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Red snow algae bloom at the surface of snowfields worldwide, and their
detection is relevant for ecological, biogeochemical and mass balance studies.
In this study, we co-located RGB imagery acquiredwith a light-weight Uncrewed
Aerial Vehicle (UAV) to 129 hyperspectral reflectance spectra from which the
snow surface properties were retrieved, thereby enabling high-resolution aerial
mapping of algal properties. We present maps of red snow algae abundance
and albedo reducing effect over ∼ 9700 m2 of seasonal snowfields across
Hardangervidda, Southern Norway, in July and August 2023. The average albedo
reducing effect of the algae over the entire area was 0.012 ± 0.005, and attained
0.028 ± 0.004 on a snowfield of ∼ 710 m2. Across snow surfaces with visible
blooms only, the algal albedo reducing effect was 0.045 ± 0.003, equivalent
to an additional ∼ 3 mm of daily melting under local illumination conditions,
and aggregating to 5,500 ± 2,300 kg of daily snowmelt. The intensity and spatial
coverage of surface algal blooms were very variable between and within the
individual snowfields. Analysis of the UAV imagery suggests that multiple small
and distributed samples are at least twice more likely to yield representative
estimates of the average snow algal concentration of a snowfield compared to
fewer, larger samples. Our study demonstrates the potential of low-cost and
easy to deploy UAVs for red snow algal monitoring at the cm to sub-cm scale,
which can be used to better understand their spatial ecology and role in albedo
reduction.
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1 Introduction

Red snow algae bloom on glaciers and ice sheets worldwide (Hoham and Remias, 2020),
reducing snow surface albedo and accelerating snowmelt (Lutz et al., 2016; Cook et al.,
2017; Ganey et al., 2017; Khan et al., 2021; Healy and Khan, 2023; Engstrom et al., 2022).
In alpine environments, a faster retreat of seasonal snow has consequences for highly
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vulnerable snowbed habitats (Reinhardt, 2013; Matteodo et al.,
2016), the Earth radiation budget (Flanner et al., 2011; Thackeray
and Fletcher, 2016), and freshwater availability (Barnett et al.,
2005). In addition, snow algae play an important ecological role
in snow ecosystems (Terashima et al., 2017; Ono et al., 2021).
Mapping algal abundance and algal albedo-reducing effect on
seasonal snowfields is, therefore, important from both ecological
and physical perspectives.

Red algal blooms are typically heterogeneously distributed
at the snow surface (Thomas, 1972; Thomas and Duval, 1995;
Nakashima et al., 2021), which makes it difficult to understand their
spatial ecology at the scale of snowfields from groundmeasurements
alone. Spaceborne or airborne observations offer the possibility
to investigate algal blooms on areas too large, remote, difficult,
or dangerous to access and do not alter the physical properties
of the snow cover, as would manual monitoring. Consequently,
uncrewed aerial vehicles (UAVs) are increasingly being used to study
surface properties (e.g., Skiles et al., 2023; Di Mauro et al., 2015;
Niedzielski et al., 2019; Healy and Khan, 2023; Ryan et al., 2017;
Ryan et al., 2018; Cook et al., 2020) as they allow the measurement
of surface reflectance at a much finer spatial resolution than satellite
imagery and thus can detect patchy algal blooms over wide areas.

