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Air pollution significantly impacts human health, making the development
of effective pollutant concentration assessment methods crucial. This study
introduces a hybrid machine learning approach to simulate PM2.5 mass
concentration using outdoor images, offering an alternative to traditional
observation techniques. The proposed method utilizes a convolutional neural
network (CNN) to extract image features through transfer learning. The
importance of these features is then evaluated using a random forest (RF) model.
In addition, the extracted image features are combinedwithmeteorological data
(e.g., temperature (TEM), relative humidity (RHU), and sea level pressure (PRS_
Sea)) and pollutant concentration data (hourly PM2.5 concentrations from four
monitoring stations) for complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) signal decomposition. This results in multiscale
signals that are subsequently used in the hybrid machine learning model to
simulate PM2.5 concentrations. The results demonstrate that the ResNet50
training method, which extracts 64 image features, yields the best performance.
An RF model is applied to the low-frequency signal, superimposed with the
trend signal, while a Lasso regression model is used for the high-frequency
signal. The combined approach produces superior simulation results than the
RF model alone. Notably, image feature 23, PM2.5 concentration from the
Institute of Biological Products (IBP), and TEM are most influential for the high-
frequency signal, with characteristic coefficients of 1.409, 0.380, and 0.318,
respectively. For the low-frequency signals, image features 5 and 23, along with
the PM2.5 concentration from the Lanlian Hotel (LH), are the most significant,
with importance values of 0.170, 0.137, and 0.125, respectively. The Lasso
regression model (random forest model) has the function of high (low) value
correction for high (low) frequency signal simulation, leading to more accurate
simulation results. This study proposes a cost-effective method for accurately
estimating PM2.5 concentrations.
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1 Introduction

The rapid development of urbanization and economy has
rendered PM2.5 pollution a significant environmental and social
concern (Geng et al., 2015; Wang et al., 2021; Wang et al., 2018;
Wilson et al., 2024). Prolonged exposure to elevated concentrations
of PM2.5 is associatedwith increasedmorbidity andmortality related
to respiratory diseases (Pascal et al., 2014), cardiovascular diseases
(Brook et al., 2010; Hayes et al., 2020), and cerebrovascular diseases
(Leiva et al., 2013). Researchers have devised various methods
and techniques to assess PM2.5 concentrations in the atmosphere,
with surface monitoring being the most prevalent and accurate
approach formeasuringPM2.5 levels (Fang et al., 2016).However, the
distribution of surface monitoring sites is often sparse and uneven,
and the associated costs can be prohibitive, thereby constraining the
real-time monitoring of PM2.5 concentrations (Brauer et al., 2016;
Carvalho, 2016; Hu et al., 2014). Aerosol optical thickness (AOT) is
proportional to the number of particles in the air. AOT assessment
of PM2.5 concentration has become a widely used method for
satellite derivatives (Beloconi et al., 2016). However, satellite-based
data are not easily accessible and may have missing values in
special conditions such as cloudy, snowy, and high-pollution days
(Luo et al., 2020), and there are defects in the inversion of PM2.5
concentration in the lower layers. Numerical simulations of PM2.5
mass concentration, such as community multiscale air quality
(CMAQ) and theWeather Research and Forecasting model coupled
to Chemistry (WRF-Chem), rely on emission inventories and may
lead to large deviations from the actual situation due to uncertainties
in their estimation and analysis (Zhong et al., 2007), which often
need objective observation to test.

Increased PM2.5 levels contribute to a reduction in atmospheric
visibility, with concentration exhibiting an inverse correlation with
visibility (Wang et al., 2006). Visibility plays a significant role in
determining the clarity of images. By examining the relationship
between outdoor imagery and PM2.5 mass concentration, a
cost-effective assessment of PM2.5 levels in the atmosphere can
be achieved. Liaw et al. (2020) employed a series of image
processing techniques alongside a simple linear regression model
to estimate PM2.5 concentration. In recent years, nonlinear
predictive models, including deep learning and machine learning,
have been increasingly developed and applied in the simulation
and prediction of PM2.5 concentrations. Luo et al. (2020)
established an end-to-end hybrid evaluation model for PM2.5
concentration based on convolutional neural networks (CNNs)
and gradient boosting machines (GBM), utilizing imagery
from the Shanghai Oriental Pearl in 2016. Zheng et al. (2020)
utilized a deep CNN to process images, extracting features that
characterize daily dynamic changes in the built environment,
and employed a random forest (RF) regressor to estimate PM2.5
concentration based on these extracted features in conjunction
with meteorological data. Wang et al. (2024) introduced a hybrid
deep learning model that integrates CNN and long short-term
memory (LSTM) networks, leveraging the temporal continuity of
air quality variations to estimate outdoor PM2.5 concentration from
surveillance images. The aforementioned studies indicate that deep
learning technologies and machine learning models demonstrate
strong performance in the domain of image processing for
estimation purposes.

