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In the Chaixi region of the Qaidam Basin’s Qigequan tectonic zone, the
compact sandstones are characterized by their low porosity and permeability,
featuring intricate pore-throat formations, varied lithologies, assorted clay
minerals, and pronounced unevenness among the reservoirs. There’s a weak
link between reservoir metrics and logging reactions, making it challenging
to assess these reservoir parameters. The microscopic pore structure of the
reservoir can be illustrated through both the nuclear magnetic resonance
relaxation time distribution and the capillary pressure curve. By using fractal
dimensions to classify the reservoir, a conversion model between the transverse
relaxation time in nuclearmagnetic resonance logging and the capillary pressure
in the mercury injection curve is established, enabling the conversion of
pseudo-capillary pressure curves. Key elements of the pseudo-capillary pressure
curve, specifically discharge and drive pressure, median pressure, and sorting
coefficient, were analyzed and integrated with the generalized regression neural
network for accurate reservoir type classification. An efficient categorization
of reservoir types was accomplished by isolating three key elements from the
pseudo capillary pressure curve—displacement pressure, median pressure, and
sorting coefficient—and integrating themwith the generalized regression neural
network. Utilizing a rock physics framework, a correlation between transverse
relaxation time of nuclear magnetic resonance and relative permeability
conversion was formulated to accurately forecast the rate of water generation
in the reservoirs of the western Qaidam Basin. The anticipated outcomes
demonstrated a strong link with the real rate of water production. This technique
presents an innovative method to forecast the comparative permeability of oil-
water stages and the rates of water generation in compact sandstone reservoirs.

KEYWORDS

dense sandstone reservoir, T2-Pc Modelling, fractal dimension, T2-Kr Modelling,
projected water yield

1 Introduction

Assessing the structure of pores plays a crucial role in evaluating reservoirs.
The dimensions and arrangement of pores and throats play crucial roles in
determining the reservoir’s capacity for storage and its permeability (Lai et al.,
2018). Widely adopted techniques for analyzing the architecture of rock pores
encompass techniques like thin-section identification, mercury compression,
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TABLE 1 Parameters of mercury compression for different reservoir
types.

Rock type Class I Class II

Permeability (10−3μm2) 0.299 0.001 ∼ 0.470

Porosity (%) 4.114 3.652 ∼ 7.964

Displacement Pressure (MPa) 1.011 6.869 ∼ 24.105

Median Pore Radius (μm) 0.063 0.010 ∼ 0.023

Median mercury Saturation Pressure (MPa) 11.709 31.498 ∼ 75.202

MaximumMercury Saturation (%) 84.063 38.829 ∼ 73.919

Peak Penetration Distribution (%) 45.333 32.759 ∼ 50.417

Peak Pore Size Distribution (%) 12.699 11.853 ∼ 21.423

nuclear magnetic resonance (NMR), and scanning electron
microscopy (SEM). However, it is often difficult to systematically
characterise the complex pore space information within the rock by
a single pore structure characteristic parameter (Tian et al., 2018).

During the initial years of the 1990s, core NMR techniques
were utilized in petrophysical experiments, revealing that both
the T2 distribution and capillary pressure curve are indicative of
the distribution of the pore size (Wang et al., 2018; Dong et al.,
2023). Numerous researchers, aiming to perpetually assess reservoir
characteristics and formation depth using logging curves, employed
NMR for inverting capillary pressure curves (Xie et al., 2021;
Jin et al., 2024), thereby determining the correlation between these
pressure points and the period of transverse relaxation. Utilizing
various transformation techniques, one can derive the pseudo-
capillary pressure curve (Xiao et al., 2016; Zhang et al., 2020;
Gray et al., 2021), and a power function correlation exists between
the relaxation time at T2 and the size of pores in throat radius,
altering across different sizes of pores (Guo et al., 2019; Zhou et al.,
2022; Li et al., 2023). Oil and water phases’ relative permeability
varies dynamically with alterations in pore configuration and water
saturation levels, with the relative permeability curve mirroring the
fundamental flow law of oil and water phases in oil and water
seepage (Su et al., 2020; Ji et al., 2022; Pei et al., 2022; Moodie and
McPherson, 2024).