Remote sensing methods for quantitative algal detection require
the development of algorithms that infer given algal properties from
the signal detected by the sensor onboard the remote platform.
The most common algorithms for such tasks are forward empirical
relationships that correlate field-measured variables, such as cell
count or biovolume, with a specific band index or spectral feature
that can be calculated from the remotely sensed imagery. The
complexity and accuracy of these relationships mostly depend
on the number of empirical points available, as well as the
spectral and spatial resolution of the imagery. For example, specific
chlorophyll-a features that are thought to be produced only by
photosynthetic life can be extracted from hyperspectral imagery
(Painter et al., 2001). However, hyperspectral imagery is still
typically expensive and challenging to acquire. Simpler multi-
band indices targeting broader algal pigments features that can
be applied to multispectral or red-green-blue (RGB) imagery are
more frequently used (Takeuchi et al., 2006; Ganey et al., 2017;
Gray et al., 2021; Engstrom et al., 2022; Healy and Khan, 2023).
This forward index-based approach enables efficient upscaling of
ground measurements to wide areas, but the presence of other
light-absorbing particles at the snow surface and, in particular,
mineral dust can significantly bias algal abundance retrievals
(Di Mauro et al., 2024). In addition, once the algal abundance is
estimated from the imagery, the associated darkening effect of the
blooms is challenging to derive because it depends on numerous
other parameters such as algal pigmentation and size distribution,
snow physical properties, algal distribution at the surface, and/or the
presence of other light-absorbing particles (Cook et al., 2017; He,
2022; Kaspari et al., 2014; Chevrollier et al., 2024).

Here, we use a novel approach to remotely map and quantify
the impact of red snow algae, combining RGB imagery captured
using a low-cost and light-weight UAV with high-resolution ground
spectroscopy. This approach takes advantage of a large ground
dataset, which was directly colocated with UAV reflectance imagery,
enabling the direct estimation of algal abundance and albedo-
reducing effect from the imagery while taking into account the

effect of other light-absorbing particles. We present high-resolution
maps of the red snow algae albedo-reducing effect over seasonal
snowfields in Southern Norway, an alpine environment with a
high abundance of snowbed habitats (Bryn and Horvath, 2020).
This study contributes to the scarce literature about snow algal
presence and melt impact in fast changing mid-latitude cryospheric
environments.

2 Materials and methods

2.1 UAV imagery and ground spectroscopy

Prior to the acquisition of the UAV imagery, hemispherical
conical reflectance factor (HCRF) measurements were collected on
snowfields in Hardangervidda, Southern Norway, between 8 July
and 6 August 2023. The data are presented in Chevrollier et al.
(2024). The measurements were collected using an ASD FieldSpec
4 spectroradiometer (spectral range 0.35–2.5 μm) and a black
tripod, following the methodology of Cook et al. (2017). Each
measurement was acquired with the bare fiber (field of view of 25°)
in 10 replicates, immediately (<10 s) after a reference spectrum was
measured using a calibrated Spectralon panel. All measurements
were performed at nadir view (viewing zenith angle θ = 0°) with the
tripod oriented toward the Sun to avoid shadow effects. Most (80%)
of the measurements were taken for a solar zenith angle between 38°
and 50°, and the remaining (20%) were taken for a solar zenith angle
below 59°.The spectra were corrected for the panel spectral response
and the step at 1 μm caused by the misalignment of the SWIR and
NIR sensors in the ASD FieldSpec instrument, following Painter
(2011). The step at 1 μm was, however, not visible on any spectrum,
probably because the instrument was warmed up for at least an
hour prior to the measurements, and the selected surfaces were
homogeneous enough. Five spectra were removed from the analysis
because clear calibration errors were detected.

ADJIMini 3 camera was then deployed to capture RGB imagery
of the snowfields. The Mini series are the cheapest and lightest ( <
250 g) of the DJI UAVs and are, therefore, most readily affordable for
integration into monitoring programs. The integrated RGB camera
has a 12-megapixel sensor, with a 82.1° field of view. The imagery
used in this study was directly saved in JPEG format, and no further
processing was applied before analysis. The Spectralon calibration
panel used for theHCRFmeasurements was placed on the snowfield
for each image so that each image was normalized to the incoming
irradiance to retrieve reflectance. All images were acquired with
the camera at nadir view, and the UAV in the stationary mode
directly above the middle of the snowfield. The images of the entire
snowfields had a ground resolution of 1.3–3.0 cm, while the images
acquired to analyze smaller scale surface patterns had a ground
resolution of 0.4–0.7 cm.

