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The agricultural water footprint (WF) is essential for understanding
environmental impacts and managing water resources, especially in water-
scarce regions. In this study, an integrated framework for assessing water
resource pressure and sustainability based on the total-element agricultural
water footprints was developed. Firstly, three types of WFs (i.e., blue, green and
grey WFs) of major crops including wheat and maize in the Beijing area were
calculated, and spatiotemporal variations were analysed. Subsequently, the
water stress index (WSI) of WFs was calculated, and based on this, the reliability-
resilience-vulnerability (RRV) indiceswas established for systematically assessing
water resource stress sustainability in agricultural systems. Finally, the driving
factors of agricultural WF were analysed using STIRPAT model. The results
were as follows. (1) The overall WF decreased from 22.0 × 108 m3 to 3.9 ×
107 m3, showing a significant downward trend from 1978 to 2018. (2) The WSI
values exceeded 1 in 25 out of the 35 years, indicating that the Beijing area
continued to experience frequent water shortages. The RRV indices indicated
that the sustainability of water resources in the Beijing area had improved in
recent years, and the value was 0.35 in 2018, but remained at a low level.
(3) Enhancing the effectiveness of irrigation, increasing agricultural machinery
density, and reducing the planting area of water-intensive crops can significantly
lower the agricultural WF. This study assessed the water resource pressure and
sustainability of total-element agricultural WFs by combining the WSI and the
RRV indices, from the integrated perspective of both water quantity and quality.
This approach is of significant importance for the sustainable utilisation and
management of agricultural water resources in water-scarce regions, based on
water footprint analysis.
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1 Introduction

A critical challenge to economic development is the
scarcity of water resources. Agriculture accounts for 70%
of global freshwater withdrawals and 90% of freshwater
consumption (Dolganova et al., 2019). In China, the agricultural
sector was responsible for 63.1% of the country’s total
water use in 2015 (Beijing Municipal Bureau of Statistics,
2016). As the global population expands and the demand
for food intensifies, the research and management of
agricultural water resources have become increasingly critical.
Consequently, analysing variations in agricultural water
use is essential for both regional water resource planning
and the implementation of agricultural water conservation
strategies, especially for areas with rapid socioeconomic
development and serious conflicts between water supply
and water use.

The water footprint (WF) method has been widely used to
better quantify water resources and to explore the relationship
between human production activities and water resource embedded
in products and services (Lovarelli et al., 2016; Liu et al., 2023;
Mialyk et al., 2024a; Rodriguez et al., 2024). The agricultural WF
accounts for water directly consumed during crop production,
tillage, and irrigation (Wang et al., 2022), as well as the indirect
water associated with the production and consumption of inputs
including fertilizers, pesticides, and energy. Thereby the agricultural
water footprint can provide a robust basis for agricultural water
management. The concept of the WF was first proposed by
Dutch water expert Arjen Hoekstra in 2002 (Hoekstra and Hung,
2002). The WF is a multidimensional indicator of water use
and pollution (Hogeboom, 2020) and comprises blue, green, and
grey WFs. Green water refers to the moisture stored in the
unsaturated zone of the soil that is available for evapotranspiration;
the green WF reflects the amount of green water consumed in
agricultural production. Blue water, commonly understood as water
resources, includes rivers, lakes, surface water, and groundwater;
the blue WF refers to the amount of blue water consumed during
production and consumption. Grey water refers to the volume
of water required to dilute pollutants generated by agricultural
production to meet water quality standards (Hoekstra, 2011);
the grey WF is used to assess the extent of water pollution in
terms of water volume (Wang et al., 2019; Elbeltagi et al., 2020).
Since its introduction, the WF has been extensively quantified at
various scales: global (Mialyk et al., 2024b; Sturla et al., 2024),
national (Wang and Ge, 2020; Feng et al., 2022), urban (Cai et al.,
2020; Ma and Jiao, 2023), and so on. In previous research,
Hoekstra quantified the WF for crop yields in various countries
and regions worldwide, establishing the first global benchmarks for
crop yield WFs (Mekonnen and Hoekstra, 2014). Xu et al. (2019)
quantified the agricultural WF of 207 counties in North China,
exploring variations in China’s agricultural WF from a county-level
perspective.

While quantification of the agricultural WF provides insight
into the amount of water resources consumed during crop
production, it does not adequately capture the relationship between
production activities and regional water resources (Chu et al.,
2022). Therefore, building on WF quantification, many studies have
analysed the agricultural water stress index (AWSI) (Cao et al.,

2017), green water scarcity (WSgreen) (D'Ambrosio et al., 2020),
and other indicators to evaluate variations in water resource
systems. In previous studies, Xie et al. (2020) considered the
impact of irrigation on blue and green water and, on this basis,
assessed the scarcity of these water resources in the Yellow
River Basin via the WF. Cao et al. (2021) developed the water
resource efficiency (WRE) index to assess water use efficiency
in crop production. The water stress index (WSI) is a key
indicator for assessing regional water stress, as it reflects the
pressure on the water system by comparing the ratio of water
consumption to the available water resources within the region
(Dehghanpir et al., 2024). For instance, Wang Q. et al. (2023)
employed the WSI to examine the pressure on water resources
resulting from afforestation in the Inner Mongolia Autonomous
Region. Typically, only blue and green WFs are used to evaluate
the efficiency and scarcity of water resources, with grey WFs
rarely included in the evaluation framework. However, the grey
WF can assess water resource utilization from a water quality
perspective. Addressing agricultural water pollution is also crucial
for effective water management and sustainable development.
The reliability-resilience-vulnerability (RRV) indices, proposed by
Hashimoto, is widely used to evaluate the performance of specific
systems (Hashimoto et al., 1982). In water resource studies,
the RRV indices has been used to evaluate the performance of
water supply systems (Golmohammadi et al., 2021), characterize
droughts (Chanda et al., 2014), assess the impacts of water
resource allocation (Zeng et al., 2024), analyse the effects of
different climatic conditions on water resource systems (Asefa et al.,
2014), and assess the sustainability of these systems (Sediqi
and Komori, 2024). The WSI reflects the scarcity of agricultural
water at a point in time, whereas the RRV indices reflects the
sustainability of the system over an extended period. Building on
the quantified WF, the WSI and RRV indices are combined to
evaluate the pressure and sustainability of local agricultural water
resource systems, effectively assessing variations and providing
a theoretical basis for the sustainable development of these
resources.