Many researchers have devoted themselves to exploring the
application of different methods in reservoir water yield prediction,
including the determination of theoretical water yield curves
through seepage theory and the correction of relative permeability
curves through nonlinear optimisation algorithms, which are
analysed based on production and core experimental data (Peng,
2020; Wu et al., 2024). A relative permeability calculation model
considering the non-Darcy effect is established, and the effects
of different non-Darcy coefficients on the phase permeability
curve and reservoir production are analysed by phase permeability
experiments and numerical simulations. There are also studies
proposing the use of neural networks to construct a prediction
model, as well as the development of a calculation model based on
nuclear magnetic resonance and conventional logging data, etc., in

order to better carry out the calculation and quantitative evaluation
of water production rate (Azim and Aljehani, 2022; Mo et al., 2024).
In addition, some researchers not only analysed the influence of
phase permeability experiments and numerical simulations, but also
introduced new parameters such as bound water saturation and
tortuosity, aiming to improve the accuracy of water production rate
prediction (Parvazdavani et al., 2022; Yi et al., 2024).

This research initially identifies the link between the
NMR T2 spectrum and capillary pressure curve in the study
area’s uneven strata, derived from petrophysical studies, and
categorizes this connection with the capillary pressure curve,
subsequently integrating it with the GRNN neural network
for effective reservoir classification. In the case of various
reservoir types, NMR T2 to relative permeability graphs
were developed, leading to the computation of the reservoir’s
water production rate, which closely aligns with the real
production figures.

2 Geological profile of the study area

2.1 Geological background

Situated in the Qinghai-Tibetan Plateau’s northeastern region,
the Qaidam Basin, a diamond-shaped desert basin between
mountains, ranks among China’s top ten inland sedimentary
basins. It spans approximately 850 km from east to west and
150–300 km from north to south, spanning roughly 121,000 km2.
Its elevation ranges between 2,600 and 3,700 m, with elevated
areas in the west and low in the east, and wide in the
west and narrow in the east (Figure 1). Currently, the basin
comprises five main tectonic segments and 25 auxiliary tectonic
segments; it features 13 stratigraphic formations spanning from
the Paleozoic to the Cenozoic, with confirmed oil and gas
reserves scattered across the Jurassic, Paleocene, Neocene, and
Quaternary periods (Li X. et al., 2024).

In the western region of Qaidam, the structure features a total
backslope in its superficial section and a fractured nose in its deeper
area, with the Qigequan Oilfield forming multiple layers of oil layers
ranging from shallow to deep at the backslope’s heart. Presently,
evidence supports the existence of seven distinct stratigraphic layers,
specifically the Shishigou Formation (N3

2 uncapped), the Upper
Youshashanshan Formation (N2

2), the Lower Youshashanshan
Formation (N1

2·), the Shangchaigou Formation (N1·), the upper
segment of the Lower Ganzhaigou (E23·), the lower segment of
the Lower Ganzhaigou (E13·), and the Luluehe Formation (E1+2·).
The tight sandstone reservoirs in Chaixi area are mainly developed
in lacustrine sedimentary environments. The upper section of the
Shanqiaogou Formation (E2³) is a lacustrine basal fine-grained
detrital structure, with sediments mainly consisting of fine-grained
mudstone and sandstone. The depositional depth ranges from 300
to 1,000 m, with gray sandstone and conglomerate dominating in
the basinmargins and brownish redmudstone predominating in the
northwest section, concentrated in the sandstone-gravel andmuddy
sedimentary environments near the lake edge and in the center of the
lake, showing obvious heterogeneity characteristics (Hao et al., 2020;
Wenjie and Ye, 2024).
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FIGURE 1
Allocation of key oil and gas reserves and the positioning of the Qigequan Oilfield in the Qaidam Basin’s western region (A), along with the
hydrocarbon reservoir’s profile (B) and the stratigraphic lithological profile (C).

FIGURE 2
Histogram of porosity analysis (A), histogram of permeability analysis (B).

2.2 Tight sandstone reservoir
characteristics

2.2.1 Reservoir physical characteristics
The examination of the core’s physical data reveals a wide

range of physical characteristics in the Lower Ganchaigou

Formation’s reservoir from the Oligocene, with the porosity
of the eight core samples varying between 3.65% and 7.96%,
averaging at 5.77%. Permeability ranges from 0.0007 to 0.47
× 10−3 μm2, with an average of approximately 1 × 10−3 μm2,
categorized under low porosity and ultra-low permeability
(Figure 2).
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FIGURE 3
Statistical diagram of rock chip composition analysis.