Research has indicated that hybrid models can amalgamate the
strengths of two or more models, yielding superior performance
compared to that of individual models (Li et al., 2017; Sun and Li,
2020; Wang et al., 2017). Hybrid models can be broadly categorized
into simple hybrid models and decomposition-ensemble models
(Jiang et al., 2021). In these models, nonlinear and non-stationary
data are decomposed into components of varying time scales; each
decomposed subseries is then trained and predicted individually,
with the final predictions aggregated to produce an overall estimate
(Du et al., 2020; Liu et al., 2020; Liu et al., 2019; Yang H. F. et al.,
2020). Bai et al. (2019) proposed a decomposition-ensemble model
that combines ensemble empirical mode decomposition (EEMD)
with LSTM and demonstrated that this hybrid model outperforms
both single feedforward neural networks and LSTM models in
terms of the predictive accuracy. Similarly, Huang G. Y. et al.
(2021) developed a decomposition-ensemble model based on
empirical mode decomposition (EMD) and gated recurrent units
(GRU), with results indicating that the hybrid model’s predictive
performance surpasses that of individual models. For subsequences
generated after signal decomposition and reconstruction, different
models exhibit varying levels of accuracy in simulating results
for subsequences with different frequencies. Therefore, it remains
challenging to evaluate air quality using various machine learning
models to simulate subsequences of differing frequencies and to
integrate the final simulations effectively.

Lanzhou is characterized as a typical valley-type mountainous
city (Liu et al., 2023; Yang Y. P. et al., 2020). Approximately
80% of the days throughout the year experience temperature
(TEM) inversions (Ma et al., 2019), which tend to be prolonged,
thereby creating conditions conducive to the accumulation
of pollutants within the valley. Furthermore, as a significant
industrial hub in Northwest China, Lanzhou serves as a substantial
source of air pollution, with photochemical smog occurring
intermittently (Zhu et al., 2006). Additionally, the prevalence
of dust storms exacerbates air quality issues in Lanzhou due
to its geographical location in Northwest China. The interplay
between natural environmental factors and anthropogenic activities
frequently results in severe air pollution incidents in the city. This
article presents a selection of outdoor imagery and proposes a
hybrid machine learning model that integrates ResNet50, RF, and
Lasso regression to estimate PM2.5 concentrations. This model
utilizes hourly outdoor images, meteorological data, and pollutant
concentration characteristics, aiming to provide technical support
for the observation and prevention of air pollution.

2 Data and methods

2.1 Image data

In this study, hourly outdoor images of Lanzhou City were
collected from 15:00 on 21 October 2021 to 13:00 on 16May 2022 to
simulate PM2.5 concentrations and to establish an image database.
The images were captured at the Guanyun Building of Lanzhou
University. Due to the inability of nighttime images to accurately
reflect the correlation with PM2.5 concentration, images taken at
night were excluded from the analysis. The retained image periods
are summarized in Table 1.
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TABLE 1 Time periods for retaining high-quality images during different
observation intervals.

Date Time period of high-quality image

2021.10.21∼2022.02.20 8:00∼18:00

2022.02.21∼2022.03.17 8:00∼19:00

2022.03.18∼2022.05.01 7:00∼19:00

2022.05.02∼2022.05.16 6:00∼20:00

Due to power outages and other issues, certain images are
absent, resulting in a total of 2,400 images retained.

2.2 Meteorological data

Meteorological factors exhibit a significant correlation with
PM2.5 levels (Chen et al., 2020). In recent predictive models for
PM2.5, these factors have been utilized as auxiliary predictors,
demonstrating their efficacy in forecasting fluctuations in PM2.5
concentrations (Wen et al., 2019). In accordance with Zheng et al.
(2021), TEM, relative humidity (RHU), and sea level pressure (PRS_
Sea) have been identified as key meteorological auxiliary simulation
factors. The meteorological data employed in this analysis consist
of hourly observations from ground meteorological stations across
China (http://data.cma.cn/site/index.html).

2.3 Pollutant concentration data

Pollutant concentration data were obtained from the real-
time national urban air quality release platform of the China
General Environmental Monitoring Station (https://air.cnemc.cn:
18007).Thehourly PM2.5mass concentration recorded at the nearest
Railway Design Institute (RDI) site to Lanzhou University, where
the images were captured, serves as the primary simulation target.
Given themobility of air and the processes of pollutant transmission
and diffusion, the PM2.5 concentrations at RDI exhibit a strong
correlation with PM2.5 concentrations at surrounding air quality
monitoring sites (Chen et al., 2021). In this study, the hourly
PM2.5 concentration values monitored by other stations in Lanzhou
City, excluding RDI, specifically the Education Bureau (EB), the
Lanlian Hotel (LH), the Institute of Biological Products (IBP), and
the Lanzhou University Campus of Yuzhong (LUCY), are selected
as auxiliary simulation factors (Figure 1). The data corresponding
to the times of image capture are utilized as the final pollutant
concentration data.

2.4 Process of simulating PM2.5
concentration

The primary research concepts of this article are illustrated in
Figure 2. This study employed various CNN models for training
using outdoor images, with the aim of identifying the optimal

model based on evaluationmetrics.The image features are extracted
from the outputs of intermediate layers. Through importance
analysis utilizing the RF algorithm (Breiman, 2001; Ji et al., 2023),
image features exhibiting a significant correlation with PM2.5
concentration are selected from the image feature vectors of zero
less than 20%. These selected image features are then integrated
with meteorological variables and pollutant concentration data for
complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) signal decomposition (Jiang et al., 2021;
Yang et al., 2022a; Yang et al., 2022b). An RF model is employed
to train the low-frequency signal superimposed trend signal.
Conversely, the high-frequency signals that yielded suboptimal
training results with the RF model are subsequently analyzed using
six additional machine learning models, from which the most
effective regressionmodel is selected for training the high-frequency
signal. The post-training simulation results of the two frequency
signals are combined to derive the final PM2.5 concentration
simulation.