This study investigated the spatiotemporal changes and the
driving factors of the crop production WF in the Beijing area from
1984 to 2018 while evaluating the shortage and sustainability of
the agricultural water resources of the region. As a representative
international megacity with high water demand, the Beijing area
faces significant challenges in water resource management due
to its high population density, dense urban infrastructure, and
complex urban governance. This study proposed a framework for
assessing water shortages and sustainability based on total-element
agricultural WFs (i.e., blue, green, and grey WFs). Compared
with previous studies, this research emphasized the critical role of
the grey WF in the comprehensive assessment of water resource
stress, evaluating agricultural water resources from both the water
quantity and water quality perspectives through blue, green, and
grey water. Additionally, on the basis of the calculation of the WSI,
the RRV indices was constructed to systematically evaluate the
pressure on and the sustainability of agricultural water resources.
This enhancement can improve the comprehensive water resource
evaluation system and provide a theoretical basis for policy
formulation and scientific planning for the sustainable development
of agricultural water resources.
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FIGURE 1
Map of administrative divisions of Beijing area, China.

FIGURE 2
Agricultural water consumption in Beijing area, 1984-2018.

2 Materials

2.1 Study area

The Beijing area is situated in the northwest of North China
Plain, covering an area of 16,410.54 km2 (Figure 1), with a semi-
humid and semi-arid monsoon climate. The perennial average
precipitation is 400–500 mm. The precipitation from June to August
accounts for approximately 80% of the annual average throughout
the year. In 2018, the total water resources of the Beijing area
amounted to 3.546 billion m3, with the surface water resources
accounting for 1.432 billion m3 and groundwater resources for
2.114 billion m3. As domestic water demand in the Beijing area
increased, agricultural water resources were significantly reduced.
Agricultural water consumption decreased year by year. Figure 2
illustrates the change in agricultural water consumption in the
Beijing area between 1987 and 2018. It decreased from 2.184 billion
m3 in 1984 to 420 million m3 in 2018, marking a reduction of nearly
81% over 35 years.

By the end of 2018, the Gross Domestic Product of the Beijing
area had reached 3,310.6 billion CNY, with a resident population of
21.542million, including 2.9million in agriculture.The plains of the

Beijing area were predominantly located in the southeast, offering
favourable irrigation conditions. The main soil types of the planting
region in the Beijing area weremoist soil, brown soil, and brown soil.
The primary crops grown included winter wheat, maize, soybeans,
and rice. In 2018, the output value of major agricultural products in
the Beijing area was 11.47 billion CNY, with an output of 341,000
tonnes of key grain crops. The area sown with major grain crops was
55.6 thousand hectares, which was 89% less than in 1984, when it
was 523.1 thousand hectares. As a representative megacity in China,
the Beijing area is characterized by high population density, dense
urban infrastructure, and complex urban governance challenges.
Like many other megacities, the traditional extensive development
approach of the Beijing area has led to “urban diseases”, such as
environmental pollution and resource shortages (Zhu et al., 2022).
The situation regarding water resources is particularly critical. In
1984, the per capitawater availability of the Beijing area was 407 m3,
whereas by 2018, it had dwindled to just 164 m3. The scarcity of
water resources has significantly constrained regional economic
development.

2.2 Data sources

The long-term meteorological data used in this study included
monthly average temperature, wind speed, relative humidity,
precipitation, and sunshine hours.Thedata covering the period from
January 1984 to December 2018 were obtained mainly from Beijing
weather stations and the Chinameteorological data sharing site.The
agricultural data included soil data, fertilizer input, the agricultural
population and sowing area, output, and the crop coefficient of
the main crops, including wheat and maize, in the Beijing area.
The data were obtained mainly from the agricultural development
statistical bulletin of 30 years of reform and opening up supported
by the Beijing Bureau of Statistics website and the Beijing Municipal
Bureau of Statistics Information Office. Some data came from the
WF assessment manual setting the global standard and the main
food crop irrigation water quota of the main food crop in northern
China. The soil data included the total available soil moisture,
maximum precipitation infiltration rate, maximum planting depth,
initial soil water consumption, etc. No wheat or maize were planted
in Dongcheng District or Xicheng District, so these two districts
were not considered.

3 Methods

3.1 Research framework

In this study, a comprehensive water resource assessment
framework based on the agricultural WF was constructed, as
illustrated in Figure 3. The first step involved quantifying the blue,
green, and grey WFs in crop production and analysing their
spatiotemporal characteristics. The second step involved evaluating
the pressure and sustainability of the water resource system from
two perspectives: water quantity and water quality, via the WSI
and RRV indices. The third step involved analysing the driving
factors of the agricultural WF by using the stochastic impacts
by regression on population affluence and technology (STIRPAT)
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FIGURE 3
Research framework.

model. This framework built upon the use of the WSI to assess
the existing pressure on water resources and incorporated the RRV
indices to analyse the long-term changes in the sustainability of the
water resource system from the perspectives of reliability, resilience,
and vulnerability. The framework allowed for a comprehensive
evaluation of the agricultural water resource system, enhancing the
multi-dimensional assessment of water resources and addressing
the limitations of single-method evaluations, thereby providing a
theoretical basis for promoting the sustainable development of these
resources.

3.2 WF calculation methodology

Blue, green and grey WFs were considered in the measurement
of the WF for crop production. The first step in calculating the
green WF and blue WF of crop production was the determination
of the crop water requirement, which was calculated via the
CROPWAT model, which is based on the improved Penman
formula recommended by the Food and Agriculture Organization
(FAO). The crop water requirement was calculated by the
reference evapotranspiration (ET0), which is based on the Penman
formula and considers the influence of climatic factors, can be
expressed by Equation 1:

ET0 =
0.408Δ(Rn −G) + γ

900
T+273

u2(ea − ed)

Δ + γ(1+ 0.34U2)
(1)

where Rn is the net radiation (MJ·m−2 d−1), G is the soil heat flux
(MJ·m−2 d−1), T is the average air temperature (°C), u2 is the wind

speed at a height of 2 m (m·s−1), ea is the saturation vapour pressure
(kPa), ed is the actual vapour pressure (kPa), Δ is the slope of the
saturation vapour pressure versus air temperature curve (kPa·°C−1),
and γ is the psychrometric constant (kPa·°C−1).

