Q-XRMA, in

individual polygon features. In the creation of polygons, each group
of contiguous pixels classified as plagioclase is converted into a
polygon, making a separation at the contact between different
groups. This approach can be ineffective when two plagioclase
crystals are in contact as they are constituted by a unique group of
contiguous pixels, thus resulting in a merged polygon. However, in
the investigated domains this effect is poorly observed or overcome
through a manual post-processing using the editing tools provided
by ArcGIS. The time processing of this step is 10–30 min per
microdomain.The polygon features created were then used as input
data in the ArcGIS Minimum Bounding Box function to obtain
length and width data for each crystal following the calculation
described in Visalli et al. (2021). This permitted classifying crystals
not only based on their specific chemical compositions but also
based on their length, subdividing all plagioclases in microlites
(<0.1 mm), microphenocrysts (0.1< × < 0.3 mm) and phenocrysts
(>0.3 mm), following the Armienti et al. (1984) definition. Digitized
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FIGURE 6
(A–N) Outputs of the digitized crystals through the Raster to Polygon conversion tool, subdivided per grainsize classes; (O) Histograms of the number
of grains obtained in each investigated microdomains. avg: average. Field of view of each microdomain: 1 mm.

polygons enclosing less than ten pixels have been considered
artifacts of the vectorization procedure and were not considered in
the calculation.

4 Results and discussions

Results of the first cycle permitted the recognition of plagioclase
(Pl), olivine (Ol), clinopyroxene (Px), and oxides (Ox) as mineral
rock constituents, along with glass fractions (Gl) and vesicles
(Bb) (Figure 3), with an average of 11.1% of classified pixels in
the confidence level of highest uncertainty (confidence level 14,
see Supplementary Figure S8). The results indicate that plagioclase,
found as large crystals andmicrolites sparse within the groundmass,
is the most abundant mineral phase averaging 37.4% of the
total modal abundance (Table 1). This is followed by olivine,
clinopyroxene, and Fe-Ti oxides, which account for average modal
abundances of 3.7%, 1.4%, and 0.3%, respectively (Table 1). Across
all analyzed domains, the modal abundance of plagioclase ranges

from 22.2% to 48.1%. In contrast, olivine typically appears in
modal abundances of around 1%–3%, although somemicrodomains
exhibit larger crystals with modal amounts from 4.9% to 11.7%
(Figures 3A, D, K, M; Table 1). Clinopyroxene, which occurs as
microlites floating within the glass fraction, shows a modal
amount varying from 0.5% to 1.3% except for two microdomains
(Figures 3G, H), where it is in the range of 3.6%–4.5%. Lastly, Fe-
Ti oxides are poorly represented with modal percentages lower than
1% (Figure 3O; Table 1).The glass fraction, including both the glassy
matrix and the glass inclusions within crystals, vary between 40.0%
and 62.5% (Table 1).The remaining portion is constituted of vesicles
with modal amounts varying from 1.4% to 26.3% (Table 1).

According to the results from the second cycle (Figure 4),
it was possible to distinguish three compositionally different
zones at high, intermediate and low Ca concentrations
(Supplementary Figures S1–S7), labeled as zones A, B, and C,
respectively. The estimated percentage of classified pixels falling
in the confidence level of highest uncertainty (confidence level
14) for the second cycle classification is 4.6% on average (see
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TABLE 3 Number of digitized crystals vs the percentage of the total area covered in the analyzed microdomain.

MDs

Number of digitized
crystals

Total area occupied in the MD (%)

Accuracy (%)

ML MP P ML MP P Total

a 144 12 4 6.2 14.3 20.4 40.8 99.4

b 221 7 3 9.3 6.8 31.6 47.7 99.2

c 232 12 4 9.8 11.9 25.4 47.1 99.4

d 201 10 1 7.3 11.1 3.3 21.7 97.7

e 236 14 2 9.5 14.3 8.6 32.4 98.1

f 316 19 0 12.0 23.1 0.0 35.1 98.1

g 436 17 2 13.3 20.3 9.1 42.7 97.7

h 429 18 4 10.8 22.0 12.6 45.4 97.3

i 242 14 3 8.7 16.8 13.3 38.8 97.9

j 235 10 1 9.7 10.6 7.5 27.8 98.4

k 233 9 3 8.2 9.6 17.2 35.0 98.4

l 251 11 3 10.4 11.7 11.1 33.2 97.7

m 215 12 2 9.2 19.7 9.0 37.9 98.6

n 282 14 1 11.9 13.9 4.0 29.8 98.0

Average 262 13 2 9.7 14.7 12.4 36.8 98.3

MDs: microdomains; ML: microlites; MP: microphenocrysts; P: phenocrysts. Accuracy (%) is computed as the difference of the total area of digitized grain vs the plagioclase modal amounts of
the second cycle.

TABLE 4 Textural types recognized in all investigated plagioclase crystals, subdivided per grain sizes.