2.2.2 Clastic composition
The rock chip composition of the samples is quartz, clasts, clay

minerals and other colluvium (Figure 3). By analyzing the thickness
of the casts, feldspar is clearlymore abundant than quartz in content,
and the colluvium is dominated by carbonates (calcite, dolomite,
aragonite and rhodochrosite).

3 Characterization of reservoir
microporous structure

3.1 Characterization of pore structure by
NMR T2 spectroscopy

Nuclear magnetic resonance (NMR) denotes the interplay
between atomic nuclei and a magnetic field (Wei et al., 2019).
The three main types of NMR relaxation are surface relaxation,
fluid volume relaxation, and diffusion relaxation in a gradient field.
Consequently, the complete relaxation of NMR in porous materials
is characterized by this mathematical equation:

1
T2
= 1
T2B
+ ρ( S

V
)+

D(γGTE)2

12
(1)

Where: T2 is the total relaxation time, ms; T2B is the volume
fluid lateral relaxation time, ms; ρ is the surface relaxation strength;
S is the pore surface area, cm2; V is the pore volume, cm3; G is the
magnetic field strength, 10−4T/cm; γ is the rotational magnetism
ratio of the hydrogen proton, (T ⋅ s)−1; TE is the echo spacing, ms;
D is the apparent diffusion spacing of the pore fluid, cm2/s.

In single-phase pore fluid, the water’s volume relaxation time
(2-3 s) is much longer than T2, making T2B negligible for total
relaxation. When the magnetic field gradient G is very small, the
echo interval TE is particularly short, and the diffusive relaxation is
negligible.

Relaxation at the surface of rock particles happens due to energy
reduction, a result of ongoing interactions between fluid molecules
in the pore space and the surface of the particles. Surface relaxation
depends on the rock’s relaxation intensity and surface area. Bigger
pores exhibit lower S/V ratios, reduced particle collisions, and
extended relaxation periods; conversely, smaller pores display higher
S/V ratios and briefer relaxation durations. Consequently, the T2

FIGURE 4
NMR T2 distribution of core samples from Qigequan Oilfield.

spectrum observed in saturated water rocks essentially mirrors the
interplay between the fluid within the pores and the surface of these
pores. Equation Simplification of Equation 1 is possible as:

1
T2
= ρ( S

V
) (2)

The S/V of spherical pores is 3/r, and the S/V of tubular throats
is 2/r, r being the radius of the ball. Therefore, Equation 2 can be
expressed in the form of Equation 3:

1
T2
=
Fρ
r

(3)

Where: F is the shape factor.The distribution ofNMRT2 spectra
reflects the distribution of rock pore sizes, with large pore sizes
corresponding to large lateral relaxation times and small pore sizes
corresponding to smaller lateral relaxation times.

The NMR T2 spectra of the core samples drilled from
the reservoir of the Lower Paleocene Ganchaigou Formation
were measured (Figure 4). The main peak (the peak with the largest
amplitude) of the T2 spectrum of the core samples with Class I pore
structure is located between 10 and 100 ms, and the amplitude of the
main peak is lower than that of Class II, which indicates that there
are more macropores; the main peak of the T2 spectrum of the core
samples with Class II pore structure is located between 0 and 10 ms,
which indicates that there are more micropores.

3.2 Capillary pressure curves characterize
pore structure

The capillary pressure curve delineates the correlation between
capillary pressure and pore size in rock pores, derived from
experimental data under specific circumstances.The term “capillary
pressure” denotes the force exerted in a capillary tube by capillary
movements, linked to aspects like the size of the pores and their
ability to wet. The contour and features of the capillary pressure
curve are indicative of the rock’s pore configuration and moisture-
absorbing attributes, crucial for evaluating the reservoir’s water and
fluid retention abilities (Zhao et al., 2021).

The capillary pressure curve in these experiments is primarily
examined using the mercuric pressure technique. Given the relative
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FIGURE 5
Capillary pressure curves of core samples from Qigequan Oilfield.

stability of mercury’s surface tension and wetting contact angle, the
capillary pressure curve, as recorded by themercuric pressuremeter,
is frequently employed to adjust the size and distribution of pores.
Under the presumption that the pore structure consists of cylindrical
capillary clusters varying in thickness, Equation 4 illustrates the
correlation between capillary pressure and the size of the pores.