The crop evapotranspiration (ETc) was estimated by Equation 2:

ETc = Kc ∗ET0 (2)

where Kc is a crop coefficient that varies with the crop stage.
WFblue and WFgreen can be calculated based on Equations 3, 4:

WFblue =
10 max(0,ETc − Pe)

m
(3)

WFgreen =
10 min(ETc,Pe)

m
(4)

where WFblue is the surface water or groundwater consumed in the
crop production process, WFgreen is the precipitation consumed in
the crop production process, 10 is the unit conversion coefficient to
convert units by mm (depth) into m3/hm2 (water amount per unit
area), and Pe is the effective precipitation during the crop growth
period (mm). On the basis of the WFblue and WFgreen values of crop
production per unit area, corresponding regional crop production
can be calculated from the sowing area.

The grey WF (WFgrey) of agricultural nonpoint source pollution
can be calculated by Equation 5:

WFgrey =
L

Cmax −Cnat
=

α×Appl
Cmax −Cnat

(5)

where Appl is the input of pesticide or fertilizer, α is the proportion
of the pollutant in the total pesticide or fertilizer input, Cmax is
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the maximum allowable concentration of pollutants (kg/m3), and
Cnat is the initial concentration of pollutants (kg/m3). According to
previous research (Zhang, 2017), 10 mg/L was used for Cmax.

The Department of Agriculture typically adopts nitrogen (N)
and phosphorus (P) as indices reflecting the grey WF. In this
case, α is the leaching loss rate of N or P. As nitrogen fertilizer
contributes the most to the grey WF in agricultural production in
China, nitrogen was taken as the representative index for calculating
WFgrey.

3.3 Temporal trend analysis

The MK test method was used to analyse the variation trends in
crop production WFs. According to the MK test, for the time series
x1, x2, … , xn, the statistic S is given by Equation 6:

S =
n−1

∑
i=1

n

∑
j=i=1

sgn(xj − xi) (6)

where n is the length of the series, xi and xj are the sequential data
values, and

sgn(x) =
{{{{
{{{{
{

1, xj − xi > 0

0, xj − xi = 0

−1, xj − xi < 0

when n ≥ 10, the statistic S is approximately normally distributed
with a mean of 0, and its standard deviation can be expressed as:

σx =
√n(n− 1)(2n+ 5) −∑

n
i=1

ti(i− 1)(2i+ 5)

18
(7)

In Equation 7, where σx is the standard deviation of S and ti
is the number of ties of extent i. The MK test statistic Z is
expressed as Equation 8:

Zx =

{{{{{{{
{{{{{{{
{

(S− 1)
σx
,S > 0

0, S = 0
(S+ 1)
σx
,S < 0

(8)

The significance trend is tested by comparing the absolute value
of Z at the desired significance level α. In this study, a Z value beyond
the interval of ±1.96means that the trend is considered significant at
the 95% confidence level. An increasing statistical Z value indicates
an increasing trend, and vice versa.

3.4 Consideration of water resource
scarcity and comprehensive sustainability
evaluation of blue, green, and grey WFs

The WSI can reflect agricultural water scarcity in a region and
was calculated on the basis of the agricultural WF and agricultural
water use as determined by Equations 9–13:

WSI =
WFtotal
AWR

(9)

AWR = AWRblue +AWRgreen (10)

whereWFtotal is the sum of the footprints of blue water, green water,
and grey water; AWR is the amount of agricultural available water
resources; AWRgreen is the effective precipitation; and AWRblue is
the amount of blue water resources used for agricultural production,
which is usually the total amount of bluewater resources available for
agriculture minus the environmental water demand for maintaining
the ecosystem. With reference to the study of Hoekstra et al.
(2012), it is assumed that the environmental water demand
accounts for 80% of the total blue water resources, as shown
below:

AWRblue = TWR−EWR (11)

TWR =WR× AWU
WU

(12)

EWR = 80%×TWR (13)

where TWR is the total amount of blue water resources
available for agriculture; EWR is the demand for environmental
water; and WR is the total quantity of available blue water
resources within the region. Additionally, AWU is the
agricultural water consumption and WU is the total water
consumption.

In addition, the footprints of blue water, green water, and grey
water are calculated as WSIblue, WSIgreen, and WSIgrey, respectively,
and can be expressed by comprehensively considering the water
shortage in terms of both water quantity and quality, as represented
by Equations 14–16:

WSIblue =
WFblue
AWRblue

(14)

WSIgreen =
WFgreen
AWRgreen

(15)

where WFblue and WFgreen are the blue water and green WFs,
respectively.

In accordance with the methods of Shu et al. (2021), a water
scarcity assessment based on the grey WF was constructed

WSIgrey =
WFgrey

TWR− (WFblue +WFgreen)
(16)

where WFgrey is the grey WF.
The WSI classified water scarcity into four levels: 0 < WSI <

0.2, no water shortage; 0.2 < WSI < 0.4, slight shortage; 0.4 < WSI
< 0.8, moderate shortage; 0.8 < WSI <1, high shortage; WSI > 1,
severe shortage.

To further explore the sustainability of agricultural water
resources, the RRV indices was used to evaluate the sustainability
of agricultural water resources in the Beijing area on the basis of
the WSI. First, a standard C was defined. In this study, C was
the WSI value when water shortage was under extreme pressure,
that is, WSI = 1.0, and Xt can be defined as the WSI of each
year:

Zt =
{
{
{

0,Zt ∈ U, Xt ≥ 1.0

1,Zt ∈ S, Xt < 1.0
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where Wt is the recovery index of the water resource system from
severe shortages:

Wt =
{
{
{

1,Gt ∈ U and Gt+1 ∈ S

0, else

The RRV indices includes three indices, namely, reliability,
resilience and vulnerability. Reliability refers to the likelihood that
the system remains in a satisfactory state, resilience indicates
the speed at which the system recovers from an unsatisfactory
state, and vulnerability measures the degree to which the system
is in its least satisfactory state as represented by Equations
17–19 (Hashimoto et al., 1982).

