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Accurately describing grain shapes is crucial in geology, mineral exploration,
civil engineering, and other sciences. Advances in image analysis now allow
for easy object separation and quantitative shape description. However, despite
extensive applications in sedimentology, chemistry, and civil engineering, there
is no consensus on the use of shape descriptors, and their meanings often
remain unclear. This article presents a method for quantitatively describing
grain shapes at a micrometer-to-centimeter scale using various image analysis
techniques. Our approach selects the most appropriate combination of
quantitative descriptors to describe grain shape. This work is based on an
extensive literature review across many scientific fields to extract multiple
quantitative shape measurements. This paper focuses on size, orientation,
and form descriptors. A total of 51 descriptors, including elongation and
Fourier amplitudes, were extracted, compiled, and computed using Python.
The descriptor computation code is provided as a library with this article. We
use principal component analysis to select the most significant descriptors and
use multiple descriptors without losing clarity. We validated our approach on
generated images. Using this combination of principal component analysis and
image-based descriptors, we could discriminate 8 of the 13 ideal forms (ranging
from a circle to a dodecagon), showcasing the potential precision when running
noiseless data. The process was then applied to a sample of 584 galena grains,
and we successfully described quantitatively the shape tendencies within this
galena grain population. Our results, accompanied by noisy generated images,
highlight the strong influence of roundness, roughness, and form descriptors on
each other, which explains the challenges in identifying the best descriptors. This
work demonstrates the potential of combining PCA with image-based shape
analysis to improve the quantitative description of grains, with implications for
sedimentology, mineral exploration, and other fields.
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quantitative descriptors, shape discrimination, computer vision, statistical analysis,
image processing, petrography
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1 Introduction

In Earth sciences, the description of mineral shape in texts
is typically accompanied by minimal quantification. The problems
associated with detailing mineral shape have been known for
decades, and many authors have attempted to increase precision by
using visual charts (Folk, 1951; Goldstone, 1993;Murphy andKemp,
1984).The use of visual charts remains current (Garzanti et al., 2015;
Sandeep et al., 2018). With the broader availability of grain images
obtained through imaging systems and the use of segmentation
techniques, it is possible to properly separate grains (Banerjee et al.,
2019; Chen et al., 2024; Latif et al., 2022; Zheng and Hryciw,
2016). Thus, a quantitative description of grains is possible using
appropriate shape descriptors.

Quantitative description is crucial as it allows automating the
description task on a much larger data set, greatly improving
precision and reproducibility. It also permits examining grain
shapes statistically, similar to how grains are analyzed for their
chemistry. This approach can be applied to various subjects in
geology, such as the shape classification of zircon, which provides
insights into magma petrogenesis (Pupin, 1980; Scharf et al.,
2022), sedimentology, where grain shape is directly related to
transport distance andmedium (Garzanti et al., 2015; Huddart et al.,
1998), and geotechnics, where grain shape influences soil
properties (Altuhafi et al., 2016; Lu et al., 2019). In igneous
petrology, mineral shape indicates the order of crystallization,
assimilation, crystal growth conditions, and more. Moreover,
with advances in artificial intelligence (AI) and applications
such as AI mineral potential maps, the absence of quantitative
descriptors of petrographic textures is a major limitation. The
use of proper quantitative parameters for petrographic textures
could be a significant advancement for many AI applications
in geology.

Shape descriptions of objects or particles are widely studied
in many scientific fields. This article aims to quantify the shape of
mineral grains at a micrometer-to-centimeter scale using image
analysis techniques. The need to describe microscopic–macroscopic
particles is important in various disciplines (e.g., geology,
materials science, agriculture, and chemistry), and thus, a
large body of relevant literature exists. A consequence of this
abundance is that quantitative shape descriptors are numerous
and often redundant, with different names and ambiguous
applications.

This article aims to introduce a framework for quantifying
mineral grain (crystal) shape, which will eventually lead to
describing petrographic textural parameters. It focuses on
identifying and assessing the most relevant size, orientation,
and form descriptors of grain shape. Alongside this framework,
we propose a first nomenclature to clarify the use of
descriptors. This work is based on an in-depth study of the
literature facilitated by the use of statistical methods. We
assess size measurements to determine the most accurate
descriptors. Orientation measurement methods are evaluated
for what information they provide and their potential to
reduce noise in form discrimination. Finally, we test this
descriptor framework for selecting and using descriptors on
generated and actual grain images.

2 Shape characteristics: why
quantitative petrography matters for
petrology?

It is necessary to first define the terms used in this study, as there
is no consensus on terminology in the literature. Most authors agree
with Barrett’s (1980) definition that shape (or form) consists of three
components: form, roundness and roughness (Figure 1). However,
the naming of the set and its subsets poses challenges. In this
article, shape refers to the general contour of the object. However,
two additional components must be added: size and orientation,
increasing the total to five components. These components are
crucial for describing minerals in petrography. It is also essential
to understand why precise numerical definitions are required and
the broader implications of these definitions for petrology. The
terminology, definitions, and examples of implications for petrology
are as follows:

1. Size is determined by the measurable dimensions of the
shape, but its value and interpretation depend on the applied
measurement method. Crystal size, which has already been
studied in detail, provides valuable insights into magmatic
and metamorphic textures. It can reveal information about
the cooling rate, deformation rate, and element availability
(Higgins, 2002; Marsh, 1988). For these studies, the size
measurement method is irrelevant as long as it is applied
consistently, includesmeasurements of the short and long axes,
and specifies the resolution limit (Higgins, 2000).