Pl Texture Total number of crystals Total % of crystals % normalized to the
grainsize

ML MP P Total ML MP P Total ML MP P

Type 1 3,667 138 12 3,817 94.4 3.6 0.3 98.3 99.8 77.1 36.4

Type 2 1 17 6 24 0.0 0.4 0.2 0.7 0.0 9.5 18.2

Type 3 0 1 0 1 0.0 0.0 0.0 0.0 0.0 0.6 0.0

Type 4 2 20 11 33 0.1 0.5 0.3 0.9 0.1 11.2 33.3

Type 5 3 0 0 3 0.1 0.0 0.0 0.1 0.1 0.0 0.0

Type 2 + Type 3 0 0 2 2 0.0 0.0 0.1 0.1 0.0 0.0 6.1

Type 2 + Type 4 0 1 2 3 0.0 0.0 0.1 0.1 0.0 0.6 6.1

Type 3 + Type 4 0 2 0 2 0.0 0.1 0.0 0.1 0.0 1.1 0.0

Total 3,673 179 33 3,885 94.5 4.6 0.8 100 100 100 100

ML: microlites; MP: microphenocrysts; P: phenocrysts.
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FIGURE 7
(A–N) Different textural types subdivided per grainsize recognized across the investigated microdomains. Field of view of each microdomain: 1 mm.

Supplementary Figure S9). The largest phenocrysts typically display
A+B+C sequences, marked by decreasing Ca content from core to
rim (Figures 4, 5A). In these crystals, euhedral chemical interfaces
mark the transition from one zone to the adjacent. Smaller
crystals mainly display B and C zones, forming either normal
B+C zoning (Figures 4, 5B) or B+C+B oscillatory zoning patterns
(Figures 4, 5C). In a few cases, we also observed tiny A zones
surrounding cores at lower Ca content (i.e., B cores) possibly
resulting from dissolution/resorption phenomena (Figures 4,
5D). Rarely, rounded Ca-rich cores (A type compositions) are
surrounded by C zones (Figures 4, 5E). In the groundmass,
plagioclase microlites are particularly abundant and appear rather
homogeneous in composition, being essentially characterized by
low Ca concentration from core to rim (C type composition;
Figures 4, 5F).

The B and C chemical zones are the most abundant in all
analyzed domains, representing an average of 49.9% and 40.8%,
respectively (Figure 4; Table 1). Contrarywise, the A zones comprise
only 9.3% of plagioclase zoning (Table 1) and are primarily located
at the core of the larger crystals.

These compositionally different zones, initially identified
through the second cycle, were therefore calibrated for the An
content through quantitative SEM-EDS/WDS spot analyses. The
analyses have confirmed the observed differences among the A, B
and C zones. In particular, the A zone was found to reflect XAn
[Ca/(Ca+Na) mol] in the range 0.8–0.9, the B zone displays XAn
close to 0.6, whereas the C zone typifies for XAn 0.4–0.5 (Table 2).

Maps of plagioclase classified in the second cycle were
used to digitize and categorize the crystals into microlites (ML:
<0.1 mm), microphenocrysts (MP: 0.1–0.3 mm), and phenocrysts
(P: >0.3 mm) (Figure 6). Digitization accuracy is average ∼98%
(Table 3). This step permitted to outline of 3,885 crystals (Tables 3,
4) mainly constituted by microlites (3,673), and to a lesser
extent, by microphenocrysts (179) and phenocrysts (33). Our
analysis of the crystal grain size indicates a number of microlites
grains varying between 144 and 436 across rock MDs. However,
microlites occupy an average of less than 10% of the total
MDs area (Table 3). The number of digitized grains decreases
significantly for microphenocrysts (9–19 grains per microdomain)
and phenocrysts (1–4 grains), but their relative modal abundances

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2025.1527797
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Visalli et al. 10.3389/feart.2025.1527797

increase to mean values of 14.7% for microphenocrysts and 12.4%
for phenocrysts (Table 3).

Figure 4 shows the variety of textures recognized in plagioclase
through the integration of classified images produced by Q-XRMA.
The combination of quantitative compositional, morphological
and grain size information allowed the distribution of plagioclase
textures to be quantified for different size classes. In this context,
our image analysis indicates a plagioclase cargo dominated by
clear, oscillatory zoning types (Type 1) in percentage of 98.3%
(Table 4). Type 1 is typically observed in microlites (94.4%) and, to
a lesser extent, in microphenocrysts (3.6%) and phenocrysts (0.3%)
(Table 4). Except for Type 1, a few microlites showing sizes close to
0.1 mm also preserve coarse sieve (Type 2; <0.1%), sieved rim (Type
4; <0.1), and shallow-tailed (Type 5; <0.1) textures (Table 4). Instead,
microphenocrysts and phenocrysts display the largest variability in
terms of crystal textures, with prevalence of Type 2 cores and Type
4 (sieve-textured) rims (Table 4).