Reliability =
∑T

t=1
Zt

T
(17)

Resilience = { 1
n

n

∑
j=1

d(j)}
−1

(18)

Vulnerability = 1
n

T

∑
i=1
{
Lobs(i) − Lstd(i)

Lstd(i)
×H(Lobs(i) − Lstd(i))} (19)

where T is the time step, set to 10 years in this study; n indicates
the number of failure events; d(j) is the duration of the jth failure
event; Lobs(i) is the WF at time i; Lstd(i) is the amount of agricultural
available water resources at time i; and H is the Heaviside
function, which is a mathematically discontinuous function with
a negative independent variable H = 0 and a positive independent
variable H = 1.

The sustainability index was used to evaluate the
sustainability of water resources system, and was the geometric
average of the reliability, resilience and vulnerability after
standardization, as expressed in Equation 20. A higher
sustainability index indicates greater sustainability of the water
resource system, categorized into five levels: 0-0.20, poor;
0.20–0.40, fair; 0.40–0.60, average; 0.60–0.80, good; and 0.80–1.0,
excellent.

Sustainability = (Reliability×Resilience×Vulnerability)
1
3 (20)

3.5 STIRPAT model for analysing the drivers
of WF

The impact of population, affluence and technology
(IPAT) model was proposed by Ehrlich and Holden to
study the impacts of human socioeconomic activities on the
environment and is formulated in Equation 21 (Ehrlich and
Holdren, 1971):

I = P×A×T (21)

where I is the resulting environmental impact, P is the
population size, A is the level of affluence, and T is the level of
technology.

The proposed IPAT model provides a way to explain the
impact of a range of human activities on the environment, but it
still has strong limitations, mainly including the simplicity of the

TABLE 1 Description of each variable in the STIRPAT model.

Independent
variables

Definition Unit

P Agricultural population 1 × 104 person

A1 Gross output value of
agriculture

1 × 109 CNY

A2 GDP per capita CNY

A3 Industrial structure %

T1 Degree of effective irrigation %

T2 Agricultural machinery
density

kW/hm2

PS Planting structure %

interrelationship among parameters and the assumption that the
elasticities of P, A, and T are the same, which implies the same
contributions of different factors to environmental pressure. This
conflicts with the EKC assumption (Liu and Xiao, 2018). Therefore,
on the basis of this model, Dietz and Rosa proposed the stochastic
impacts by regression on population affluence and technology
(STIRPAT) model, which is expressed in Equation 22 (Dietz and
Rosa, 1997):

I = aPbAcTde (22)

where a is the intercept term; b, c, and d are the elastic coefficients of
P, A and T, respectively; e is the residual error.

The STIRPAT model is usually used in logarithmic posterior
form (York et al., 2003; Lohwasser et al., 2020):

ln I = ln a+ b ln P+ c ln A+ d ln T+ ln e (23)

The drivers of environmental stress are related not only to
population, affluence and technology level but also to various
socioeconomic factors, so the STIRPAT model can be analysed by
adding more factors according to real needs. To investigate the
drivers of the agricultural WF in the Beijing area, we selected six
factors, namely, the agricultural population (P), gross output value
of agriculture (A1), GDP per capita (A2), industrial structure (A3),
degree of effective irrigation (T1), agricultural machinery density
(T2), and planting structure (PS), as shown in Table 1, and are
expressed with Equation 24. Among these factors, the agricultural
population (P) represented the number of people engaged in
agricultural activities, directly influencing the water demand in the
agricultural sector. The gross output value of agriculture (A1) and
GDP per capita (A2) reflected the level of affluence, the development
of the agricultural economy, and the impact of increases in
production scale and economic growth on the agricultural WF. The
industrial structure (A3) affected the agriculturalWF by altering the
input of agricultural resources and production methods. The degree
of effective irrigation (T1) and agricultural machinery density
(T2) reflected advances in agricultural production technology,
which in turn influenced the agricultural WF. The adjustment of
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FIGURE 4
(A) Agricultural WF and composition, (B) blue WF, (C) green WF and (D) grey WF of four food crops in Beijing area.

the planting structure (PS) directly affected the total agricultural
water demand, making it a key factor representing the production
structure.

ln I = ln a+ b ln P+ c ln A1 + d ln A2 + e ln A3 + f ln T1 + g ln T2
(24)

4 Results

4.1 Temporal variations in the agricultural
WF in the Beijing area

Equations 1–5 were used to calculate the agricultural WF in the
Beijing area from 1984 to 2018. The results of WF and the sown
area of main grains are shown in Figure 4A. From 1984 to 2018,
the annual average agricultural WF in the Beijing area was 16.0 ×
108 m³, decreasing from 22.0 × 108 m³ in 1984 to 3.86 × 108 m³ in
2018, with an average annual variation rate of 4.54%. The absolute
Z value from the Mann‒Kendall (MK) test was greater than 1.96,
indicating a significant downward trend over the study period. The

maximum value was 24.1 × 108 m³ in 1994, and the minimum
value was 3.86 × 108 m³ in 2018. Between 1984 and 2000, the
agricultural WF fluctuated slightly, averaging approximately 22.2 ×
108 m³. Starting in 2001, the agricultural WF of the Beijing area
began to decrease significantly, although it exhibited an increasing
trend from 2004 to 2009, with an average annual growth rate of
4.11%.With an average annual decline of 12.6%, the agriculturalWF
displayed a continuous downward trend from 2009 to 2018.