3 Hybrid machine learning to simulate
PM2.5 concentration

Themodel developed in this study is primarily divided into three
stages to simulate PM2.5 concentration in the region where outdoor
images were captured in Lanzhou. The structure of the model is
depicted in Figure 3.

Step 1. Preprocessing of image (Figure 3A): Within the training
dataset, an image corresponding to the lowest PM2.5
concentration, recorded at 10.00 μg/m3 at 15:00 on 7
November 2021, is designated as the background field image
for clear weather conditions. To mitigate the impact of the
background, the pixel values of the selected clear weather
image are subtracted from the pixel values of all training
images. Subsequently, these adjusted images are utilized for
model training.

Step 2. Extraction of image features (Figure 3B): Utilizing outdoor
image samples, the research employed a pre-trained network
on image datasets characterized by a limited sample size
through the transfer learning method (Jean et al., 2016).
The earlier layers of the convolutional base are designed
to encode more generic and reusable features, whereas the
higher layers are responsible for encoding more specialized
features (Chollet, 2017). This study implemented a fine-
tuning approach to retrain the final layers of the pre-
trained network model, thereby aligning the selected model
more closely with the computer vision task of simulating
PM2.5 concentration using outdoor air quality images. This
process facilitates the extraction of image features that
exhibit a stronger correlation with PM2.5 concentration
for subsequent machine learning training in Step 3. The
image data are paired with PM2.5 concentration values
and integrated into five deep learning models: VGG16
(Ahmed et al., 2022), VGG19 (Simonyan and Zisserman,
2014), ResNet50, ResNet101, and ResNet152. Through
comparative analysis, ResNet50 was identified as the most
effective pre-trained model for extracting image features.
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FIGURE 1
Distribution of air quality monitoring stations in Lanzhou.

FIGURE 2
Workflow for PM2.5 concentration simulation.

The levels of features can be enriched by the number
of stacked layers (depth). However, network degradation
may occur after the network is deepened by stacking,
and the residual module of the ResNet algorithm can
improve the depth of the neural network and solve the
network degradation (He et al., 2016a). It is widely used
in a variety of computer vision tasks (Li et al., 2022;
Zheng et al., 2021). Figure 3B illustrates a partial structure
of ResNet50 used in this study, and the upper layer of
the original ResNet50 network is modified. Originally,
the upper layers of the ResNet50 network consisted of a

GlobalAveragePooling2D layer of size 2,048 and a dense
layer of size 1,000 for dividing ImageNet images into 1,000
classes. To cater to the image regression task of simulating
PM2.5 concentration, after many experiments based on the
original network structure of ResNet50, the last two layers
are deleted, and new layers are added: First, a flattened layer
of size 100,352 is added to one-dimensionalize the multi-
dimensional input, so as to realize the transformation from
the convolution layer to the dense layer. Second, five dense
layers of size 256 are added through experiments. Then, a
dropout layer is added to randomly discard neurons (and
connections between neurons) from the neural network
when the model works. The discarded neurons do not
participate in forward and reverse propagation, and the
structure of the neural network differs for each signal
input. This technique reduces the complex co-adaptations
of neurons and effectively prevents overfitting of the model
(Krizhevsky et al., 2017; Srivastava et al., 2014). Then, a
fully connected layer of size 64 is added as the middle layer
of the deep network to extract the image feature vector.
Finally, a dense layer and an activation layer of size 1 are
added as the output layer of the ResNet network to output
the simulated PM2.5 concentration value. Because PM2.5
concentration simulation is a regression task, the range
of simulation is theoretically (−∞, +∞), so the activation
layer uses a linear activation function. In the experiment,
only the last five layers of the pre-trained ResNet50 are
fine-tuned, and the bottom layers are “frozen” to ensure
that their weights are always the weights of the original
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FIGURE 3
Hybrid machine learning model structure for PM2.5 concentration simulation: (A) Step 1: Pixel values of the image with the lowest PM2.5 concentration
are subtracted from all input images; (B) Step 2: ResNet50 is selected after comparing five neural network models. GlobalAveragePooling2D and fully
connected layers are replaced with custom layers. The last five layers are fine-tuned, while earlier layers remain frozen to optimize feature extraction;
(C) Step 3: Extracted features are decomposed into high-frequency and low-frequency signals. These signals are trained using separate machine
learning models, and their outputs are combined to generate the final PM2.5 simulation.

ResNet50 during the training process and will not be
updated after training. Only the layers with parameters at
the top of ResNet50 (Figure 3B) are trained, and the newly
added layers are trained. These trained layers update the
weights through the error backward passes between the
simulated PM2.5 concentration value and the observed value
to optimize the model (He et al., 2016b). The experimental
results show that the ResNet50 pre-trained model has a
stronger simulation ability than the original model after
fine-tuning.