Pc =
2σ cos θ

rc
(4)

Where: Pc is capillary pressure (absolute pressure), MPa; σ
is surface tension, N/m; θ is wetting contact angle, °; rc is
capillary radius, μm.

Under laboratory conditions, σ = 0.48N
m

, θ = 140∘, then there are:

Pc =
0.735
rc

(5)

The capillary pressure curve is converted to an orifice throat size
and distribution curve according to Equation 5.

A graph depicting the mercury injection curve for the core
sample was created. Based on the curve’s morphological features and
mercury injection’s experimental variables, the core’s pore structures
can be categorized into two groups (Figure 5). The parameter
characteristics of the two types of reservoirs are shown in Table
1. A lesser drainage pressure results in a greater pore diameter.
An increase in displacement pressure results in a reduction of the
pore diameter. The characteristics of Class I pores are favorable,
with the mercury entry curve being slanted, minimal drainage
pressure, clear platform intervals, minimal drainage and median
pressure, a larger pore throat ratio, the capillary pressure curve’s
gentler section being parallel, the gentler section lower, and a well-
maintained reservoir. Class II rock samples exhibit a less favorable
pore structure compared to class I rock samples. When subjected
to a specific increase in external pressure, the saturation point of
pore displacement in high-pressure rocks is minimal, the average
pressure is high, and the curve for capillary pressure is sharp.
This indicates subpar organization of the reservoir, uneven fracture
patterns, and a minor distortion in its coarseness.

FIGURE 6
Relationship between T2 and Sv of rock samples from the reservoir of
the Lower Paleocene Lower Ganchigou Formation.

3.3 Principle of nuclear magnetic rotation
pseudo-capillary pressure curve

3.3.1 Fractal dimension theory
Assuming that the reservoir pore size distribution obeys the

fractal theory (Cheng et al., 2024), there are N pores with pore sizes
larger than r to satisfy the power law relationship as follows:

N(>r) = ∫
rmax

r
P(r)dr = ar−D (6)

where a is the constant of proportionality,D is the fractal dimension,
N is the number of pores, rmax is the maximum pore radius in the
reservoir, and P(r) is the pore size distribution density function.

P(r) =
dN(>r)

dr
= a′r−D−1 (7)

where a′ = −Da is a constant of proportionality.
The cumulative pore volume for pores with sizes smaller than r is

obtained by integrating P(r) over the pore volume formula, yielding:

V(<r) = a″(r3−D − r3−Dmin ) (8)

Therefore, the total pore volume is calculated by setting r = rmax:

Vs = V(<rmin) = a″(r3−D − r
3−D
min ) (9)

By taking the ratio of V (<r) to V s, the cumulative pore volume
fraction Sv is expressed. Assuming rmin << rmax, this simplifies to:

Sv =
r3−D

r3−Dmax
(10)

The above equation is called the fractal geometry equation for
reservoir pore size distribution.

Since: T2 is proportional to the pore size r, therefore:

Sv = (
T2 max

T2
)
D−3

(11)

where Sv represents the proportion of the overall pore volume
represented by the aggregate volume of pores exhibiting transverse
relaxation times shorter than T2. At this juncture, a rough fractal
geometry equation for the NMR T2 spectrum is derived.
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According to the derivation of Equations 6–11, Taking
logarithms on both sides has:

Sv = (3−D) lg (T2) + (D− 3) lg(T2 max) (12)

Derived from Equation 12 A linear correlation exists
between saturation and T2 distribution time within the double
logarithmic coordinate framework, suggesting a fractal nature of T2
distribution time.

3.3.2 NMR fractal dimension calculation
The T2 cutoff value (T2_cutoff) is the corresponding T2 value

when the cumulative saturation ismaximumand tends to be stable at
different T2 times after centrifugation. It is the dividing line between
movable fluid and boundfluid.Movable fluid generally exists in large
pores and is easy to be dislodged under a certain external pressure.
Some bound fluids remain in small pores and cannot be dislodged.
For compact sandstone deposits characterized by minimal porosity
and permeability, the traditional T2_cutoff value for logging data
processing (33 ms) has become inapplicable (Zhang et al., 2023).