The trend in WF variation was consistent with the variation in
the crop sowing area, indicating that the crop sowing area was a key
factor influencing the WF. In terms of WF composition, the overall
pattern observed was green WF > grey WF > blue WF. On average,
the green WF accounted for approximately 44% of the total WF, the
grey WF accounted for 40%, and the blue WF accounted for 16%.
The trend in the variation in the green WF was largely consistent
with that in the total WF, with an average annual variation rate of
16.0%. The grey WF initially increased, peaking at 9.21 × 108 m³
in 1994, before continuously decreasing to a minimum of 2.23 ×
108 m³ in 2018. The annual variation rate of the blue WF was 52.0%,
which was significantly influenced by precipitation and the planting
structure.
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TABLE 2 MK trend test for WFs.

Maximum Minimum Average Z value Variation trend

(×108m3) (×108m3) (×108m3)

Total WF 24.07 3.86 16.04 −5.14 Downward trend

Green WF

Wheat 4.08 0.07 1.27 −5.06 Downward trend

Maize 8.90 1.21 5.19 −5.23 Downward trend

Soybean 0.57 0.05 0.29 −4.97 Downward trend

Rice 1.62 0.00 0.53 −8.18 Downward trend

Total 14.13 1.33 7.27 −5.42 Downward trend

Blue WF

Wheat 4.75 0.21 2.16 −6.11 Downward trend

Maize 4.16 0.00 0.59 −0.50 No significant trend

Soybean 0.45 0.00 0.10 −1.01 No significant trend

Rice 0.40 0.00 0.05 −0.48 No significant trend

Total 8.50 0.22 2.90 −5.17 Downward trend

Grey WF

Wheat 3.75 0.48 1.98 −4.57 Downward trend

Maize 4.98 1.74 3.51 −0.80 No significant trend

Soybean 0.23 0.01 0.09 −5.42 Downward trend

Rice 0.71 0.01 0.29 −5.17 Downward trend

Total 9.21 2.23 5.87 −3.86 Downward trend

The green, blue, and grey WFs of the four crops are depicted
in Figures 4B–D. The average green WF of the four crops, ranked
from largest to smallest, was as follows: maize > wheat > rice >
soybean, with a significant decline observed across all crops. The
average annual green WF for soybeans was 0.29 × 108 m³. Between
1984 and 1998, the average green WF of maize was approximately
7.75 × 108 m³, but it significantly decreased to 3.55 × 108 m³ in 1999,
primarily due to severe drought in the Beijing area, where rainfall
was only 36% of that of the previous year. Among the four crops,
wheat was the most water intensive, exhibiting the highest blue WF,
followedbymaize, soybean, and rice.TheblueWFofwheat showed a
significant fluctuating downward trend, reaching aminimumof 0.21
× 108 m³ in 2017. The blue WF of maize varied significantly from
year to year, with an average of 0.59 × 108 m³. When precipitation
meets crop growth needs—specifically, when effective precipitation
exceeds crop evapotranspiration—the blueWF is zero.TheblueWFs
of soybeans and rice remained consistently low. The grey WF of
maize and wheat accounted for 93.6% of the total footprint among
the four crops, initially increasing and then decreasing, whereas that
of soybeans and rice remained very low. The MK trend test results
are presented in Table 2. From 1984 to 2018, the absolute Z values
for the WFs of all crops except for the blue WF and grey WF of
maize exceeded 1.96 and were all negative, indicating a significant
downward trend.

4.2 Spatial differences in the agricultural
WF in the Beijing area

Figure 5 illustrates the spatial distribution and temporal
evolution of the agricultural WF across various districts and
counties in the Beijing area from 1990 to 2018. Overall, there
were considerable variations in the agricultural WF among the
districts and counties. Tongzhou District recorded the highest
agricultural WF, with an average annual value of 2.71 × 108 m³,
followed by Shunyi District and Daxing District, with averages of
2.59 × 108 m³ and 2.44 × 108 m³, respectively. Tongzhou and Shunyi
districts were the two largest areas in terms of grain sown area,
with an average of 5.4 × 104 m3 and 5.3 × 104 m3 per year. These
values were approximately 1.1 × 10⁴ m³ higher than that of Daxing
district, which ranked third with 4.2 × 10⁴ m³. The blue and green
WFs in Tongzhou and Shunyi districts were relatively similar, with
the primary difference lying in the grey WF. Between 1990 and
2018, Tongzhou district had an average fertiliser use of 200 kg per
hectare more than Shunyi district. This higher fertiliser application,
in the context of similar blue and green WFs, contributed to
agricultural WF of Tongzhou district being the highest among all
districts and counties in the Beijing area. The agricultural WF in
each district decreased by an average of 80.1% from 2015 to 2018
compared to that from 1990 to 1994. Notably, the agricultural
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FIGURE 5
Agricultural WFs of Beijing area in different periods.

WFs of the Chaoyang and Fengtai districts exhibited the most
significant reductions, each decreasing by more than 98%. In 1992,
the actual cultivated land area of the Beijing area was 408,300 hm2,
with 37,900 hm2 located in the suburban districts of Chaoyang,
Fengtai, Shijingshan, andHaidian. By the end of 2018, the cultivated
land area of the Beijing area had decreased to 212,800 hm2, with
the four suburban districts reduced to 6,600 hm2, which was an
82.6% reduction. This significant reduction in arable land was
accompanied by a corresponding decrease in the agricultural WF.

In terms of WF composition, the green WF was dominant from
1990 to 1994, accounting for an average of 50%, followed by the grey
and blue WFs. The proportion of the grey WF gradually increased
thereafter, reaching 55% from 2015 to 2018, whereas the green WF
decreased to 39%. The WF composition among different districts
and counties showed little variation; however, the green WF in
Mentougou District consistently exceeded 70% over many years.
This was attributed to the district having the lowest fertilizer usage
per unit of cultivated land, resulting in a relatively small grey WF.

4.3 Assessment of agricultural water
resource utilization in the Beijing area on
the basis of WF variations

Equations 9–19 were employed to calculate the agricultural
WSI and RRV indices for the Beijing area from 1984 to 2018.
The calculation results of WSI index are shown in Figure 6A.