After the completion of Step 1, prior to the integration of the
images into the model training process, the image dimensions are
standardized to 3 pixels × 224 pixels × 224 pixels. A total of 2,400
images are paired with their corresponding PM2.5 concentration
values at the relevant times, resulting in 2,400 data pairs. Among
these, 1,600 pairs are designated for the training set, 400 pairs
for the validation set, and 400 pairs for the test set. The network
is trained to minimize the mean absolute error (MAE) and
the mean squared error (MSE) between PM2.5 concentrations

predicted by the ResNet50 model and the observed values,
utilizing the Adam optimization algorithm on mini-batches of the
training samples (Kingma and Ba, 2014). The learning rate (lr)
is set to 0.0001, while other parameters are maintained at their
default values (β1 = 0.9, β2 = 0.999, ε = 10–8). The batch size
is set at 5, and the total number of mini-batches in the training
dataset is 320.

To enhance the image training set and optimize the model more
effectively, data collection techniques are applied to the input images.
These techniques include random horizontal and vertical flipping,
as well as horizontal and vertical random translations, with the
translation distance randomly varying between 0 and the maximum
translation distance, which is defined as 10% of the image’s width
or height. For the newly incorporated dense layer, the activation
function is configured to use the rectified linear unit (ReLU)
function. The ReLU activation function is advantageous as it does
not suffer from gradient vanishing, and its sparse characteristics can
significantlymitigate the issue of overfitting. Furthermore, the ReLU
function is computationally simpler and faster than the sigmoid
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function (Xu et al., 2016). In the dropout layer that has been added,
the dropout rate is set to 0.2. During the model training process,
the number of epochs is established at 60, and the model is saved
after each training iteration. The model that exhibits the lowest
validation loss (val_loss) is selected for the extraction of 64 image
feature vectors.

Step 3. Development of PM2.5 concentration simulation
(Figure 3C): A model is developed to simulate
PM2.5 concentration values utilizing image data,
meteorological factors, and characteristics of pollutant
concentration. In Figure 3C, not all of the 64 image
feature vectors obtained in Step 2 are suitable for the
subsequent PM2.5 concentration simulation. Specifically,
vectors containing a high proportion of 0 values are
excluded, as their correlation with PM2.5 concentrations
is not significant. This lack of correlation is primarily due
to the variability in PM2.5 concentrations associated with
identical 0 values in most instances. In this study, image
feature vectors with 0 values exceeding 20% of the total are
removed. The remaining vectors are then analyzed using
an RF model to assess their importance. The image features
corresponding to the three lowest importance scores are
discarded, and the features that remain are utilized for PM2.5
concentration simulation.

Experiments indicate that the accuracy of simulating PM2.5
concentration using a single RF method is suboptimal. This study
employs the signal decomposition technique (i.e., CEEMDAN)
to decompose various features, including filtered image features,
meteorological element features, pollutant concentration features,
and the target value of PM2.5 concentration. The decomposition
yields high-frequency, low-frequency, and trend (residual)
components, which are subsequently reconstructed into a high-
frequency signal and a low-frequency signal superimposed
with the trend. These two signals are then input into different
machine learning models for simulation, and the results from
both simulations are combined to produce the final simulation
results. This approach aims to minimize errors associated with
different frequency signals, thereby enhancing the accuracy
of the final simulation results. The CEEMDAN method is
an advanced algorithm derived from EEMD. It incorporates
adaptive Gaussian white noise into the data decomposition
process to mitigate pulse interference. In comparison to EEMD,
CEEMDAN demonstrates superior completeness, eliminates
reconstruction errors, offers faster computation speeds, and
effectively reduces the number of intrinsic mode function (IMF)
components that possess minimal significance and small amplitude
(Torres et al., 2011).

For decomposed data, the signal of the IMF component is
reconstructed utilizing continuous mean square error (CMSE)
(Boudraa and Cexus, 2007; Zheng et al., 2018). It is assumed
that X̃k(t) represents the outcome of reconstructing the kth
IMF derived from CEEMDAN applied to the residual sequence
using Equation 1:

X̃k(t) =
M

∑
i=k

IMFi(t) +R(t),k = 1,2,…,M, (1)

where IMFi(t) is the ith IMF of CEEMDAN, and R(t) is the residual
sequence. The expression of CMSE is given as follows:

CMSE(X̃k(t), X̃k+1(t)) =
1
N

N

∑
i=1
[IMFk(ti)]

2, (2)

where N is the number of samples sampled; ti is the time of
sampling; and CMSE is the energy value of the kth IMF component.
After calculating all CMSE using Equation 2, the minimum value is
identified, which represents the optimal reconstruction coefficient
for the low-frequency IMF.This coefficient serves as the demarcation
between high-frequency and low-frequency IMF components. IMF
components preceding the one associated with theminimumCMSE
are classified as high-frequency components, while the remaining
IMF components are categorized as low-frequency components.

If the minimum CMSE obtained through the aforementioned
method corresponds to the energy value of the first IMF component,
it becomes challenging to differentiate between high and low
frequencies. In such instances, an alternative reconstruction
algorithm is employed to effectively distinguish the high and low
frequencies of IMF components (Qi et al., 2015). It is assumed
that the signal is decomposed using CEEMDAN to yield M IMF
components, and specific indicators (A1…AM) are established using
Equations 3–5:

A1 = IMF1, (3)

Ai = IMF1 + IMF2 +…+ IMFi, (4)

AM = IMF1 + IMF2 +…+ IMFM, (5)

The mean value of each index from A1 to AM is calculated, and
a t-test is conducted to determine whether the mean value is
significantly different from 0. If a significant difference is observed
between the mean value of Ai and 0 for the first time, the
components from IMF1 to IMFi−1 are classified as high-frequency
components, while those from IMFi to IMFM are classified as
low-frequency components. The high-frequency components are
aggregated to produce the high-frequency signal, whereas the
low-frequency components, along with the trend component, are
combined to generate the low-frequency signal superimposed with
the trend signal.