2.2 Snow classification on the UAV imagery

A tree-based gradient boosting binary classifier was built for
binary snow detection using the scikit-learn machine learning
python package (Pedregosa et al., 2011). The model takes the UAV
R, G, and B reflectance as input and returns whether the pixel is
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snow or not. Surface areas were manually labeled on 27 different
UAV images, representing different surface types and resolutions,
with half of the data points labeled as snow and the other half labeled
as non-snow (surrounding vegetation and rocks), to ensure an equal
representation of both classes during training and testing, for a total
of 1.6 107 data points. In addition, 80% of these data points were
fed into the model for training, whilst the remaining 20% was used
for testing. The model was trained with a hold-out validation set of
10% of the training dataset and was set to stop the training after the
error during validation did not change for five consecutive epochs.
The hyperparameters of the classifier were tuned to minimize the
error (percentage wrongly classified), and the validation set served
as a control to avoid overfitting. The learning rate was set to 0.5,
the booster set to “exact”, and the other parameters were kept
as the scikit-learn default values (scikit-learn version 1.5.1). The
error on the training and testing set was similar and very low
(0.02%), with as many false positives as false negatives, indicating
that the model performed very well in delineating snow surfaces
from the UAV imagery despite the complex surface features linked
to the presence of light-absorbing particles. A watershed algorithm
using scikit-image (van der Walt et al., 2014) was finally applied
to remove the pixels wrongly identified as snow on land. For the
remaining features such as branches, manual masks were outlined
and applied to the images using the OpenCV-Python package
(Bradski, 2000).

2.3 Calculation and comparison of
colocated ground and airborne
red-to-green indices

The circular surfaces associated with the HCRF ground
measurements were visually identified on the higher-resolution
UAV imagery using a series of pictures acquired during the
acquisition of ground measurements and manually delineated on
ImageJ (Schneider et al., 2012) using the footprint size of each
measurement, calculated from the distance between the fore-optic
and the snow surface. The R, G, and B reflectance of the UAV
imagery corresponding to each HCRF ground measurement were
then extracted, and the ground measurements were rescaled to R,
G, and B bands using the spectral response of DJI Phantom Pro 4
(Burggraaff et al., 2019) as no spectral response could be provided
by the manufacturer for DJI mini 3. Ground red-to-green (RG)
band ratio indices were then computed from ground HCRFs, and
the associated airborne RG band ratio indices were computed from
the average RG index of the circles on the UAV imagery. This ratio
was chosen because it has been used in the past with airborne
(e.g., Healy and Khan, 2023) and spaceborne (Gray et al., 2021;
Ganey et al., 2017; Engstrom et al., 2022) data to detect the presence
of red algae, motivated by a strong dip in the surface reflectance
between the chlorophyll and carotenoid pigment absorption features
of the algae.This analysis relied on the Python packages scikit-image
(van der Walt et al., 2014), pandas (Pandas development team, 2024;
Wes, 2010), Matplotlib (Hunter, 2007), SciPy (Virtanen et al., 2020),
PIL (Umesh, 2012), GeoPandas (den Bossche et al., 2024), Rasterio
(Gillies et al., 2013), and NumPy (Harris et al., 2020).

An ordinary least square regression was fitted between the
ground and airborne indices, showing a strong correlation between

FIGURE 1
Red-to-green reflectance index at the sampled surface extracted from
the UAV RGB imagery as a function of the index calculated from
ground HCRF.

the 129 UAV and ground RG indices (r = 0.96, Figure 1). This
confirms that the RG indices captured by the UAV can closely
reproduce ground RG indices. The bias and the deviation from
the 1:1 line could be explained by several factors: 1) the RGB
spectral response used to calculate the ground RG indices may
not be exactly the same as that of the sensors onboard DJI mini
3; 2) the distribution of data in the UAV pixels for each circle is
unlikely normally distributed; hence, the mean may not be a good
predictor; 3) the spatial response of the FieldSpec sensor is not
perfectly homogeneous, i.e., the pixels in the middle of the footprint
may be more important; 4) the JPEG compression and lack of
further processing may have introduced small biases in the airborne
reflectance data; and 5) small changes in atmospheric conditions
including cloud cover may have occurred between the acquisition
of the ground and airborne measurements. These factors are not
investigated here as the correlation from Figure 1 serves only as a
validation of the UAV signal and is not used as a statistical model in
the analyses.