The annual average WSI was 1.21, indicating a severe level of
agricultural water resource stress in the Beijing area over the long
term, withWSI values exceeding 1 in 25 out of the 35 years. Between
1999 and 2007, the WSI remained above 1 for nine consecutive
years, primarily because of significantly lower precipitation than
the annual average, marking the most severe drought period in
the Beijing area since the 1950s (Shuang-shuan, 2015). WSIblue and
WSIgreen quantified water resource scarcity during crop production
from a water quantity perspective. The annual average WSIblue
value was 1.37, with a maximum value of 6.70 in 1999; and
the annual average WSIgreen value was 0.60 with a maximum
value of 0.73 in 2007. A high WSIblue typically corresponded to
a low amount of available water resources, indicating extreme
blue water scarcity in the Beijing area, with significant interannual
variations. WSIgrey quantified the sustainability of water resource
use from a water quality perspective (Shu et al., 2021). Between
1984 and 2018, the annual average WSIgrey was 0.63, indicating a
moderate level of water scarcity. Between 1999 and 2002, WSIgrey
was greater than 1, coinciding with high WSIblue values and
low available water resources, indicating an increased likelihood
of agricultural water pollution during this period. To assess the
sustainability of agricultural water resources in the Beijing area,
RRV index was calculated, as presented in Figure 6B. From 1984
to 2018, the WSI values exceeded 0.8 on 25 occasions, with
a multiyear reliability average of 0.25, peaking at 0.60 in 1993
and 1994 and reaching its lowest value of 0.10 between 2001
and 2010. The reliability of agricultural water resources in the
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FIGURE 6
(A) WSI of total agricultural WF, blue WF, green WF and grey WF in Beijing area, and (B) Reliability-resilience-vulnerability indices.

Beijing area continuously declined from 1994 to 2001, reaching
its lowest value of 0.10 before increasing to 0.30 after 2009. In
recent years, the reliability of agricultural water resources in the
Beijing area had exhibited a downward trend owing to consistently
high WSI values exceeding 1. The average annual resilience index
was 0.20, reflecting the capacity of water resources to recover
from extreme stress to normal levels. The WSI of the Beijing area
frequently exceeded 1, suggesting low resilience in agricultural
water resources. When pressure becomes too severe, recovery to
normal levels is difficult within a short time. Additionally, the
average vulnerability index was 1.94, exceeding 1 from 1999 to
2015, reaching a maximum of 4.28 in 2006, and subsequently
decreasing from 2016 to 2018. The sustainability index indicated
that the sustainability of the agricultural water resource system
in the Beijing area peaked in 1993, continued to decline until
2001, and remained in a state of poor sustainability until 2010.
After it rose from 2011 to 2018, it decreased again, reaching a fair
level in 2018.

4.4 Analysis of the driving factors of the
agricultural WF in the Beijing area

The driving factors of the agricultural WF in the Beijing area
from 1984 to 2018 were analysed via the extended STIRPAT model.
The regression results are shown as Table 3. To address the strong
multicollinearity between the dependent and independent variables
and prevent interference from their overlapping information, ridge
regression was performed by using SPSS 26.0 software. This yielded
the regression equation and the corresponding R2 value with
varying asynchronous length k. A smaller k value corresponded
to a smaller deviation. The standardized regression coefficients
stabilized, leading to the selection of k = 0.02 as the step size. After
adjustment, the R2 value was 0.966, with all seven independent
variables passing the significance test and with VIF values less

than 10. The equation of the STIRPAT model was obtained as
follows:

ln I = 0.589 ln P+ 0.245 ln A1 − 0.032 ln A2

+ 0.164 ln A3 − 0.827 ln T1 − 0.233 ln T2

+ 0.410 ln PS (25)

Equation 25 revealed that increases in A2, T1, and T2 reduced
the agricultural WF of the Beijing area, whereas increases in P, A1,
A3, and PS led to an increase in the WF. Among these factors,
the most influential on the agricultural WF of the Beijing area
was the effective irrigation degree (T1). For every 1% increase
in the degree of effective irrigation, the agricultural WF of the
Beijing area decreased by 0.827%. Additionally, the agricultural
population and planting structure played significant roles. The
planting structure emerged as the largest positive driving factor,
whereas effective irrigationwas themost significant negative driving
factor.

5 Discussion

5.1 Temporal and spatial variations in the
agricultural WF in the Beijing area

In this study, the agricultural WF across urban and county
areas of the Beijing area from 1978 to 2018 was quantified. The
agriculturalWF in the Beijing area showed slight fluctuations before
1999, a significant decrease from 1999 to 2003, and a trend of
an initial increase followed by a decrease from 2004 to 2018; this
was consistent with previous research findings (Xu et al., 2015;
Jin et al., 2016). From 2000 to 2018, the agricultural WF in the
Beijing area showed a trend of first increasing but then decreasing.
Nationwide, the agricultural WF exhibited an increasing trend,
while the proportion of the agricultural WF in the Beijing area
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TABLE 3 Regression results.

Variables Definition Non-normalized coefficient Normalized coefficient t value VIF

Constant 10.446 - 12.063 -

P Agricultural population −0.589 −0.327 −4.749 8.540

A1 Gross output value of agriculture 0.245 0.350 6.803 4.747

A2 GDP per capita −0.032 −0.085 −2.093 2.963

A3 Industrial structure 0.164 0.334 5.791 5.996

T1 Degree of effective irrigation −0.827 −0.278 −7.830 2.268

T2 Agricultural machinery density −0.233 −0.108 −2.690 2.885

PS Planting structure 0.410 0.237 3.924 6.555

relative to the national total gradually decreased (Wang Z. et al.,
2023). This indicated a shift in the industrial structure of the
Beijing area, which was characterized by a decline in the proportion
of agriculture. The agricultural green WF of the Beijing area
accounted for the largest proportion of its WF, with green water
being consumed primarily in agricultural production. It played
a significant role in both rain-fed crops and irrigated farmland
(Cao et al., 2015; Cao et al., 2017). Therefore, improving the
utilization rate of green water was crucial for alleviating water
resource pressure. Throughout the study period, the proportion
of the grey WF showed an increasing trend. The decline in soil
fertility in recent years had led to the increased application of
chemical fertilizers as the primary means to replenish soil nutrients
and improve grain yield. Fertilizer use was the primary source of
the grey WF in agricultural production. The fertilizer utilization
efficiency in China is low, and the grey WF generated by fertilizer
leaching negatively impacts the water environment. Enhancing
fertilizer utilization efficiency in grain cultivation is a critical strategy
to reduce the grey WF and control agricultural nonpoint source
pollution.