Different machine learning methods are employed to train
signals of varying frequencies. A schematic diagram illustrating the
process of signal decomposition and reconstruction is depicted in
Figure 4, utilizing the image feature designated as 2 as a reference.
The original dataset is decomposed into two components: a high-
frequency signal and a low-frequency signal that is superimposed
with a trend signal. These components are subsequently input into
an RF model for independent training. The simulation results are
then compared with the observed values from the validation set,
utilizing metrics such as MAE, root mean square error (RMSE),
and R2. For signals that exhibited suboptimal simulation results
with the RF model, alternative machine learning techniques were
employed, including multiple regression (Han et al., 2020; Hu et al.,
2023), support vector regression (SVR) (Luo et al., 2022; Smola
and Scholkopf, 2004), K-nearest neighbors (KNN) (Shabani et al.,
2020), bootstrap aggregating (Bagging) (Breiman, 1996), least
absolute shrinkage and selection operator (Lasso) (Keeble et al.,
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FIGURE 4
Schematic of signal decomposition and reconstruction for image feature signal 2 (Note: The decomposed components are categorized into
high-frequency and low-frequency signals with a superimposed trend for further analysis).

2021; Tibshirani, 1996), and eXtreme gradient boosting (XGBoost)
(Huang L. X. et al., 2021; Ma et al., 2020). Finally, an RF model
was utilized to simulate the high-frequency signal, while a Lasso
regressionmodelwas employed to simulate the low-frequency signal
superimposed with the trend signal. The final simulation results
were obtained by aggregating the outcomes from the two machine
learning models.

Three indicators are employed to assess model performance:
MAE, RMSE, and R2. Equations 6–8 are provided for these three
indicators:

MAE = 1
N

N

∑
i=1
|xi − ̂xi|, (6)

RMSE = √ 1
N

N

∑
i=1
(xi − ̂xi)

2, (7)

R2 = 1−

N

∑
i=1
(xi − ̂xi)

2

N

∑
i=1
(xi − x)

2,

(8)

where xi is the ith observed value; ̂xi is the ith simulated value; and
x is the average of the observed value.

4 Results and discussion

4.1 Different model training

Two image recognition strategies are employed in this study.
The first strategy involves deep learning applied to the original
images, while the second strategy focuses on deep learning of the
original images minus the clear weather image. Following the image
preprocessing, five deep learningmodels are trained and evaluated for
both strategies. Figure 5 illustrates the evaluation results derived from
the validation set. Within the same model, the training conducted on
images excluding the clear weather image yields superior simulation
results than the training on the original images. Specifically, MAE
and RMSE are relatively lower, and R2 approaches 1. The visibility is
indicated by the differences in pixel values between the two types
of images. Higher PM2.5 concentrations correlate with increased
pollution levels and reduced visibility, which is represented in the
imagesas increasedblurrinessandsignificantdeviations inpixelvalues
fromthoseobservedunderclearweatherconditions.Conversely, lower
PM2.5 concentrations result in minimal differences in pixel values.
Through the process of image subtraction, the relationship between
image information and PM2.5 concentration is enhanced, thereby
improving the accuracy of the simulation results. For the images that
have undergone subtraction, training with the ResNet50model yields
thesmallestMAEandRMSEvaluesof8.33and12.75,respectively,with
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FIGURE 5
Comparison of the validation set performance before and after
subtracting clear weather background image pixels using five deep
learning models: (A) Original images with VGG16; (B) subtracted
image with VGG16; (C) Original images with VGG19; (D) subtracted
image with VGG19; (E) original images with ResNet50; (F) subtracted
image with ResNet50; (G) original images with ResNet101; (H)
subtracted image with ResNet101; (I) original images with ResNet152;
(J) subtracted image with ResNet152.

anR2 of 0.51. Consequently, themiddle layer of theResNet50model is
selected toextract64 image features,whicharenumbered from0to63.

4.2 Extracting features from images

In this experiment, a total of 64 image features were extracted.
The image feature vectors corresponding to 1,600 training set images

TABLE 2 Optimized hyperparameter selection results for RF model.

Hyperparameters Optimal results

criterion squared_error

bootstrap False

max_features sqrt

max_depth 8

min_samples_split 2

n_estimators 600

min_samples_leaf 1

were paired with their respective PM2.5 concentrations to create a
new training dataset. Similarly, the image feature vectors for 400
validation set images were matched with the corresponding PM2.5
concentrations to form a new validation dataset. First, a 3-fold
cross-validation approachwas employed.The ranges for the primary
hyperparameters were established, and RandomizedSearchCV was
utilized to optimize these hyperparameterswithin theRF framework
(Bergstra and Bengio, 2012). Following the identification of an
optimal set of hyperparameters from the defined range, both the
training and validation datasets were input into the RF model
utilizing the fine-tuned hyperparameters. Further refinement of the
hyperparameters was conducted based on the MAE, RMSE, and
R2 between the simulated and observed PM2.5 concentrations in
the validation dataset. The final hyperparameter values determined
through this process are outlined in Table 2.