Upon approximately setting 10 ms as the limit, significant
alterations in the core samples’ slopes were observed on both sides of
T2 = 10 ms (Figure 6). Consequently, the test samples were confined
within the T2 threshold value, and the fractal dimension Ds for the
percolating pores were determined for the segment of T2 ≥ T2_
cutoff value, while the fractal dimension Da for the absorbed pores
was computed for the segment of T2 < T2_cutoff (Figure 7). The
results of the calculation of the fractal dimension of the sample
are shown in Table 2.

3.3.3 NMR pseudo-capillary pressure
Currently, the study of pore structure is mostly applied to

core laboratory analysis, which mainly includes core CT, mercury
pressure experiment andNMR experiment. However, the laboratory
tests are expensive, the period is long, and the test results cannot
represent the actual situation of the whole target stratigraphic
section.Therefore, it is very necessary to use logging data to analyze
the micro pore structure of the reservoir.

The time distribution spectrum of NMR T2, derived from
aligning with NMR logging data, more accurately represents
the size of rock pores. Currently, the lab predominantly utilizes
compressed mercury data for assessing rock pore configurations, a
method that fails to consistently represent the entire well section’s
pore structure and is subject to certain constraints. Nonetheless,
NMR data is capable of capturing the long-term details of
the formation throughout the entire well section, and the T2
distribution of NMR is closely linked to the pore structure and
maintains strong continuity, aiding in the rapid identification and
classification of reservoirs in the continuous depth. Compared
to measurements of capillary pressure profiles, NMR assessments
are rapid and non-invasive. The methods for converting pseudo-
capillary pressure curves using T2 distribution are: linear and power
function methods (Li S. J. et al., 2024).

It was found that the capillary pressure Pc has a power
exponential relationship with the transverse relaxation time
T2 (Equation 13):

pc =m(
1
T2
)
n

(13)

where m and n are transformation parameters and are
dimensionless.

The casewhere theT2 spectrum is bimodal requires a segmented
power function to construct the pseudo-capillary pressure curve
(Equations 14, 15), where:

At the large aperture

pc1 =m1(
1
T2
)
n1

(14)

At the small aperture

pc2 =m2(
1
T2
)
n2

(15)

where: Pc1, Pc2 is the capillary pressure, MPa; T2 is the distribution
time of the NMR T2 spectrum, ms; m1, m2, n1, n2 are the pending
conversion parameters.

The core samples were subjected to NMR to pseudo-hairpipe
pressure using the above equation, and the fit is shown (Figure 8).

Based on the categorization of the pressure mercury curve and
the outcomes of the NMR fractal dimension analysis, along with
the impact of the samples in aligning with the capillary pressure
curve, two distinct conversion models have been formulated
(Equations 16–19):

Model I: when Ds ≥ 2.9

Pc = 62.044
1

T1.612
2
(T2 < T2_cutof f) (16)

Pc = 0.5943
1

T1.058
2
(T2 ≥ T2_cutof f) (17)

Model II: When Ds < 2.9

Pc = 140.79
1

T1.005
2
(T2 < T2_cutof f) (18)

Pc = 3901.4
1

T1.891
2
(T2 ≥ T2_cutof f) (19)

4 Conversion of pseudo-capillary
pressure curves and classification of
reservoir types for the whole well
section

Utilizing the segmented power function technique, the
relationship between lateral relaxation time T2 and capillary
pressure Pc in the piezomercury curve is determined. This model,
tailored to various reservoirs, transforms the NMR T2 spectra of the
entire well section into depth-dependent pseudo-capillary pressure
curves.The characteristics of these pseudo-capillary pressure curves
serve to qualitatively categorize the reservoirs directly. Utilizing the
previously mentioned technique, a machine learning algorithm has
been developed to handle the logging data for the entire well section.

4.1 GRNN principles of neural network
methods

Theconcept of theGeneral RegressionNeural Network (GRNN)
was introduced by Dr. D. F. Specht. The foundation lies in the
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FIGURE 7
Calculation of the dimensionality of the nuclear magnetic fractal.