The WF of food crops is influenced by natural factors,
including crop type, regional climate, and soil type, and social
factors, such as agricultural policy, land planning, and economic
conditions (Xu et al., 2022). Owing to the relatively small variations
in climate types across districts and counties within the Beijing
area, the impact of topography is reflected mainly in the differences
in cultivated area. The terrain of the Beijing area is characterized
by higher elevations in the northwest and lower elevations in the
southeast. This study indicated that the southeastern region, which
was dominated by plains, featured large and dense crop planting
areas, leading to a high and concentrated agriculturalWF.According
to Beijing major function-oriented zone planning, Tongzhou district,
Shunyi district, Daxing district, and the plains of the Changping and
Fangshan districts have been designated new urban development
areas tasked with advancing modern agriculture. For many
years, these five districts had accounted for more than 60% of
the total WF, necessitating stronger management of agricultural
water resources to address the water scarcity in the Beijing
area.

5.2 Variations in agricultural water
resource scarcity and sustainability in the
Beijing area

Rapid population growth and economic development during
the urbanization of the Beijing area had significantly increased
water demand, leading to severe groundwater overexploitation.
The average groundwater depth increased from 6.4 m in 1978 to
25.66 m in 2014, indicating extreme strain on water resources
(Liu et al., 2019; Qin, 2021). To further explore the pressure and
sustainability of the water resource system in the Beijing area,
this study combined the WSI and RRV indices to establish a new
comprehensive water resource assessment framework. The WSI
results indicated that the regional agricultural water resources had
experienced severe shortages for many years, mainly water quantity
type water shortage, in which the blue water shortage problem
had been particularly frequent. In 1999, a water quality shortage
occurred, primarily due to the scarcity of blue water resources.
Since the 1960s, the Beijing area had experienced below-average
annual precipitation and uneven annual distribution, while the
increasing water demand due to population growth had exacerbated
agricultural water resource conflicts, significantly restricting the
sustainable development of agriculture. This study showed that
after 2007, precipitation levels increased compared with those
in previous years, leading to a decrease in the WSI and an
increase in reliability, resilience, and sustainability, returning to
pre-1999 levels. Since 2000, the Beijing Municipal Government
had implemented various measures to mitigate water shortages,
including increasing reclaimed water irrigation in farmlands,
adjusting the agricultural industrial structure, promoting water-
saving agriculture and continuously reducing agricultural water
consumption. However, further measures are necessary to address
the ongoing scarcity of agricultural blue water resources. In
particular, under the influence of climate change, it was crucial to
strengthen the assessment of and response to natural disaster risks,
such as drought. From 2013 to 2018, the WSI remained above 1,
and sustainability remained at a poor to average level, indicating
that the shortage of agricultural water resources remained severe.
The RRV results indicated that, in recent years, the sustainability
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of agricultural water resources in the Beijing region showed an
improvement relative to the 2000s. However, when compared to
the 1990s, there was little improvement, and sustainability levels
remained relatively low. While agricultural water consumption in
the Beijing area had gradually decreased over the years, further
measures, such as the use of advanced water-saving irrigation
technology, the development of high-standard farmland, and
modernization restructuring, were essential for increasing water
resource efficiency and promoting sustainable usage.

This research framework comprehensively considered blue,
green, and grey WFs, constructing a comprehensive evaluation
system for water resources on the basis of the WSI and RRV indices
from the perspectives of both water quantity and quality. Compared
with many previous studies, the water stress due to the heavy use
of fertilizers was considered, and the grey WF was included into the
assessment system in this study. Additionally, by combining theWSI
and RRV indices, the RRV indices was proposed as a new systematic
approach for assessing water resource in agricultural systems. The
agricultural water resource evaluation system was further improved
to provide robust and scientific data support for effective water
resource management.

5.3 Driving factors of the agricultural WF in
the Beijing area

Over the past 35 years, the agricultural WF of the Beijing area
had decreased by 82.5%, with the blue WF decreasing by 95.9%,
the green WF decreasing by 85.6%, and the grey WF decreasing
by 60.4%. From the perspective of water consumption sources, the
reduction in the sown area was the primary factor contributing to
the decrease in the agricultural WF of the Beijing area. On the one
hand, the transformation of the Beijing area into a megacity had
led to significant changes in land use due to economic and social
development needs; on the other hand, the aggressive promotion of
ecological and environmental protection policies, such as returning
farmland to forests, reduced the city’s cultivated land area.Moreover,
as living standards have improved, the demand for fruits and
vegetables has increased, leading to a reduction in the area sown
with grain. By 2018, the area sown with food crops was only 16.7%
of that in 1984.

Variations in crop types significantly impact the amount of
water required for irrigation. The WF per unit of wheat and rice
was greater than that per unit of corn and soybeans. The driver
analysis indicated that a 1% increase in wheat cultivation resulted
in a 0.41% increase in the agricultural WF. Given that wheat and
corn constituted approximately 90% of the total crop production,
cultivating crops such as corn, which had a lower unit WF, can
promote more efficient water resource use. Considering the current
situation of water shortages in the Beijing area, it is necessary to
change the planting structure.

Each 1% increase in the degree of effective irrigation and
density of agricultural machinery could reduce the agricultural
WF by 0.827% and 0.233%, respectively. This research indicated
that agricultural modernization and the continuous progress of
water-saving irrigation technology and supportive measures could
reduce irrigation water consumption, increase the efficiency of
agricultural water resource utilization, and subsequently lower the

agricultural WF. Agricultural modernization is an important goal in
China, with mechanization serving as its foundation. The growing
demand for food crops due to population growth has driven
advancements in agricultural machinery. On the one hand, this
progress has led to increased crop yield and improved agricultural
production efficiency; on the other hand, water-saving agricultural
mechanization has improved the utilization efficiency of agricultural
water resources.