2. Orientation is described by the direction of one of the
shape’s axes relative to a reference point, but its value also
depends on the measurement used. Crystal orientation is
well known for indicating the flow direction in both water
and lava, as well as providing information about deformation
and its intensity (Nédélec and Bouchez, 2015; Shelton and
Mack, 1970; Ventura et al., 1996).

3. Form refers to the polygon or ellipse that is closest to
the grain shape. The form can be related to the order of
crystallization, as in cumulate texture, where well-formed
minerals crystallize during the early stages of the process
(Vernon and Collins, 2011). Alternatively, variations in form
within the same mineral, such as zircon, provide insights into
magma petrogenesis (Pupin, 1980; Zheng et al., 2022).

4. Roundness (also known as angularity) describes the angles of
the grain: are they close to an acute edge or a smooth curve?
Roundness, which has been studied early and intensively by
sedimentologists (Diepenbroek et al., 1992; Krumbein, 1941;
Tafesse et al., 2013; Wentworth, 1919), is a critical parameter,
as it influences how clastic particlesmove inwater and provides
clues about their distance of travel or origin.

5. Roughness (also known as surface texture) characterizes the
outline features of the grain. Roughness can reflect various
processes depending on the surrounding rock and context,
such as rapid mineral growth leading to skeletal and dendritic
crystals or dissolution resulting in the formation of re-
entrant (Hibbard, 1994).

These examples clearly show that an in-depth study of one of
the shape parameters could provide valuable and useful information
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FIGURE 1
Illustration of the definitions used in this article on the
basis of the Barrett (1980) definition. Shape 1 has a square form (in
black) with a high roundness (in blue) and a low roughness (in red);
shape 2 has a triangle form (in black) with a low roundness (in blue)
and a high roughness (in red).

for petrology, as seen in zircon form classification (Pupin, 1980).
Given that quantitative measurements are better able to distinguish
subtle and meaningful changes within the rock, as demonstrated by
the crystal size distribution (CSD) results (Higgins, 2002; Marsh,
1988), the combined study of shape parameters with quantitative
tools will enable the discovery of new textural indicators to
provide a better understanding of geological phenomena. Moreover,
in geometallurgy, quantitative shape descriptors are critical for
exploitation and exploration (Frenzel et al., 2023).

In this article, the term “roundness” is preferred over
“angularity” because angularity represents an extreme on
the roundness continuum. When discussing roughness, it is
recommended to use the term “roughness” rather than “surface
texture” because it describes the grain outline in a 2D context, which
is represented by a line rather than a surface. Additionally, “surface
texture” is a more appropriate term for methodologies that describe
the entire grain image (Al-Rousan et al., 2007; Chandan et al., 2004).
Although surface texture in sand grain images can be influenced by
roughness, other significant factors, such as fractures and inclusions,
may also contribute.

For this article, the term “descriptor” refers to a method
or formula used to describe one of the shape components. The
descriptors used in this study are presented in the “Size, orientation,
and formdescriptors” section.The formulas for these descriptors can
be found in the Appendix.

Finally, in this study, all these definitions are applied to the
2D representation of grains using image analysis techniques. Two-
dimensional imaging techniques are widely available andmore cost-
effective compared to three-dimensional methods. Additionally,
petrographic analyses are generally performed in 2D before 3D
imaging is pursued.

3 Size, orientation, and form
descriptors

This section presents condensed results from our extensive
literature review.Themethodology used for this review is detailed in
the first part of the “Methodology” section. The following methods

are derived from the clarification, sorting, and grouping of formulas
identified in the review.

3.1 Size descriptors

The equivalent area disc diameter approximates grain size by
using the diameter of a disc with the same area as the grain
(Figure 2A; Ren et al., 2021;Wang et al., 2008). It is easily computable
but should only be used when the grain form is very similar
for the entire data set, as it assumes that all the grains are
perfectly circular (Pirard, 2004).

The maximum inscribed circle of a grain is the largest circle
that can be drawn inside the grain without extending beyond its
boundaries. It is used as a measure of the short axis. The minimum
circumscribed circle is the smallest circle that can enclose the grain,
and it is used as a measurement of the grain’s long axis (Figure 2C;
Cho et al., 2006; Wadell, 1932).

The Feret diameter is defined as the maximum distance between
two parallel tangential lines that can be drawn in a specific direction
across the grain (Han et al., 2023; Persson, 1998). Formeasurements,
the orientation of the object can be changed at regular intervals,
e.g., every 5°, and the distance is computed. The result of the
method is a list of distances describing the discrete version of
the grain outline. The most commonly used Feret diameters are
the maximum, minimum, and mean (Figure 2B). However, as it is
an incremental method, this approach could miss the longest or
shortest distance depending on the measurement step.

The minimum circumscribed circle diameter and the maximum
Feret diameter measure the same axis, which is the longest distance
between two points placed on the grain outline. In the case of
the maximum inscribed circle diameter, if the center of the circle
is the same as the grain’s center of rotation, the measure will
be precisely the same as the minimum Feret diameter. The only
difference between these methods is the precision induced by the
analysis step (Figure 2B).

The equivalent-moment ellipse is defined as an ellipse having the
same moments of inertia for each axis of the grain. It approximates
the grain by an ellipsoid that is dynamically equivalent to it (Medalia,
1971; Figure 2D). This method has the advantage of obtaining a
biaxial approximation of the grain and its orientation, and it can also
weight orientation by area (Higgins, 2006), as it preserves the same
perimeter and area (Rodieck, 2007).

The minimum enclosing rectangle is a rectangle that surrounds
the grain with a specific direction to obtain the smallest possible
area (Figure 2E; Maerz, 2004; Xing et al., 2023). It can be seen as the
Feret measurements performed along the principal orientation and
its perpendicular (Wang, 2006). This biaxial approximation of the
grain has the advantage of imitating its passage through the smallest
sieve possible.