Radial Basis Function (RBF) network framework, lacking a distinct
structure, and relies on the probability density function (PDF)
linking independent and dependent variables in the sample data,
rather than the intrinsic equation format. The Probability Density
Function (PDF) is used to compare the independent and dependent
variables in the sample data, rather than using the intrinsic
equation format. Estimation of the function occurs via a Parzen
window, employing the sample data as initial conditions, conducting
nonparametric estimations, and determining the regression value
of the dependent variable against the independent variable. The
learning speed is fast, the nonlinear approximation is good, and
it has strong robustness and fault tolerance. It also achieves
good classification results with a small number of samples (Al-
Dousari et al., 2022).

4.2 Classification of reservoir types

Pseudo-capillary pressures at continuous depths are obtained
using T2-Pc conversion models for different reservoir types. The
spectral peaks are forward and the double peaks are not obvious,
the T2 distribution time is small, and the high discharge pressure
corresponds to microporosity. As the T2 time increases, the spectral
peaks are backward and the double peaks are obvious, and the small
discharge-driven pressure corresponds to large pores.

For the training samples, the trio of capillary pressure curve
parameters (DischargeDrive pressure,MedianPressure, and Sorting
Coefficient) were chosen, capable of categorizing the type of
reservoir throughout the entire well section (Figure 9).

Figure 9 shows the classification results of the 2,910 ∼
2,960 m well section, and combined with standard logging data for
comprehensive analysis. According to the NMR T2 spectrum and
the characteristics of the proposed capillary pressure curve, two
different reservoir sections, 2,915 ∼ 2,917 m (Class i) and 2,937 ∼
2,939 m (Class ii), are classified in this section.

The reservoir is located at 2,915 ∼ 2,917 m, which is a Class
I reservoir with clear double peaks of NMR T2 inverse spectrum.
This is typical of reservoirs with well-defined microporosity in
which bound water dominates. In this profile, the middle part of
the proposed capillary pressure curve is mostly parallel, and the
pore size distribution is relatively uniform. The low replacement
pressure, median pressure, and sorting coefficient indicate that the
reservoir fluid flow resistance is low and the reservoir porosity is
relatively uniform. These characteristics indicate that the reservoir
has moderate to high permeability, which usually supports efficient
hydrocarbon flow and makes it more favorable for production.

On the other hand, the forward NMR T2 spectrum of the Class
II reservoir located at 2,937 ∼ 2,939 m has a less pronounced
peak compared to that of the Class I reservoir, which may
indicate a different distribution of pore sizes or a higher degree
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FIGURE 8
Nuclear magnetic conversion pseudo-capillary pressure curve.

of presence of larger pores. The middle section of the pseudo-
capillary pressure curve is basically parallel, but there is some
distortion at the end. This indicates that the pore structure of this
reservoir is more complex or non-homogeneous than that of class
I reservoirs. The driving pressure, median pressure and sorting
coefficient of this profile are higher than that of class I reservoir,
indicating that the fluid flow resistance of this reservoir is greater,
the pore structure is more non-homogeneous, the permeability
is lower, and the fluid transportation is more difficult. This is
characteristic of the reservoir andmay require additional production
enhancement or enhanced recovery techniques to optimize
production. The results of this reservoir classification correspond to
the classification of core samples, which demonstrates the feasibility
of this method.

To further verify the effectiveness of the GRNN model in
the reservoir type classification task, the model results were
quantitatively analyzed using standard classification performance
indicators, including accuracy (Accuracy), recall (Recall), and F1
score (F1-Score). In addition, the confusion matrix (Confusion
Matrix) was used to visualize the classification effects of the model
on different reservoir categories (Class I and Class II).

The classification performance of the GRNN model
is shown in Table 3. On the Class I reservoir, the recall rate and
F1 score are 91.5% and 92.4%, respectively, indicating that the
model can accurately identify the Class I reservoir and has a good
balance in classification results. On the Class II reservoir, the recall
rate and F1 score are 88.7% and 87.5%, respectively, which are
slightly lower than those of Class I, but still indicate that the model
has good classification ability. The overall accuracy rate is 94.2%,
indicating that the model has high accuracy in classifying the
samples as a whole.

5 Reservoir oil-water permeability and
water production rate

5.1 Oil-water permeability and water yield

Within dense sandstone regions, subpar relative permeability
calculations result in imprecise water production rate estimations,
prompting the creation of a T2-Kr conversion model to predict
continuous strata’s water production rates.
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FIGURE 9
Effectiveness of NMR pseudo-capillary pressure in predicting reservoir category.