The significance of these image features was assessed following
the training of the RF model utilizing the initially selected image
features associated with PM2.5 concentration. The results (Figure 6)
indicate that among the 16 image features analyzed, the features
corresponding to the three lowest importance scores (i.e., 16, 60,
and 61) exhibited importance values of 0.015, 0.012, and 0.013,
respectively. These values suggest a minimal correlation between
these three features and PM2.5 concentration. To enhance the
model’s performance and improve the accuracy of the simulated
PM2.5 concentration, these features were excluded from subsequent
analyses. Consequently, the remaining 13 image features were
utilized in the final PM2.5 concentration simulation.

4.3 Signal decomposition and machine
learning of its components

Different frequency signals employ various machine learning
methods. The mass concentration of air pollutants exhibits
periodicity across different scales, and signal decomposition
enhances the predictive capability across these scales.
Reconstruction is performed based on the CMSE values of each
IMF component of the signal in Table 3. For instance, considering
image feature 2, the CMSE value of IMF6 is the lowest, indicating
that the optimal reconstruction coefficient for the low-frequency
IMF is determined to be 6. This implies that the first five IMF
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FIGURE 6
Importance of image features for PM2.5 concentration simulation.

components are classified as high-frequency components, which
are reconstructed separately from the low-frequency components.
All signals are reconstructed following this method. In Table 3, the
optimal reconstruction coefficient for the low-frequency IMF of
PRS_Sea and PM2.5 concentration at the LH is 1, suggesting that
the high-frequency component cannot be ascertained. Therefore,
an alternative reconstruction algorithm is employed to differentiate
between the high-frequency and low-frequency IMF components.

In Table 4, the mean value of Index 2 in PRS_Sea data is
significantly different from 0 for the first time (P < 0.05). In this
context, IMF1 corresponds to the high-frequency component, while
IMF2, IMF3, IMF4, IMF5, IMF6, and IMF7 correspond to the low-
frequency components. Additionally, the mean value of Index 6 in
PM2.5 concentration data from the LH is also significantly different
from 0 for the first time. In this case, IMF1, IMF2, IMF3, IMF4,
and IMF5 represent the high-frequency components, whereas IMF6
and IMF7 represent the low-frequency components. Similarly, IMFs
of the same frequency components are aggregated to yield both
high-frequency and low-frequency signals, respectively.

The high-frequency signal and the low-frequency signal
superimposed trend signal are utilized for training within the
RF model. In Figure 7, the simulation results obtained from the
RF model for the high-frequency signal of PM2.5 concentration
demonstrate relatively poor performance. While the model is
capable of simulating the general trend of changes, it significantly
underperforms in instances of abrupt increases in the high-
frequency signal, yielding results that are considerably lower than
the observed values. In contrast to the low-frequency signal,
the high-frequency signal is characterized by a higher level of
noise and instability in its variations. Furthermore, the simulation
results produced by deep learning models tend to exhibit greater
smoothness. As a result, the performance of the same model on
the low-frequency signal, which exhibits more stable changes, is
superior to that on the high-frequency signal. Additional machine
learningmodels will be employed to train the high-frequency signal.

The high-frequency signals were analyzed using six machine
learning models. The simulation results of the high-frequency

signals and the observed values from the validation set are illustrated
in Figure 8. In this experiment, the Lasso regression model
demonstrated the most effective training performance concerning
the high-frequency signals. The MAE and RMSE between the
simulated high-frequency signal results and the observed values of
the validation set were the lowest, at 7.22 and 10.28, respectively,
with an R2 value of 0.63. The Lasso regression model employs
compressed estimation, allowing for the construction of a more
refined model through the implementation of a penalty function. It
is a biased estimation that can achieve variable selection (Tibshirani,
1996), which improves the accuracy of high-frequency signal
simulation of PM2.5 concentration.

The main feature variables are important factors affecting
machine learning results. According to the characteristic coefficient
in the Lasso regression model to simulate the high-frequency
signal of PM2.5 concentration, and the characteristic importance in
the random forest regression model is used to simulate the low-
frequency signal superimposed trend signal of PM2.5 concentration,
as shown in Figure 9, in the Lasso regression, the characteristic
variables that play an important role are sorted by coefficient: image
feature 23, PM2.5 concentration value of the Institute of Biological
Products, temperature, PM2.5 concentration value of the Lanlian
Hotel, and PM2.5 concentration value of the Education Bureau.
The absolute values of the characteristic coefficients are 1.409,
0.380, 0.318, 0.066, and 0.002, respectively. In the random forest
regression, the first five feature variables that play an important
role are ranked by importance: image feature 5, image feature 23,
PM2.5 concentration of the Lanlian Hotel, image feature 29, and
image feature 42, with importance values of 0.170, 0.137, 0.125, 0.084
and 0.080, respectively. Experimental results indicate that image
features, meteorological elements, and pollutant concentration
features are most influential in the Lasso regression model for high-
frequency signal simulation, whereas image features and pollutant
concentration features play a more critical role in the RF model for
the low-frequency signal superimposed trend signal.