Considering textural variability within the grain size class, Type
1 microphenocrysts are the most abundant (77.1%). Sieved rim
and coarse-sieved core represent 11.2% and 9.5% of the observed
textures in microphenocrysts respectively, followed by dissolved
core (Type 3; 1.7%). We also observed combinations of two or more
disequilibrium textures, such as microphenocrysts with sieved cores
surrounded by sieved rims (Type 2 + Type 4; 0.6%), or crystals with
rounded Ca-rich cores affected by dissolution and sieve-textured
rims (Type 3 + Type 4; 1.1%) (Table 4).

At the grain size of phenocrysts, Type 1 and Type 4 are the main
textural types recognized (36.4% and 33.3% of the total phenocryst
textures) followed by sieved cores (Type 2; 18.2%). Moreover, an
equal number of combination of textures, such as Type 2 + Type 3
and Type 2 + Type 4 (6.1% per each; Table 4) are also quantified.

The results of our image analysis provide a detailed
characterization of the basaltic samples belonging to the 2021
eruption of Pacaya volcano. This analysis reveals important
insights into the mineral composition, groundmass, and vesicle
structures, and also allows identifying distinct zoning patterns
within plagioclase linked to various textures.

The quantitative data obtained from image analysis matches
the observations made by optical and electronic microscopes for
what concerns the distribution of crystal size, proportions of the
mineral phases and the texture types and their relative abundance.
The applied method greatly reduces the degree of subjectivity in
the evaluation of plagioclase distribution in a rock sample, since it
rapidly classifies and quantifiesminerals based on their size and their
morphological and chemical diversity.

The variety of plagioclase crystals in Pacaya basalts (see
Figures 1C, 2) makes it very difficult to establish how many crystal
populations are present in a sample, and to objectively decide
whether there are crystals that can be considered representative of a
population, and thus used to derive conclusions about themagmatic
processes.

Given the ease by which representative classified images
of many rock domains can be gathered (see Figures 3, 4), it
is possible to obtain a large quantitative dataset that can be
used to fully characterize the rock sample (see Table 1). The
advantages of Q-XRMAmapping compared to spot analyses include
shorter analysis times and the capacity to recognize even subtle
chemical variations. An in-depth analysis of these variations aids

in accurately identifying mineralogical textures, providing a better
understanding of the chemical and physical history experienced
by the investigated rocks. Figure 5 illustrates the different zoning
patterns that can be rapidly detected in plagioclase through
image analysis, highlighting the effectiveness of this technique.
Furthermore, in both analytical cycles the level of confidence
reached by the classification assures a statistically meaningful
identification of the rock-forming constituents and plagioclase
chemical zones, thus permitting a more reliable quantification
of their modal abundances. The highest uncertainty associated
with the classification, indeed, is located at the borders of
crystals (see Supplementary Figures S8 S9), where pixels have values
with the longest distance to any mean vector stored in the input
signature file. Such uncertainty can be reduced by increasing the
number of training areas, implying a longer processing time.

Grain digitization through the raster to polygon and the
minimum bounding box tools proved to be a fundamental step
to quantitatively linking rock fabric parameters with specific
compositional variations and effectively differentiating the
compositional patterns based on varying grain sizes. Indeed, it
enabled us to digitize and categorize, with high accuracy, a huge
number of crystals in three different size classes across all the
investigated microdomains (see Figure 6; Table 3). While this
classification has a degree of subjectivity, defining dimensional
classes is crucial for accurately parameterizing the distribution
of plagioclase’s textural and chemical features based on crystal
grain size. This permits discerning between different textural
types subdivided per each size class (see Figure 7), allowing the
compilation of a more informative dataset higher than the dataset
potentially investigated by using only optical or SEM analyses.

This technique can be therefore considered a complementary
analysis to join with the possibilities of SEM, EPMA, or laser
interferometry, which can still serve as preparatory techniques when
higher resolution, sensitivity, or accuracy are required.

5 Conclusion

Our findings emphasize the advantages of the Q-XRMA image
analysis to determine the size, shape, and compositional variations
of minerals in volcanic rocks. The capability of the software
has been tested on basaltic lavas of the 2021 eruption at the
Pacaya volcano, focusing in particular on textural complexities
of plagioclase grains. The method we present offers an efficient
tool for rapidly gathering chemical and textural data, effectively
reducing subjectivity in assessing plagioclase distribution within
rock samples and permitting, at the same time, the identification
and quantification of the complex variations in the texture and
composition of the mineral cargo. Furthermore, it enables a
plagioclase grain categorization into different types based on their
mutual differences in grain size, zoning, and resorption textures
within a GIS-based database, ready to use for further geostatistical
investigations.

Our results demonstrate that the chemical zoning of plagioclase
crystals can be fully discerned at a microscopic scale and can
be adopted as a template driving the interpretation of magmatic
processes, thus constituting a valid tool in association with optical
observations and SEM/EMPA investigations.
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