TABLE 2 Results of NMR fractal dimension calculation for rock samples.

Sample number Permeability (10−3μm2) Porosity
(%)

Da (T2< T2_cutoff) Ds (T2≥ T2_cutoff)

No. 1 0.0014 5.815 0.8096 2.7994

No. 2 0.0011 4.506 0.6156 2.8807

No. 3 0.4700 7.964 — 2.7686

No. 4 0.0190 7.296 1.0083 2.7255

No. 5 0.0090 3.652 1.3011 2.9006

No. 6 0.0019 5.880 0.1633 2.8783

No. 7 0.0007 6.911 0.5808 2.8403

No. 8 0.299 4.114 0.6993 2.8077

The curve of relative permeability comprehensively mirrors the
flow dynamics of oil and water phases. The rate of water production
represents the proportion of water output to the overall liquid output
when oil and water are combined.

fw =
Qw

Qw +Qo
=

Kw/μw
Kw/μw +Ko/μo

= 1

1+ ( Kro
Krw
)( μw

μo
)

(20)

The same reservoir has a constant viscosity ratio μw/μo The
water production rate at this point is related to the relative

permeability ratio of oil and water. This equation is known as the
divergence equation.

5.2 T2-Kr conversion model

In the area of dense sandstone, the relative permeability is poorly
calculated, resulting in inaccurate calculation of water production
rate. To address the challenge of interpreting logging due to the
intricate nature of Qigequan Oilfield’s reservoir pores, the T2-
Kr conversion model was developed for rock samples of various
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TABLE 3 Performance indicators of GRNN classification model.

Indicators Values (%)

Accuracy 94.2

Recall (Class I) 91.5

Recall (Class II) 88.7

F1-Score (Class I) 92.4

F1-Score (Class II) 87.5

reservoir types (Guo et al., 2023; Wei et al., 2024), factoring in
the intricacies of pore structures in dense sandstone reservoirs and
the impact of meander curvature, to forecast the rate of water
production in the continuous layer. According to Posenille’s law, the
flow rate of fluid through a single capillary pore:

q =
πr4Δp
8μL

(21)

Let the pore volume of a single capillary tube be V = πr2L, The
capillary pressure is Pc =

2σ cos θ
r

.
Assuming that the number of capillaries that make up the

rock is n, the total flow rate through the rock per unit cross
sectional volume is:

Q =
(σ cos θ)2Δp

2μL2

n

∑
i=1

Vi

P2ci
(22)

Equation 23 can be obtained by combining Darcy's formula,
which is used to calculate the absolute permeability:

K =
(σ cos θ)2

2
φλ

n

∑
i=1

Si
P2ci

(23)

Under the assumption of ongoing changes in the capillary
radius, a correction factor is implemented to account for the
discrepancy between the theoretical rock state and the actual rock
(Equations 24, 25):

K =
(σ cos θ)2

2
φλ

S=1

∑
S=0

dS
P2c

(24)

Krw =
Kw

K
=

Si

∫
0

dS
P2c

1

∫
0

dS
P2c

(25)

T2-Pc conversion model based on Bianhuiyuan’s derivation,
as shown in Equation 26.

Krw =
∫
T2

T2c

dTc
2

∫
T2 max

T2c

dTc
2

(26)

where T2c is the T2 cutoff corresponding to bound water,
ms; c is an index related to pore
structure, decimal.

Formula 27 is the calculation formula of oil phase relative
permeability:

Kro = (1− S∗w)
2(1−Krw) (27)

Substituting Equations 21, 22 into Equation 20 yields the water
yield equation for the new T2-Pc conversion model.

FIGURE 10
Comparison of calculated oil-water two-phase permeability and water yield curves of Class I rock samples with experimental analyses.
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FIGURE 11
Comparison of calculated oil-water permeability and water yield curves of Class II rock samples with experimental analyses.

FIGURE 12
Reservoir quality and capacity treatment results for well X.