3.2 Orientation descriptors

The orientation of the long axis measures the angle between
the long axis of the minimum enclosing rectangle and the
horizontal axis of the image, ranging from 0° to 180°. The
second-moment orientation provides the orientation of the least
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FIGURE 2
Size measurement methods: (A) equivalent area disc diameter (deq); (B) minimum (dFmin) and maximum Feret diameter (dFmax); (C) maximum inscribed
circle diameter (dins) and minimum circumscribed circle diameter (dcir); (D) short (sell) and long (lell) equivalent-moment ellipse axis; (E) minimum
enclosing rectangle width (wrec) and height (hrec).

second-moment axis of the object binary image, which has the
advantage of measuring the orientation even for complex contours
(Higgins, 2006; Medalia, 1971).

3.3 Form descriptors

The earliest use of mathematics to classify grain form involved
comparing axis ratios or parameters to an ideal form (Wadell,
1933; Zingg, 1935). The axis ratio method uses 3D measurements
to classify, for example, grain forms such as oblate to prolate. As
discussed in the previous section on size measurement methods,
there are various methods for measuring axes. Depending on the
size measurement method being used, different formulas have been
developed. However, they can be simplified by assuming that in 3D,
grain size has three measurements: the long (L), intermediate (I),
and short (S) axes (Equation 1) or the length, width, and thickness.
In this article, the term “long axis” will be used because it is unclear
in the second term which axis represents the longest between width
and thickness. The simplification is

S
L
, I
L
, S
I
or L

S
, L
I
, I
S

(1)

The choice of formula depends on the user’s intention to
represent numbers between 0 and 1 or greater than 1, but they
describe the same grain aspect. In 2D, the only available axis
ratio is elongation, the first ratio in the two groups representing
the ratio between the long and short axis (Equation 1). Some
authors have attempted to use mean diameter as a measure for the
intermediate axis (Wettimuny and Penumadu, 2004).

Another way to describe form is by comparing the grain to an
ideal shape such as a circle, rectangle, or ellipse. The parameters
used are areas or perimeters, represented as a ratio using both
the grain and ideal shape parameters (Arasan et al., 2011; Cox
and Budhu, 2008; Li et al., 2021; Ulusoy et al., 2003). The result

addresses the question, “How closely does this shape resemble
the ideal shape?” This concept gives rise to circularity (often
referred to as sphericity, even in 2D studies) and encompasses the
variety of formulas that can exist for a single descriptor (Kuo and
Freeman, 2000). It also demonstrates the potential differences in
usage for the same descriptor. Circularly has been widely used
to describe roundness and grain form, highlighting the lack of
consensus in regard to specific formulas stemming from the varying
scientific approaches and interpretations (Arasan et al., 2011;
Maroof et al., 2020b).

Amodernmethod formathematically describing grains involves
applying Fourier analysis to the grain contour curve. There are two
techniques for obtaining the grain contour curve: the Rθ method
and the elliptic method. The Rθ method, the oldest, plots the ratio
of the mean diameter to the diameter as a function of θ, ranging
from 0° to 360° (Bui et al., 1989). However, this method is only
applicable to convex shapes. The elliptic method obtains separate
curves for the x and y coordinates as functions of θ, which allows for
characterizing concave grains. Fourier analysis is then performed on
the combined curves (Caple et al., 2017). In this article, this method
will be referred to as the xy method to indicate contour information
extraction.

Fourier analysis begins by applying the discrete Fourier
transform to the grain contour curve to convert spatial information
into frequency domain information. Then, the power spectral
density is computed to provide frequency distribution information
of the boundary shape. Low-frequency components correspond
to form characteristics. Analyzing the low harmonics and their
amplitude reveals the harmonics that affects the most the grain
form. Combined, these two parameters create the shape descriptor.
For instance, in the case of a square, the fourth harmonic will be
present, and its amplitude will be high, whereas for an octagon,
it will be the eighth harmonic. Consequently, it is essential to
specify the harmonics used, as they could change the meaning
of the form descriptors entirely.
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TABLE 1 Nomenclature of two-dimensional size, orientation, and form descriptors.

Aspect Descriptor type Descriptor name Synonyms

Size

Biaxial approximation Minimum enclosing rectangle Best fit rectangle, smallest rotated rectangle, bounding
rectangle

Biaxial approximation Equivalent-moment ellipse Best fitting ellipse, fitted ellipse

Circle approximation Maximum inscribed circle Largest inscribed circle, inscribed circle

Circle approximation Minimum circumscribed circle Bounding circle, circumscribed circle of the grain outline,
smallest circumscribed circle

Circle approximation Equivalent area disc Same area disc, equivalent diameter, diameter of the
equivalent projection area of a circle, fitted circle, equivalent
perimeter circle diameter, area circle diameter, equivalent
circular diameter, equal-area circle, nominal sectional
diameter of the grain projection, diameter of an equivalent
circle

Feret measurements Maximum/Mean/Minimum Feret diameter Maximum/minimum caliper, longest/shortest of all measured
chords, longest/shortest projection of rotating shape,
maximum/minimum distance between the projected outline
points

Orientation

Long axis

Second-moment Inertia tensor, second area moment, quadratic moment of
area, area moment of inertia

Form

Form ratio Circularity Circularity degree, sphericity, roundness, regularity, area
sphericity, compactness, form factor, form unevenness,
perimeter sphericity