Population factors significantly influenced the agricultural WF
in the Beijing area. The results indicated that a 1% increase in
the permanent population corresponded to a 0.589% decrease in
the agricultural WF of the Beijing area. Typically, an increase in
population led to an increase in the agricultural WF (Huang et al.,
2021); however, the context in the Beijing area was contrary to this
trend. As a megacity in China, the permanent resident population
of the Beijing area in 2018 was 223% of that in 1984, whereas
the agricultural population in 2018 was only 75% of that in 1984.
Rapid urban development has driven more workers from rural
areas to seek employment in cities. This shift had led to the
abandonment of cultivated land and a reduction in the agricultural
population (Gong et al., 2020). Owing to rapid urbanization and
urban planning in theBeijing area, the cultivated land area decreased
from 422,000 ha in 1984 to just 21.3 ha in 2018. This drastic
reduction in cultivated land area led to a corresponding decrease in
the agricultural WF, resulting in a negative impact of population on
the agricultural WF of the Beijing area.

Various economic factors exerted distinct impacts on the
agricultural WF in the Beijing area. The total agricultural output
value was the largest positive driving force of the agricultural
WF in the Beijing area; for every 1% increase in the gross
output value of agriculture, the agricultural WF increased by
0.245%. From 1984 to 2018, the total agricultural output value
of the Beijing area increased from 1.44 billion CNY to 11.47
billion CNY (Beijing Municipal Bureau Of Statistics, 2019). An
increase in the gross output value of agriculture indicated an increase
in crop production, necessitating significant water resources to
support crop growth. The industrial structure was the second most
significant positive driver of the agricultural WF in the Beijing
area. A 1% increase in the proportion of primary industry resulted
in a 0.164% increase in the agricultural WF of the Beijing area.
Between 1984 and 2018, the proportion of primary industry in the
Beijing area declined from 6.8% to 0.4%. The industrial structure
of the Beijing area had been progressively optimized, with primary
and secondary industries gradually shifting to the tertiary sector,
significantly reducing the agricultural WF. The negative correlation
between GDP per capita and the agricultural WF of the Beijing
area indicated a reduced reliance on agriculture for economic
development, with residents increasingly deriving economic benefits
from secondary and tertiary industries, in line with the evolving
industrial structure.

5.4 Recommendations to ease the pressure
on agricultural water resources

The population growth in megacities such as Beijing inevitably
increases the demand for food, which in turn drives higher water
demand. As a result, the Beijing area imports significant quantities of
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food crops to alleviate pressure on water resources. While reducing
the crop planting area is the primary strategy for minimizing
agricultural water use, the Beijing area must still preserve a certain
amount of cultivated land to maintain ecosystem services and
ensure a basic level of food self-sufficiency (Huang et al., 2012).
To alleviate agricultural water resource pressures and promote
regional sustainable water use, the recommendations are proposed
as follows. (1) To maximize the efficient use of water resources by
considering local climate conditions, selecting suitable crop types,
optimizing planting structures, and reducing the planting area of
high-water-consuming crops such as wheat. (2) To promote the
adoptions of water-saving technologies in agriculture. As of 2020,
the effective utilization coefficient of farmland irrigation water in
the Beijing area was 75%, leading the nation, although it was
still behind the 80%–90% efficiency levels seen in agriculturally
developed countries. Advancements in water-saving technology can
reduce blue water losses during irrigation, increase the efficiency
of green water resource use, and thereby ease agricultural water
resource pressures in the Beijing area. Additionally, the government
should promote water-saving technologies tailored to the needs
of farmers and crop types while encouraging the cultivation of
drought-tolerant and water-efficient crops. (3) To continuously
promote the applications of formulated fertilizers, organic fertilizers
and other scientific fertilizer application methods, such as tailor-
made fertilizer formulations according to different soil types and
crop varieties along with policy subsidies, strengthen publicity
and education on scientific fertilizer application, enhance fertilizer
utilization efficiency, reduce grey WF, and control agricultural
nonpoint source pollution. At the same time, crop yields have
increased, indirectly reducing the WF of crop production.

6 Conclusion

This study analysed the temporal and spatial variations in
the agricultural WF from 1978 to 2018, assessing the degree of
water resource scarcity from both water quantity and water quality
perspectives through blue, green, and grey WFs. On the basis of
these assessments, an RRV indices was developed to evaluate the
sustainability of agricultural water resources in the Beijing area,
further enriching the comprehensive assessment system of water
resources. The STIRPAT model was subsequently employed to
investigate the driving factors influencing the agricultural WF. The
results were as follows. (1) Agricultural WF in the Beijing area
decreased significantly from 1978 to 2018. The green WF accounted
for 43% of the total WF of the Beijing area. It indicated that the
primary requirement for the growth of grain crops in the Beijing
area was green water. (2) The WSI revealed that the Beijing area
had consistently faced blue water shortages over the years, with
water scarcity remaining severe. The RRV results indicated that
the sustainability of the water resources system remained at a low
level.TheBeijingmunicipal government should continue to increase
water resource utilization efficiency to alleviate ongoing water
resource pressures. (3) Analysis of the driving factors suggested that
reducing the proportion of water-intensive crops such as wheat,
enhancing irrigation supportmeasures, and promotingwater-saving
technologies can effectively reduce the agricultural WF. This study
proposed an innovative water resource assessment framework that

combined the WSI and the RRV indices. Building on the traditional
WSI assessment method, this framework not only analysed the
current pressure onwater resources but also extended the evaluation
to the long-term sustainability of the water resource system. It can
provide a more comprehensive and systematic analytical tool for the
sustainable management of water resources.

This study has several limitations in quantifying the agricultural
WF of the Beijing area, as it considers only the WF of certain crops,
does not include the WF of animal husbandry, and does not account
for virtual water flows associated with trade. Given that the grain
supply for the Beijing area is largely supplied from other regions,
future studies should place greater emphasis on the impact of virtual
water trade.
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