2.4 Statistical models for algal abundance
and the albedo reduction effect

For each of the 129 surfaces pairing ground and UAV RG
indices, the light-absorbing particle properties were available from
Chevrollier et al. (2024). Specifically, Chevrollier et al. (2024)
retrieved the red algae, dust, and black carbon abundance, as well
as their associated broadband albedo-reducing effect by inversion of
hyperspectral reflectance using deep learning and radiative transfer
modeling. These properties are, therefore, not direct measurements
at the surface but retrievals from model inversions. This physics-
based approach accounts for the effect of the changing snow grain
size on the albedo-reducing effect caused by the absorbing particles.
A positive BBA reduction corresponds to a darkening effect and
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is calculated by differentiating the BBA of the surface with and
without algae. Causal statistical models were then built between
each of the surface variables and the RG indices of the UAV
imagery using Bayesian inference with Markov Chain Monte Carlo
(MCMC) sampling, implemented with PyMC (Abril-Pla et al.,
2023). This method enables the retrieval of probability distributions
rather than single values as statistical model parameters, providing
estimates of the uncertainties in themodel predictions. Probabilistic
inference requires the definition of prior distributions for the model
parameters and the distribution of the likelihood function. Using
Bayes’ theorem, posterior distributions are then computed from the
prior and likelihood distributions, providing a refined estimate of
the model parameters. Posterior distributions are finally sampled
using MCMC to generate probability distributions for the model
parameters that preserve the full statistical information contained
in the posterior distributions. In this case, the algal concentration
was fitted to the RG ratio with a second-order polynomial of
the form y = ax2 + bx+ c, and the algal albedo reduction effect
was fitted to the RG ratio with a linear model of the form y =
ax+ b, similar to other studies (e.g., Engstrom et al., 2022). The
prior distributions on the slope and intercept for the algal albedo
reduction model were normal, with a mean of 0 and a variance of
1. The prior distributions on the parameters a, b, and c in the algal
abundance model were represented using Gaussian distributions
with means of 100, −150, and 20, respectively, and a variance of
2. In both cases, the likelihood to maximize was represented by
a Student-T distribution with ν = 3 degree of freedom, following
standard practice for robust inference (Gelman et al., 1995). The
variance of likelihood is necessarily positive; hence, we chose a
Half-Cauchy distribution prior. Each posterior distribution was
sampled 1,000 times with 2,000 iterations over four Markov chains.
The median of the sampled posteriors was used to model algal
abundance and albedo reduction from the UAV RG ratios, and
the 95% credible interval (high-density interval with α = 0.95)
was computed on the samples of the posteriors in order to
estimate the uncertainty of the model predictions, plotted as shaded
envelopes in Figure 2. The model validity domains were constrained
to observed RG ratios producing physical (non-negative) algal
properties, i.e., values between 0.099 and 0.1404 for the albedo
reduction model, and to RG ratios between 0.0995 and 0.1404
for the algal abundance model. The pixels on the imagery with
a RG ratio value outside these intervals could have been masked
out, but the main effect would have been the removal of areas
with clean snow and, therefore, an overestimation of algal coverage
and impact. Before applying a given model, the pixels on the
UAV imagery with RG ratios below or above the model validity
domain were therefore set to the domain boundaries. The 2.9%
of the pixels with a reflectance higher than 1 on at least one of
the three bands was set to 1. The difference in the results between
correcting the reflectance to 1 and removing the pixels was negligible
(<100 cells mL−1 absolute difference on the mean algal abundance
and < 1× 10 −4 absolute difference on the mean algal albedo-
reducing effect).