Form ratio Rectangularity Rectangle degree, convexity, rectang

Form ratio Ellipsoidity Area, angularity

Axis ratio Elongation Elongation ratio, sphericity, aspect ratio, flat index, Fshape,
relative width, elongation index, reciprocal aspect ratio,
flatness, flat and elongated ratio

Rθ Fourier analysis Rθ Fourier form
Shape, form index using Fourier series, sphericity, Fourier
series, Fourier descriptor, gross shape

Elliptic Fourier analysis xy Fourier form

4 Nomenclature

In the nomenclature, the descriptor name is based on a
shortened version of its definition. When a dozen is available in
the literature, the most accurate or widely used descriptor was
chosen. For descriptors using Fourier analysis, information about
the extraction method of the grain contour (Rθ or elliptic) is
provided. The descriptor name should also include the range of
harmonics used for a quicker understanding (e.g., Rθ Fourier forms
1–12). The list of equivalent names in the literature is not exhaustive
and is based on the authors' literature review. Differences in
terminologywithin this nomenclature (Table 1)may arise because of
varying interpretations of how different authors use the descriptors.
All references, alongwith their corresponding descriptor labels, used
to establish the nomenclature are compiled in the descriptor review
datasheet included in the article's Supplementary Material.

5 Methodology

The framework proposed in this study is applied to optical
microscope images to illustrate its functionality. However, the
methodology and associated Python code can analyze images of any
type (SEM, µXRF, LA-ICP-MS such as: Savard et al. (2023), etc.),
provided they are processed to produce a 2D binary image of the
object of interest. For 3D imaging techniques such as 3D X-ray
tomography, this can be easily achieved by generating sectional slices
to obtain the required 2D images.

As literature is abundant on the quantitative description of
shapes, each descriptor captures specific aspects of the intended
information. Although no descriptor is perfect, the key is not to
determine the best descriptor but to identify the most suitable for a
particular study. By selecting meaningful descriptors and studying
their parameters, the underlying physical properties influencing
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grain shape can be uncovered. Our first step in this approach was
to create a comprehensive inventory of quantitative descriptors.

5.1 Relevant article determination

To address the need for a systematic approach to analyzing
over 1000 papers on quantitative shape descriptors in various
sciences, we adopted a statistical approach.The goal of this extensive
bibliographic research was to identify a wide range of methods for
quantifying grain shape in fields such as geology (Barrett, 1980;
Yang et al., 2022), agronomy and crop sciences (Igathinathane et al.,
2008; Vaezi et al., 2013), chemical engineering (Haffar et al., 2021;
Huo et al., 2016; Lu et al., 2010), and civil engineering (Al-Raoush,
2007; Chandan et al., 2004;Maroof et al., 2020a).We selected articles
using the following steps:

1. A broad query, including necessary keywords and their
synonyms, was initiated and subsequently refined to obtain
a substantial number (100 s–1,000 s) of articles matching the
research topic. This initial selection was based on a quick data
set review, including brief readings of the abstracts.

2. The database was then imported into VOSviewer software
(van Eck and Waltman, 2010), which is designed for
constructing and visualizing bibliometric networks.

3. The citation-per-document mapping option was used to create
a bibliographic network (Figure 3), showcasing each article by
the first author’s name and publication year. Cross-referencing
between the articles was graphically depicted as links. In this
visual representation, an article’s label size is proportional to
its number of citations. This step effectively eliminated articles
that matched the query but were found to lack relevance to
the research topic, as evidenced by their absence from the
citation network.

4. The clustering option inVOSviewer identified groups of related
articles based on co-citation patterns (van Eck and Waltman,
2010). Articles were selected from each cluster (2–7 articles per
cluster) based on highest citation count and publication year,
ensuring a balanced perspective with older, intermediate, and
recent works.

5. To ensure thorough coverage, unlinked articles not initially
displayed in VOSviewer were revisited. This involved
replotting them using the visual examination software to
confirm their lack of relevance to the study. This process was
repeated until all relevant articles were included in the analysis.

The first step in the approach involved refining the query
multiple times to obtain a reasonable number of articles.Thenumber
of articles per query ranged from 2044 to 42,262. Tens of thousands
of articles were found for cases where physics-related articles do
not use image-based size measurement methods, which was not
desired for this study. The selected query produced 2127 articles,
which were condensed to 274 using VOSviewer by removing articles
lacking cross-referencing. These 274 articles were then grouped
into 24 clusters, resulting in the selection of 82 articles for further
study. Moreover, when an article referenced a formula used, the
reference article was read, increasing the number of articles read to
109 (see the Supplementary Material for the list). However, of the
359 shape descriptors identified during the literature review, only

66% of the descriptors in the papers had a cited reference to indicate
their source (when the article proposed a new method, it was
considered as referenced). This absence of sourcing indicated a lack
of rigor in the use of these descriptors and measurement methods.

5.2 Framework for selecting and evaluating
size, orientation, and form descriptors

The second step involved testing shape descriptors from the
literature survey using images that were generated with known
shape parameters for grain image simulation. The objective was to
measure and compare size and orientation using different methods.
This step was important because shape descriptors often use size
measurements in their formulas. As seen earlier, there are several
methods for size measurements, and the chosen method may
not match what is needed for the form descriptors. For example,
rectangularity should be computed with the minimum enclosing
rectangle parameters, not the Feret maximum and minimum
measurements, as the two axes of the rectangle are perpendicular,
which may not be the case for Feret’s size. In addition to size
and orientation, few also evaluated form descriptors and the
dependencies between form, roundness, and roughness. Finally, we
applied our method to an actual grain population to evaluate its
effectiveness in a real-life scenario.