Figure 10 shows that the incorporation of high-frequency
signals into the Lasso regression model, along with the integration
of low-frequency superimposed trend signals into the RFmodel, has
significantly enhanced the simulation capabilities of the validation
set when compared to the performance of a single RF model.
This improvement is particularly notable in the simulation of both
low and high concentrations of PM2.5. The training utilizing split-
frequency methods demonstrates superior simulation performance.
Specifically, the MAE and RMSE between the simulated PM2.5
concentrations and the observed values from the corresponding
validation set have decreased by 1.05 and 1.59, respectively.
Furthermore, R2 increased from 0.59 to 0.70.

The effects of two experiments on the simulation of different
concentrations of PM2.5 in the validation set are analyzed. Figure 11
shows the error comparison of the validation set simulation
after the original signal is brought into the random forest
model (Figure 11A) and the split-frequency signal is brought into
different models (Figure 11B). The PM2.5 concentration value less
than or equal to 75 μg/m3 is recorded as the low value, and the
PM2.5 concentration value greater than 75 μg/m3 is recorded as
the high value. The mean value of the absolute value of the error
of the simulation of low PM2.5 concentration in the validation set
after the split-frequency signal was brought into different models
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TABLE 3 CMSE values for IMF components across all signals.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

CMSE (2) 0.0009 0.0015 0.0007 0.0008 0.0012 0.0002 0.0007 0.001

CMSE (5) 0.001 0.0023 0.001 0.0014 0.0012 0.0002 0.0007 0.0025

CMSE (10) 0.0047 0.0128 0.0095 0.0061 0.0105 0.0012 0.0045 —

CMSE (12) 0.0018 0.0014 0.0012 0.0005 0.0004 0.0004 0.0003 0.0003

CMSE (23) 0.0133 0.027 0.0129 0.0162 0.0185 0.004 0.0135 —

CMSE (29) 0.0045 0.0062 0.0035 0.0062 0.0064 0.0028 0.0047 0.0066

CMSE (31) 0.0035 0.0083 0.0041 0.0067 0.0073 0.0026 0.0063 0.0084

CMSE (41) 0.0035 0.0087 0.0032 0.006 0.0074 0.0005 0.0041 0.007

CMSE (42) 0.0076 0.0132 0.0083 0.0088 0.0121 0.0046 0.0098 0.001

CMSE (44) 0.0055 0.0193 0.004 0.0065 0.0059 0.0019 0.0031 —

CMSE (51) 0.0039 0.011 0.0044 0.0028 0.0042 0.0017 0.0039 0.003

CMSE (57) 0.0015 0.0023 0.0017 0.0022 0.0033 0.0008 0.0015 —

CMSE (58) 0.0017 0.0029 0.0015 0.0027 0.0026 0.0004 0.0015 0.0051

CMSE (PRS_Sea) 1.84 4.5 10.6 10.5 10.7 14.6 14.8 —

CMSE (TEM) 10.5 29 3.6 1.38 2.1 2.6 1.73 —

CMSE (RHU) 58 175 33 45 42 36 24 21

CMSE (EB) 35.15 45 58 113 63 68 35.06 —

CMSE (LH) 44 53 71 125 73 63 153 —

CMSE (IBP) 36 31 48 45 64 22 23 63

CMSE (LUCY) 21 43 37 33 24 26 13.1 —

CMSE (PM2.5) 49 61 54 49 57 27 52 —

Note: “ — ” indicates that the signal sequence does not decompose this IMF.

TABLE 4 P-value results of t-tests for all signal indicators (whether significantly different from 0).

Indicator1 Indicator2 Indicator3 Indicator4 Indicator5 Indicator6 Indicator7

P(PRS_Sea) 0.21 0.005 0.72 0.36 0.04 0 0.29

P(L) 0.86 1.00 0.68 0.33 0.061 0.016 0

was 7.22 μg/m3, which was slightly smaller than the mean value
of the absolute value of the error of the simulation of low PM2.5
concentration after the original signal was brought into the random
forest model (8.35 μg/m3). The mean value of the absolute error
of the simulation of high PM2.5 concentration in the validation
set after the split-frequency signal is brought into different models
is 26.57 μg/m3, which is much smaller than the mean value of
the absolute error of the simulation of high PM2.5 concentration
after the original signal is brought into the random forest model
(36.08 μg/m3). It can be seen that the simulation effect of the
split-frequency signal brought into different models for high PM2.5

concentration is much stronger than that of the original signal
brought into the random forest model, which further indicates that
the split-frequency signal brought into differentmodels can improve
the simulation ability of the validation set.

4.4 Analysis of simulation for the test set

The evaluation results for the test set (Figure 12) indicate that
the Lasso regression model provides a more accurate simulation
of the high-frequency signal of PM2.5 concentration than other
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FIGURE 7
Validation set simulation results using RF on different frequency signals: (A) High-frequency signal; (B) low-frequency signal with superimposed trend.

FIGURE 8
Validation set simulation results for high-frequency signals using different machine learning models: (A) Multiple regression; (B) Lasso; (C) Bagging; (D)
SVR; (E) KNN; (F) XGBoost.

models. In Figure 12A, Lasso regression effectively captures the
trend of the high-frequency signal, including its abrupt increases.
Although the MAE and RMSE values are higher than those of
the validation set, R2 is 0.74, which is closer to 1, suggesting a
strong relationship between the simulated and observed values.
In Figure 12B, the RF model exhibits slightly reduced efficacy in
simulating the low-frequency signal superimposed trend signal of
PM2.5 mass concentration within the test set. However, it does

provide a reasonable approximation of the overall trend. Notably,
in instances where the Lasso regression model’s simulated values
for the high-frequency signal exceed the observed values (e.g.,
during time points 0–50 and around time point 100), the RF
model tends to underestimate the simulated values of the low-
frequency signal superimposed trend signal. Conversely, during
periods when the Lasso regression model’s simulated values for the
high-frequency signals are lower than the observed values (e.g.,
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FIGURE 9
Feature contributions in Lasso and RF models for PM2.5 simulation: (A) Characteristic coefficients in Lasso regression for high-frequency signals; (B)
feature importance in RF regression for low-frequency signals superimposed trend signal.