The UAV RG indices correlated very well with the algal
abundance (r = 0.93) and the algal-driven albedo reducing effect
(r = 0.83) but did not correlate with the dust and black carbon
properties (r < 0.14, Figure 2). The RG ratio was used to
map dust concentrations in the Alps deposited from a Sahara

dust event (Di Mauro et al., 2015) as the Sahara dust abundance
correlated with the ratio. The lack of correlation in our study is
probably due to relatively lower concentrations of dust on the
snowfields in the studied region and most likely due to different
optical properties between the dust from the Sahara and the dust
from the Hardangervidda region.

In order to calculate the algal properties on the visible bloom
areas solely, surface pictures taken before each groundmeasurement
were used to select the RG ratios associated with a visible bloom
and determine a conservative threshold of 1.029. Specifically,
the threshold was selected so that no bloom was visible on
any surface picture associated with a lower RG ratio than this
threshold.

2.5 Radiative forcing and melt

The daily radiative forcing (RF; W m−2) caused by the algae was
then calculated bymultiplying the BBA reducingwith the daily (24 h
averaged) shortwave incoming radiation measured with a four-
component radiometer (CNR4, Kipp & Zonen, Netherlands) at the
local weather station (Pirk et al., 2023).The algal-drivenmelt (Malgae,
kg m−2) was calculated by multiplying the RF with the energy of
fusion of ice (ΔH f = 334 kJ kg−1).Malgae was subsequentlymultiplied
by the area to derive the melt in kg of snowmelt or divided by the
snow density (here assumed to be 600 kg m−3) to obtain the melt in
meter equivalent.

2.6 Evaluation of sampling
representativeness

The algal abundance maps were all rescaled at 3 cm resolution
and numerically sampled pseudo-randomly to evaluate two ground
sampling strategies in terms of how representative of the entire
snowfield area ground samples of algal counts can be. The
first strategy consisted in taking several small samples with a
fixed footprint but distributed spatially across the snowfield, and
the second consisted in increasing the sample footprint from a
fixed location. In the first case, mean algal concentrations were
calculated for 1,000 random points with an increasing sampling
footprint from 0.001 to 4 m2. Hence, for each footprint size,
1,000 concentrations were calculated. In the second case, mean
algal concentrations were calculated by repeating 1,000 times a
random sampling of up to 30 samples with a fixed footprint
of 12 × 12 cm. Hence, for each total number of samples, 1,000
concentrations were calculated. Then, the probability of obtaining a
representative average concentration for a given sampling strategy
(for example, 1 m2 samples) was computed by comparing the
1,000 concentrations to the mean concentration of the entire patch
with a given error. Hence, when half of the 1,000 random points
were within the threshold error, the probability of a representative
sampling was 0.5 for this given strategy. Here, different threshold
errors were tested around 25%, which is in the range of
error reported for the Neubauer hemocytometers (https://www.
emsdiasum.com/docs/technical/datasheet/68052-14) typically used
for field-measured cell counts.
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FIGURE 2
Correlations between the UAV RG band indices and the associated surface properties retrieved from inversions of HCRF spectra. Equations of the
median posteriors for the algal models: algal abundance y = 87.8x2 - 148.3x + 60.6, for x ∈ [0.0990, 1.1404] (r = 0.93); algal albedo reduction y =
0.73x−0.72, for x ∈ [0.0995, 1.1404] (r = 0.83). The shaded envelopes correspond to the 95% Bayesian credible interval of the posteriors and illustrate
the uncertainties in the model parameters.