5.2.1 Grain image simulation
Crystals are limited to seven geometric lattice shapes, resulting

in a finite number of 3D forms, including truncations. When
observed in two dimensions, these forms offer more possibilities but
remain confined to geometric objects, allowing them to be modeled
using perfect polygons. To explore this further, we generated binary
images of ideal geometric shapes having known parameters.

All parameter values were constrained using subjective criteria
to maintain the visual resemblance to a grain (Figure 4). The shape
size ranged from 300 to 600 pixels, on the basis of data from an
earlier study (Back et al., 2023), where the average image size of
segmented grains was 448 ± 158 by 447 ± 160 pixels (n = 1369).
The orientation was randomized to test all possible scenarios and
avoid bias. Thirteen different forms were studied: circle, triangle,
square, rectangle, ellipse, pentagon, hexagon, heptagon, octagon,
nonagon, decagon, hendecagon, and dodecagon. The roundness
effect was achieved through a Minkowski sum operation using the
Shapely library’s buffering function (“shapely.buffer—Shapely 2.0.
6 documentation) with a disc of radius equal to the desired buffer
distance. The object was rescaled on the basis of its initial area to
prevent excessive size reduction. The roundness value ranged from
0 to 6 with a step of 0.6 (Figure 4). At its miximum, the shape is
highly circular but deviates from a perfect circle. The roughness
was modeled using Perlin noise to imitate the visual complexity of
natural objects (Perlin, 1985).Thismethod has been used previously
to generate 3D images of grains by deforming a geometrical form like
a sphere (Al Ibrahim et al., 2019; Michot-Roberto et al., 2021). The
roughness value ranged from 0 to 1.2 with a step of 0.12 and a fixed
number of octaves set at 12 (Figure 4).

Six tests were conducted for form analysis using different
parameters (Table 2; Figure 4). Tests 1 and 8 evaluated the size and
orientation methods, representing ideal shapes with no roundness
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FIGURE 3
VOS viewer network of the Scopus database reflecting the query for grain description using image analysis, where each color represents a cluster.

or noise. The purpose was to understand the ability of form
descriptors to distinguish between the 13 generated forms. Tests
2 and 3 examined the impact of roughness on form description,
with low and maximum noise intensity, respectively. Similarly, tests
4 and 5 explored the influence of roundness. The objective was to
discriminate between the forms and understand how roundness
and roughness affect the method’s discrimination capacity. Test 8
replicated Test 1 with 25 images per form to assess reproducibility.

To show the proximity of the generated grain images to real
grain images characteristics, we present images extracted from the
VolcAshDB (Benet et al., 2024; Figure 4). We used these images
because they illustrate clearly the objective of the simulation.

5.2.2 Size measurement tests
Thesizemeasurement testswere performed on ideal shapes (Test

1, Table 2; Figure 4), and are expressed in pixels. Roundness and
roughness modify the shape, altering the initial size and making
the initial size parameters unsuitable as a reference. However, all
shapes were randomly oriented from 0° to 180°. Size measurements
were divided into two groups: methods that measure the long
axis and methods that measure the short axis. The mean Feret
diameter (Shang et al., 2018) or the equivalent area disc diameter
(Bui et al., 1989; Fritz et al., 2022) were classified in both groups,
as they do not measure a specific axis. For the short-axis test,
only shapes with a known short axis measurement were used:
circle, ellipse, square, and rectangle. To compare the methods, we
calculated the reference deviation as

Δref =
sm − sr
sr
, (2)

where Δref represents the reference deviation, which is bound
between −1 and 1, sm is the measured size, and sr is the actual size
given by the initial shape parameters.

The initialization parameters for shape generation depended on
the specific geometric form:

• Circle: Defined by a radius, which determines both the short
and long axes.

• Pentagon to dodecagon: Defined by a radius that specifies the
long axis, as the sides do not fully touch the circumscribing
circle used to draw the form.

• Square: Defined by a side length, applicable to both the short
and long axes.

• Rectangle and ellipse: Defined by two perpendicular axes:
short and long.

• Triangle: Defined by base and height parameters, with height as
the long axis and base as the short axis.

The reference deviation was used as an indicator because the
length described by the shape initialization parameters differed
from that of the size measurements (Equation 2). For example, the
long-axis reference for a rectangle is its length, but the minimum
circumscribed circle measures its diagonal. As a result, some of the
high values and outliers of the reference deviation stemmed from
this difference in measured axes.

5.2.3 Orientation measurement tests
The orientation tests were performed using an ellipse and

a rectangle with distinct major and minor axes to determine
their orientation. The shape generation parameters were identical
to those of test 1. Two methods were tested: the second-
moment of inertia orientation and the long-axis orientation.
However, the long axis of the minimum enclosing rectangle
and the second-moment axis of the same grain could differ;
therefore, direct comparison is not appropriate. To address
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FIGURE 4
Examples of images generated for size, orientation, and form testing and their associated parameters (R: roundness value, N: Perlin noise strength)
alongside grain images from the VolcAshDB database showing similar patterns (Benet et al., 2024).

TABLE 2 Form tests and their related parameters.

Parameters Tests 1 and 8 Test 2 Test 3 Test 4 Test 5

Forms 13 13 13 13 13

Size (pixels) 300–600 300–600 300–600 300–600 300–600

Images/form 300 and 25 300 300 300 300

Total images 3,900 and 325 3,900 3,900 3,900 3,900

Roundness value 0 0 0 1.2 6

Roundness intensity 0/10 0/10 0/10 2/10 10/10

Perlin noise strength 0 0.12 0.6 0 0

Perlin noise intensity 0/10 2/10 10/10 0/10 0/10

Orientation random random random random random

this, we measured the orientation using both methods, applied
a known rotation to the particle, and then measured the
orientation again. Finally, we used the equation below to calculate
the rotation (Equation 3). All orientation and rotation values range
from 0° to 180°.

rm = oa − obmod(180), (3)

where rm is the measured rotation, oa is the orientation measured
after the rotation, and ob is the orientation before.