5.3 Reservoir phase infiltration and water
yield calculations using nuclear magnetic
logging

A good linear relationship between the pore structure index c
and lg (T2max/T2s) was found (Equation 28).

c = −1.0493 lg(
T2 max

T2s
)+ 1.8054 (28)

From Figures 10, 11 it can be shown that the predictions fit well
with the experimentally measured results and the conversion model
is feasible.

For each depth point in NMR logging, data undergo processing
to ascertain normalized water saturation. Subsequently, the pore
index is computed, determining the remaining oil saturation in the
bound water. The relative permeability of oil and water, along with
the pseudo-productivity curve at various depths, are ascertained.
Following this, the water saturation from standard logging is utilized
to project the water saturation onto the pseudo-productivity curve
within the respective depth range, enabling the determination of
the well section’s water productivity range. The ultimate outcome of
transforming the entire well section is achieved (Figure 12).

Standard logging figures for well X indicate a water saturation
span of 29%–49%, equating to a pseudo water production rate of
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79%–90.06%. The well’s daily oil output stands at 5.89 m3, and its
water content is 88%, based on the well test outcomes from 3,240 to
3,242 m, aligning with both forecasted and actual test results.

As depicted in Figure 12, the T2-Kr conversion model can
determine the comparative permeability of oil and water in compact
sandstone and the rate of water generation. Two varieties of reservoir
rocks were chosen for this model, demonstrating a favorable
conversion outcome. The entire well section underwent conversion
to achieve the research objective of forecasting the comparative
permeability of oil and water in Chaiwai’s tight sandstone reservoirs
and the rate of water production.

6 Discussion

The experimental data of this study mainly come from the
tight sandstone reservoirs in the Chaixi area. However, the adopted
method has strong regional applicability and can be extended to
different reservoir types and tectonic environments. Compared with
the common linear transformation method and power function
transformation method, the piecewise power function method
used in this paper can depict the details more precisely when
converting the nuclear magnetic transverse relaxation time to the
capillary pressure curve, laying a foundation for the accuracy of
parameter extraction in reservoir type classification. Meanwhile,
in the conventional reservoir type classification, the unified model
parameters are usually applied throughout the entire well section.
In this paper, the fractal dimension is used to conduct the basic
classification of pore structure for complex strata, and different
model parameters are fitted for different pore types, providing
higher accuracy for reservoir type classification. Future research
can integrate more regional data to further verify and expand
the applicability of the model. Additionally, although this study
uses fractal dimension and machine learning methods for reservoir
classification and permeability prediction, future research can
explore the integration of more advanced technologies, such as
deep learning, to further enhance the accuracy and universality
of the model.

7 Conclusions and recommendations

In this research zone, the compact sandstone deposits are
characterized by their low porosity and permeability, exhibiting
significant non-uniformity. Utilizing the fractal dimension aids in
categorizing reservoirs, and a model linking the lateral relaxation
time T2 in NMR logging to the capillary pressure Pc in the
piezomercury curve has been developed for classifying reservoir
types throughout the well section. The T2-Kr conversion model
was developed to fulfill the research objective of forecasting the
comparative permeability of oil, water, and the rate of water
production in Chaixi’s dense sandstone reservoirs, with the thesis’s
primary research findings being.

(1) By applying fundamental concepts from capillary pressure
curves and NMR T2 spectra, we categorize rock specimens,
utilizing the fractal dimension to confirm the precision of these
classifications.

(2) Utilizing the reciprocal conversion dynamics of petrophysical
factors, determine the segmented power function link between
the lateral relaxation time T2 in NMR and the capillary
pressure Pc in the piezomercury graph, and implement the
related T2-Pc conversion model derived from the fractal
dimension outcomes of the reservoir categorization, applied to
the case and demonstrating the effectiveness of the conversion
technique.

(3) Utilizing various conversionmodels for transformingNMRT2
spectra into pseudo-capillary pressure graphs, three principal
capillary pressure parameters are chosen for calculation, these
parameters are picked as the training set, and theGRNNneural
network processes the entire well section’s formation data to
forecast the type of reservoir. Findings indicate the technique’s
suitability for categorizing dense sandstone deposits, with a
positive classification impact.

(4) Utilizing the T2-Kr conversion model to forecast the relative
permeability and rate of water generation in oil-water rock
samples from various reservoir types, aiming to fulfill the
research objective of estimating the relative permeability
and production rate of water in tight sandstone reservoirs
around Chaixi.
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