3 Results and discussion

3.1 Red algal effect on the surface albedo
of snowfields

Thesnow algal bloomswere intense enough to reduce the overall
albedo of each snowfield surface (Δ BBAtotal; Figures 3, 4). The
albedo-reducing effect of the blooms was on average 0.012 ± 0.005
over the∼ 9,740m2 of the snow-covered area analyzed and increased
up to 0.028 ± 0.004 at the scale of a 710-m2 snowfield (Figure 4).
The darkening effect of red snow algae is often reported on the
part of the snow surface that is covered with a visible bloom only,
which represented 13% of the total area (see Methods). For each
snowfield, the algal albedo-reducing effect of the algae on visible
bloomareaswas significantly higher than the estimates computed on
the entire snow-covered area (ΔBBAbloom; Figures 3, 4), in particular
for the snowfields with a main localized bloom. On average, Δ
BBAbloom amounted to 0.045 ± 0.003 over the entire snow-covered
area analyzed. This estimate is in good agreement with the albedo-
reducing effects of 0.032 ± 0.006 and 0.045 ± 0.009 calculated for
two glaciers in British Columbia in summer 2020 (Engstrom et al.,
2022). The small difference can be explained by a combination
of factors. For example, the algal concentration, distribution, and
pigmentation differ between sites and time of imaging, and the

presence of other LAPs varies between sites, resulting in different
algal albedo-reducing effects for a given LAP concentration (Skiles
and Painter, 2018; Kaspari et al., 2014; Chevrollier et al., 2024).

Given the large temporal variability in the incoming shortwave
irradiance in the studied region (Supplementary Figure S1), the
impact of red algae on snowmelt varied greatly during our
observational period. On a cloudy day, the radiative forcing of the
algae was negligible for all snowfields, whilst on a sunny day, the
daily radiative forcingwas 4.3± 1.8 Wm−2 over the total imaged area
and reached up to 10 ± 1 W m−2 on the snowfield where the algal
albedo-reducing effect was the highest. Overall, the illumination
conditions were mostly cloudy over the studied period, and the
average algal radiative forcing was 2.2 ± 0.9 W m−2, causing 5,500
± 2,300 kg of daily algal-induced snowmelt. This corresponds to
∼ 3 mm-equivalent of daily algal induced-melt within the total
bloom area, amounting to ∼ 9 cm-equivalent during the entire
observational period if the effect of the algae remained constant.

3.2 Red algal bloom surface distribution

The coefficient of variation of the calculated algal concentration
(standard deviation divided by the mean) ranged from 100% to
400%. The total coverage and intensity of the blooms therefore
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FIGURE 3
UAV RGB imagery of three studied snowfields, along with their associated maps of algal concentration and albedo-reducing effect. BBAtotal

corresponds to the average algal albedo-reducing effect on the entire snow surface, and BBAbloom corresponds to the average algal albedo-reducing
effect on the snow surface with a visible algal bloom. Snowfield areas are 4,100, 825, and 1900 m2, from left to right, respectively.

varied between and within the snowfields, confirming the high
heterogeneity of snow algal blooms documented in other studies
(Thomas, 1972; Thomas and Duval, 1995; Takeuchi et al., 2006;
Lutz et al., 2017; Van Hees et al., 2023). When deep suncups
were present on the snowfields, which are bowl-like structures
forming spontaneously on the snow during the melting season
in temperate alpine areas (Post and LaChapelle, 2000), the algae
appeared to accumulate within them (Figures 5A, B). Differences
in algal accumulation within suncups were also noticeable, and the
algae could either be present in the entire depression (Figure 5A),
mostly in the bottom of the depression (Figure 5B), or in the
channel-like features where suncups are connected to each other
(Figure 5C). In cases where the surface appeared smoother, yet still
featuring small-scale ridges and depressions, algal distribution did
not seem to be linked to surface roughness (Figure 5D).

In order to further characterize bloom heterogeneity and
investigate the potential implications for the representativeness
of surface samples collected on the ground, numerical sampling
experiments were designed. Specifically, the pixels from the UAV
imagery were extracted in two different ways to represent different
ground sampling strategies. First, the pixels were extracted from
an increasingly large footprint from a single fixed point, and