5.2.4 Form descriptor tests
For form tests, all parameters in Table 1 were calculated using

Python. Both the Rθ and elliptic Fourier methods were used with a
range of harmonics from 1 to 12. The harmonic limit was arbitrarily
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set at 12; beyond this limit, the harmonics are related to roundness
and roughness. Each harmonic amplitude was considered a separate
form descriptor and was not merged into a single formula at this
point. The ratios requiring axis measurements were calculated using
themost accuratemethod based on our results.This process allowed
us to fully evaluate the descriptors.

Several authors have highlighted that each descriptor has
limitations. Even if they describe the same aspect of shape, such
as roughness or form, they do not capture the entire phenomenon
(Al-Rousan et al., 2007; Hentschel and Page, 2003; Tafesse et al.,
2013). Hentschel and Page (2003) suggest that combining these
descriptors could be a solution for capturing the complete
information. In this paper, we identify the most discriminative
combination of descriptors found in the literature. The best
linear combination was determined using principal component
analysis (PCA), which automatically weights the equation on
the basis of the variance within the training data set (Abdi
and Williams, 2010; Jolliffe and Cadima, 2016). This method
provided significant results in sediment grain analysis using Fourier
amplitude (Suzuki et al., 2015). A similar method has also been
applied to otoliths (ear stones), small calcified structures in the inner
ears of fish used to differentiate fish stocks on the basis of their
shape variation, using both Fourier descriptors and classic shape
descriptors such as elongation and rectangularity (He et al., 2018;
Mérigot et al., 2007).

To prepare the data for PCA, the descriptors that were not
directly extracted from the image were calculated, increasing
the number of features from 42 to 51 (see the Appendix). As
the descriptors come from 16 different scientific disciplines with
different constraints, they should be able to describe the majority
of shapes. Information such as grain perimeter and convex hull area
was kept, as it can provide valuable information for discriminating
between forms. Then, the entire data set was scaled using
Equation 4

z = x−m
σ
, (4)

where x is the number to be scaled,m is the mean of the sample, and
σ is the standard deviation of the sample.

A first PCA analysis was conducted on the test 1 data
set to select the most discriminant descriptors (approximately
ten). Then, a second PCA was performed using only the ten
retained descriptors. Feature reduction was necessary because
the PCA included up to 51 features, some of which provided
redundant information. For example, the Feret measurements and
the inscribed and circumscribed circle diameters measure the
same axis. From these results, we divided the second PCA into
two parts: one using Rθ Fourier amplitudes and the other using
elliptic Fourier amplitudes. Using them together was not relevant
as they would both lose their respective advantages. The Rθ is
more robust, but it cannot be used on concave grains, unlike the
elliptic method.

To understand the effect of roundness and roughness on form
discrimination obtained by PCA, we used images from tests 2 to 5
(Table 2; Figure 4). The data from these tests were processed in the
sameway as for test 1 (ideal form) and projected into both test 1 PCA
domains, Rθ, and the elliptic Fourier.

5.3 Real grain images

To verify the applicability of this method to real-life situations,
we acquired images of galena grains from glacial sediments, using
the protocol of Back et al. (2023), with the acquisition parameters
held constant, except for the change in light source to transmitted
light and an exposure time of 364.2 µs.

Transmitted light images of opaque minerals provide clear grain
outlines and simplify the segmentation process. The segmentation
procedure involved 1) converting the image from RGB color
space to grayscale; 2) applying a pixel intensity threshold set at
30; 3) implementing opening and closing operations to eliminate
anomalous pixels in both the object and background; and 4)
extracting each grain contour using the find Contours method from
the Open CV library. Finally, the contours were filled with white
(pixel intensity at 255), and the background was colored black
(pixel intensity at 0), saving the result as a binary image. Some
contours were manually removed because of acquisition artifacts
caused by the stitching method of the Olympus Stream® software
and touching grains. We used 580 galena grain images for training
and 4 images for testing.

ThePCAmethodology used for the form analysis was replicated,
startingwith an initial PCAon all computed features.Then, using the
loadings and explained variances, we selected themost discriminant
descriptors (eight in this case), and a second PCA was performed
exclusively on these descriptors. To ensure method reproducibility,
four characteristic grains were removed from the PCA training data
set and transformed into the PCAdomain after the learning process.

6 Results

6.1 Size measurements

The size measurement methods exhibited significant differences
between the short- and long-axis measurements (Figure 5). The
short axis (Figure 5A) showed low reference deviation for the
maximum inscribed circle, minimum Feret diameter, and bounding
rectangle height; however, it showed a high reference deviation for
the mean Feret diameter, equivalent-moment ellipse short axis, and
equivalent area disc diameter. The long axis (Figure 5B) generally
had higher values of reference deviation for all methods, and
these differences can be attributed to the disparity between the
measured axis in the measurement method and the reference axis
of the shape (Figure 5).

For the short-axis measurement, the reference deviation was
−0.08 ± 0.10 (mean ± standard deviation) for the maximum
inscribed circle diameter, −0.06 ± 0.06 for the minimum Feret
diameter, 0.06 ± 0.17 for the mean Feret diameter, −0.05 ±
0.05 for the bounding rectangle height, −0.03 ± 0.11 for the
equivalent-moment ellipse short axis, and −0.01 ± 0.12 for
the equivalent area disc diameter. Given these results and the
boxplot information (Figure 5A), the method having the lowest
reference deviation and highest consistency was the bounding
rectangle height.