FIGURE 10
Comparison of simulation results for the validation set using original and split-frequency signals: (A) results with the original signal in a machine
learning model; (B) combined results of split-frequency signals using different models.

during time points 150–250), the RFmodel’s simulated values for the
low-frequency signal superimposed trend signal are higher than the
observed values. In Figure 12C, the PM2.5 concentration simulation
is satisfactory, with an R2 of 0.83 between the simulated PM2.5
concentration and the observed values in the test set, indicating the
superior simulation performance of the model.

4.5 Discussion

In this study, the image features are extracted by ResNet50
and selected by random forest importance analysis, and the PM2.5
concentration of the locations photographed in Lanzhou City
is simulated by using CEEMDAN for signal frequency division

and reconstruction and combining random forest and Lasso
regression based on the image features, meteorological element
features, and pollutant concentration features. Finally, the hybrid
machine learning model of Resnet50, random forest, and Lasso
was established, and the model achieved satisfactory results on
the verification set and the test set. The model demonstrated
satisfactory performance on both the validation and test datasets.
This approach has practical implications for PM2.5 monitoring;
in instances where air quality monitoring stations are in close
proximity, PM2.5 monitoring instruments at certain stations could
be substituted with camera equipment. The images captured could
then be processed through the hybrid machine learning model
to estimate PM2.5 concentrations, thereby significantly reducing
monitoring costs.However, due to the small accumulation of images,
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FIGURE 11
Validation set simulation errors for original and split-frequency signal models: (A) errors from the original signal simulation using the RF model; (B)
errors from split-frequency signal simulation using different models. (The error is calculated as the difference between the observed and simulated
values, with errors averaged for cases where the observed PM2.5 concentration value is repeated).

FIGURE 12
Test set performance of the Lasso and RF models for PM2.5 concentration simulation: (A) high-frequency signal simulation using Lasso regression; (B)
low-frequency signal superimposed trend signal simulation using RF regression; (C) combined simulation versus observed values.

the model still has the problem of overfitting, and the collection
of environmental images is relatively single, so we need to collect
images for a longer period of time or try new and different machine
learningmethods or other advanced state-of-the-artmodels tomake
the simulation resultsmore accurate.We also need to collect outdoor
images of different scenes to further verify the generalization ability
of the model.

5 Conclusion

In recent decades, air pollution has posed a serious threat to
human health and has raised significant public concern. Developing
efficient and low-cost pollutant concentration simulation methods
is essential for safeguarding human health and improving air
pollution control strategies. This article proposes a more accurate
hybrid model combining ResNet50, RF, and Lasso regression to

simulate PM2.5 concentrations using 2,400 outdoor air quality
images captured in Lanzhou City from 15:00 on 21 October 2021 to
13:00 on 16 May 2022, along with corresponding meteorological
and pollutant concentration data. The main conclusions
are as follows:

The results from the three evaluation metrics show that, for
the same CNN model, simulation results are improved when the
clear-weather pixel values are subtracted from the original images.
Among the five CNN models tested, ResNet50 consistently yielded
the best training results, as evidenced by the MAE, RMSE, and R2

values. Therefore, ResNet50 was chosen for feature extraction from
the images.

Random forest is used to train the low-frequency signal
superimposed trend signals of PM2.5 concentration. The high-
frequency signal, which showed poorer training performance using
RF, was further analyzed with six machine learning models. The
Lasso regression model was selected to train the high-frequency
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signal based on a comparison of simulation results against observed
PM2.5 concentrations.The hybrid model, combining RF for the low-
frequency signal superimposed trend signal and Lasso regression
for the high-frequency signal, demonstrated superior performance
compared to using RF alone.

In the Lasso regression model for the high-frequency signal,
image features, meteorological elements, and PM2.5 concentration
data were found to play a more significant role. Conversely, for
an RF model applied to the low-frequency signal superimposed
trend signal, image features and pollutant concentration data were
more influential. The Lasso regression model more accurately
simulated high-frequency signal variations and sudden increases in
PM2.5 concentration. Meanwhile, the RF model simulated the low-
frequency signal superimposed trend signal of PM2.5 concentration
in the test set slightly less well, but it could roughly simulate the
overall change trend. The combination of these models resulted in
a more accurate overall simulation.

The final comparison between the summed values of both
simulations and the observed PM2.5 concentrations revealed that
the hybrid model consistently produced more accurate results.
This demonstrates that the hybrid approach outperforms individual
models in simulating PM2.5 concentrations. Furthermore, the
hybrid model offers a rapid, reliable, and cost-effective method for
estimating air pollution. The results highlight the practical value
of using image features to provide precise and reliable air quality
measurements, with important implications for the management
and monitoring of air pollution.
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