
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Earth Sci.
Sec. Solid Earth Geophysics
Volume 13 - 2025 | doi: 10.3389/feart.2025.1525693
This article is part of the Research TopicGeophysics and Petrophysics Issues Involved in Unconventional Oil and Gas Development ProcessesView all 10 articles
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Exploration and development of tight gas reservoirs are pivotal in augmenting oil and gas reserves and production.Tight sandstone reservoirs, characterized by intricate geological environments, nuanced physical property variations, substantial fluid heterogeneities, and ambiguous seismic rock physics responses, necessitate a departure from conventional isotropic reservoir sensitivity parameters. This study introduces an innovative lithofacies identification strategy and methodology grounded in anisotropic rock physics sensitivity parameters. The investigation revolves around 20 core samples from the fourth member of the Xujiahe Formation in Jianyang. A multi-scale approach, encompassing imaging logging, core analysis, porosity/permeability measurements, and cast thin section examinations, was employed to classify the samples into four distinct categories: dry and water-saturated pore types, alongside dry and water-saturated fractured pore types. Subsequently, an enhanced full-angle ultrasonic anisotropy testing system was utilized to conduct multi-directional acoustic wave measurements. The results revealed that gas-bearing fractured pore samples exhibit pronounced velocity and amplitude anisotropy, setting them apart from other lithofacies types. To quantify these distinguishing features, a rock physics template encompassing P-wave anisotropy (ε) and amplitude anisotropy (εA) parameters was established. By setting thresholds for ε and εA (>20%), the dry fractured pore lithofacies can be effectively discriminated. Moreover, leveraging the full-angle waveform similarity coefficient spectrum, we used a special parameter, εslow, for slowness anisotropy, along with its theoretical derivation. Notably, water-saturated pore types exhibited slowness anisotropy parameters consistently below 0.01. Integration of the (λρ-μρ) template and its thresholds (λρ<60 & μρ<30) further facilitated the selection and differentiation of all four lithofacies types. These research outcomes contribute significantly to advancing the prediction of tight sandstone reservoirs and fluid identification, offering a robust framework for future exploration endeavors.
Keywords: Tight sandstone, Anisotropy, Fluid identification, Rock physics, Quantitative Interpretation
Received: 10 Nov 2024; Accepted: 15 Apr 2025.
Copyright: © 2025 Dai, Yan, Wei, Xi and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Juncheng Dai, PetroChina Southwest Oil and Gasfield Company, Chengdu, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.