For the long-axis measurements, the reference deviation was
0.07 ± 0.14 for the minimum circumscribed circle, 0.06 ± 0.15
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FIGURE 5
Boxplots showing the size measurement methods of the (A) short and (B) long axis as a function of the reference deviation (Equation 2); for illustration
purposes the outliers are not shown. See Figure 2 and the Appendix for the definitions of the size measurement methods.

FIGURE 6
Scatterplots of the rotation given to the shape (rectangle or ellipse) versus the orientation measured for (A) the long-axis orientation and (B) the
second-moment orientation. Point color reflects the degree of shape diameter elongation.

for the maximum Feret diameter, 0.00 ± 0.10 for the mean Feret
diameter, −0.01 ± 0.06 for the bounding rectangle width, −0.01
± 0.08 for the equivalent-moment ellipse short axis, and −0.06
± 0.10 for the equivalent area disc diameter. Despite its higher
mean reference deviation and standard deviation, the minimum
circumscribed circle diameter was the most consistent method, as
highlighted by the boxplot graph (Figure 5B).

6.2 Orientation measurements

The long-axis orientation showed great precision for shapes
having a clear long axis and a diameter elongation greater than
1.2 (Figure 6A). Below this value, the precision was highly variable.
The second-moment orientation was less precise (Figure 6B), but all

points remained within a 10% error margin, even for those with a
very low elongation close to 1. This method was more accurate than
the long-axis orientation for shapes with low elongation.

6.3 Framework tests on generated images

The first PCA loadings indicated the following parameters were
being discriminant for the 13 ideal shapes: minimum circumscribed
circle, mean Feret diameter, convex hull perimeter, maximum
inscribed circle, rectangularity perimeter, and Fourier amplitude for
both methods. The selected amplitudes were the 1st, 3rd, 4th, 6th,
and 8th for the Rθ method and the 1st, 3rd, 5th, 7th, 9th, and 11th
for the elliptic method (xy; Table 3). When two methods described
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TABLE 3 Principal component analysis loadings for the Rθ and xy
methods and their related descriptors.

Rθ loadings

Descriptor
names

Abbreviations PC 1 PC 2 PC 3

Minimum
circumscribed circle

diameter

dcir 0.465 −0.055 0.138

Mean Feret diameter dFmean 0.427 −0.224 0.187

Convexhull perimeter Pch 0.418 −0.238 0.211

Maximum inscribed
diameter

dins 0.165 −0.485 0.340

Rectangularity
perimeter

Rp 0.309 −0.076 −0.617

Rtheta_1 amplitude Rθ1 0.191 0.479 0.260

Rtheta_3 amplitude Rθ3 0.191 0.478 0.264

Rtheta_4 amplitude Rθ4 0.371 0.035 −0.435

Rtheta_6 amplitude Rθ6 0.205 0.190 −0.269

Rtheta_10 amplitude Rθ10 0.228 0.391 0.084

XY loadings

Minimum
circumscribed circle

diameter

dcir 0.405 0.065 −0.152

Mean Feret diameter dFmean 0.414 −0.117 −0.141

Convexhull perimeter Pch 0.410 −0.143 −0.149

Maximum inscribed
diameter

dins 0.257 −0.515 −0.086

Rectangularity
perimeter

Rp 0.289 0.302 0.387

xy_1 amplitude XY1 0.381 −0.274 −0.152

xy_3 amplitude XY3 0.111 0.481 −0.344

xy_5 amplitude XY5 0.317 0.317 0.310

xy_7 amplitude XY7 0.088 0.347 −0.325

xy_9 amplitude XY9 0.276 0.103 0.524

xy_11 amplitude XY11 0.066 0.259 −0.400

For visualization purposes, the loadings have been rounded to the nearest thousand, and a
color map highlights the effect of each descriptor on the principal components. Positive
coefficients are in red, negative coefficients are in blue, and the color intensity increases
with higher values.

the same aspects, e.g.,minimumcircumscribed circle andmaximum
Feret diameter, we selected the one with the highest loading value.

In the second PCA, using the 10 and 11 selected descriptors
for Rθ and xy, respectively, PC1 to PC3 collectively accounted for

87.0% and 83.8% of the total explained variance, with PC1 alone
accounting for 43.9% and 49.4% for the Rθ and xy PCA, respectively.

Using Table 3, which presents the first three principal
components of both methods, we could rebuild the principal
component’s linear combinations (Equation 5) as

PC = PC loadings1 × z(descriptors1) + PC loadings2 × z(descriptors2)
+ PC loadings3 × z(descriptors3) +…+ PC loadingsn
× z(descriptorsn) (5)

where PC is the selected principal components, PCloadingsn is the
associated loadings and its related descriptors (descriptorsn), n is the
row number in the table, and z is the scaling function described in
Equation 4. An example using the first principal component of Rθ is
presented in Equation 6.