second, the pixels were extracted from an increasing number of
12 × 12-cm footprint squares distributed across the snowfield
(see Methods). For all snowfields, the second strategy was more
efficient at capturing a representative average algal concentration
of the entire snowfield (Figure 6). For a total area of extracted
pixels 10 times lower, the probability of obtaining a representative
concentration was at least twice higher with the second strategy,
and the representativeness of the samples barely improved with
increasing the footprint size from a fixed point. This was verified
even for the snowfields with a main localized bloom (4 and 6;
Figure 6). These results indicate that the scale of the heterogeneity
of the snowfields always superseded the maximum sampled
area tested of 4 m2. Representativeness was defined as being
within a 25% error from the average concentration of the entire
snowfield (see Methods), but the second strategy remained more
efficient at capturing a representative concentration even for a
different representativeness threshold (Supplementary Figure S2).
The probability of representativeness, however, decreased with a
stricter threshold, highlighting the limitations of using a discrete
number of samples in the field to evaluate the concentration of
an entire snowfield with precision. In addition, sampling various
random points at the surface of a snowfield manually without
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FIGURE 4
UAV RGB imagery of three studied snowfields, along with their associated maps of algal concentration and albedo-reducing effect. BBAtotal

corresponds to the average algal albedo-reducing effect on the entire snow surface, and BBAbloom corresponds to the average algal albedo-reducing
effect on the snow surface with a visible algal bloom. Snowfield areas are 534, 710, and 1,650 m2, from left to right respectively.

FIGURE 5
Four close-up areas illustrating different surface patterns (A–D). From top to bottom: UAV RGB imagery with marked close-up areas, UAV RGB imagery
of close-up areas, and algal concentration imagery of close-up areas.
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FIGURE 6
Representativeness probability calculated from the numerical sampling experiment with two different strategies: increasing the size of the sampled
area (upper panel) and increasing the number of samples (lower panel).

destroying its natural structure is, at best, challenging, and at
worst, impossible. The results hence emphasize the utility of UAV
imagery to study algal blooms non-destructively, in particular
in the context of monitoring, when sampling through time is
required. However, thorough validation of the abundance retrievals
from the UAV imagery against field-measured cell counts is still
missing, in order to validate the absolute values of the retrieved
concentrations.

Elucidating the processes behind algal spatial distribution
was beyond the scope of this study, but we demonstrated the
potential of a light-weight, low-cost, and easy-to-deploy UAV to
map and describe algal surface distribution that can be used to
monitor the blooms at high temporal and spatial resolution. Such
datasets would enable the monitoring of large areas that cannot
be accessed, circumventing the representativeness bias associated
with ground sampling, and helping to elucidate major questions
in the field of bio-albedo, such as the role of meteorological
and snow conditions on the spatial distribution of algal blooms
(Roussel et al., 2024; Chen et al., 2023).

4 Conclusion

We used UAV RGB imagery colocated with a ground dataset
to map red snow algal blooms and their associated surface albedo-

reducing effect at high spatial resolution in the Hardangervidda
region. We found that the algae albedo-reducing effect was on
average 0.012 ± 0.005 over an area of ∼ 9,700 m2, equivalent
to a daily snowmelt of 5,500 ± 2,300 kg. There was important
variability in algal coverage and abundance between the six different
snowfields studied, and our numerical sampling analysis of the UAV
imagery showed that sampling small individual samples allowed the
better capture of a representative algal concentration in comparison
to sampling a large footprint at a given fixed point, even for
a 10 times lower sampled surface area. The patterns created by
the blooms at the sub-cm scale were also very diverse, and the
explanation for this diversity is yet to be understood. Our results
demonstrate the capability of RGB imagery to map red snow
algal blooms on snowfields despite their low spectral resolution,
offering low cost avenues to investigate the mechanisms involved
in the presence and spatial distribution of the blooms. Indeed,
given the low-cost, light-weight, and simple logistics associated
with the deployment of a small RGB UAV, it could easily be used
as a monitoring tool to study red snow algal blooms throughout
the melt season. High temporal and spatial resolution information
about the blooms, coupled to meteorological data, has potential
to provide insights into major questions in the field of snow
algal bio-albedo, such as the effect of snowmelt, rain, or high
wind on the growth and redistribution of the algae, which remain
largely hypothetical at present.
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