PC1Rθ = 0.465× z(dcir) + 0.427× z(dFmean) + 0.418× z(Pch) + 0.165

× z(dins) + 0.309× z(Rp) + 0.191× z(Rθ1) + 0.191× z(Rθ3)

+ 0.371× z(Rθ4) + 0.205× (Rθ6) + 0.228× z(Rθ10) (6)

Figure 7 presents the PC2 andPC3 axes, asmost differenceswere
easily visible using this axis pair. The scatterplots of Figures 7A,B
depict ideal shapes (without roughness and roundness), whereas
those of Figures 7C,D represent shapes havingmaximumroughness.
In the PCAs of Rθ (Figures 7A,C) and xy (Figures 7B,D), the
Rθ clusters were more tightly defined and grouped than their
xy counterparts. This divergence was greatest for the cases of
maximum roughness (Figures 7C,D), making form discrimination
challenging when using xy amplitudes. Nonetheless, even under
these conditions, the Rθ PCA remained capable of differentiating
triangular, circular (hexagons, ellipses, and circles), and rectangular
(squares, rectangles) shapes, thereby highlighting the robustness
of the Rθ method. Given the negligible contribution of concave
segments of the grain perimeter to its formdescription, coupledwith
the Rθ method’s ability to retain discrimination capability even in
noisy conditions, Rθ amplitudes emerged as a preferred method for
describing shapes.

Figure 8 illustrates the effect of roughness on the Rθ PCA.
Roughness had a significant effect on PC1 and a smaller effect on
PC2 and PC3 (Figures 8A,C). Moreover, the Rθ method retained
its ability to distinguish triangular, circular, and rectangular forms
despite elevated roughness.

Figure 9 illustrates the effect of roundness on the Rθ PCAs.
All graphs (Figures 9A–C) demonstrated that form recognition
using Rθ amplitudes was greatly affected by roundness, and no PC
showed any apparent reduced effect from roundness. All the shape
clusters tended to be attracted toward the circle cluster, making
initial form recognition more difficult as roundness increased.

In Figure 10, we divided the 13 forms into two columns for
better visualization. The left-hand column zooms in slightly on the
PCA axes to distinguish differences between forms approximating
a circle (high number of sides). The right-hand column shows the
remaining forms. The delineated zones represent the convex hull of
the test 1 and test 8 data sets. Tests 1 and 8 are distinct data sets
of ideal shape images characterized by identical parameters (R and
N were set at 0), demonstrating excellent reproducibility. Pentagons,
hexagons, and decagonswere clearly distinguished in Figures 10A,E,
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FIGURE 7
PCA scatterplots showing the difference between the (A, C) Rθ and (B, D) xy methods for the (A, B) test 1 and (C, D) test 5 data sets. Only six forms are
presented for visualization purposes.

whereas shapes with fewer than four sides were easily discriminated
in Figures 10B,D,F. The scatterplot PC2 vs PC3 (Figure 10D) best
discriminated these forms.The circle and square are particular cases
of the ellipse and rectangle, respectively, having a constant side
length. Both form clusters appeared as a straight line at the longest
extremity of their respective form cluster (Figures 7B,9B,D,F).

6.4 Framework validation with real grain
images

After validating our approach using generated images, we then
applied our process to actual images of galena grains. The first
PCA loadings indicated that particle perimeter, polygon to circle
area, diameter elongation, minimum circumscribed circle diameter,
maximum inscribed circle diameter, circularity, and the first and
third amplitudes of the elliptic Fourier method were discriminant
form descriptors for the galena grain population. A second PCA that

applied the eight selected descriptors had PC1 to PC3 collectively
accounting for 94.4% of the total explained variance, with PC1 alone
accounting for 53.2%. The other PCs were omitted, as they did
not significantly contribute to shape discrimination. Loadings of
the first three principal components for the eight descriptors are
presented in Table 4.

The PCA output for the galena binary images demonstrated
how the first principal component sorted the galena grains by size
(Figures 11A,C). The scatterplots were consistent with the grain
data set image (Figure 11E), and clearly showed a large number
of small grains around 180 pixels (e.g., grains 263, 391, and 494)
and a smaller number of larger grains, e.g., grain 101 (Figure 11D).
PC2 distinguished rounded and elongated rectangular grains, as
indicated by its high positive or negative loadings for the polygon
to circle area, circularity, and diameter elongation. These loadings
values are in accordance with the grain position (Figure 11D)
along PC2 (Figures 11A,B), ranging from the most rectangular and
elongated grain 391 to the less elongated subangular grain 494 to
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FIGURE 8
Rθ PCA plots showing the evolution of form with increasing roughness for the different PC axes (A–C). Color zones represent the form at differing
roughness: test 1 (the most transparent, N = 0) and test 2 (N = 0.12); the scatterplots represent test 3 having a maximum roughness (N = 0.6); the arrow
highlights the data dispersion with increasing roughness.

the sub-round grain 101 and finally to rounded grain 263 having a
low diameter elongation of 1.19. PC2 accurately reflected the shapes
observed in the grain data set image (Figure 11E), with a small
number of well-rounded and very elongated rectangular grains,
most being rectangular grains similar to that of grain 494. Finally,
PC3 described both grain roughness and roundness, with smooth
and rounded particles (e.g., grains 263, 494, and 101) having low
values and grains with angular and complex outlines (e.g., grain 391)
having higher values (Figures 11B–D).

In conclusion, the PCAs indicated that the galena grain
population consisted mainly of small stubby rectangular subangular
grains, such as grain 494, with a smaller proportion of grains
that were either well rounded (263) or very elongated (391). This
quantitative description of the grains aligned perfectly with the
grain data set image showing the same patterns (Figure 11E). An
interactive graph displaying each point within the PCA plots, along

with the corresponding grain images, can be accessed at https://
pca-grain-shapes.onrender.com. The loading of the webpage may
take a while.

7 Discussion

This article aims to quantitatively describe the form of an object
using PCA. It presents a framework for adapting this method to
other studies and provides the formulas and Python functions.

7.1 Methodology

The objects used in this framework are binary images obtained
from an image generation pipeline or a segmented transmitted light
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FIGURE 9
Rθ PCA plots showing the evolution of form with increasing roundness for the different PC axes (A–C). The color zones represent the form at a
different roundness: test 1 (the most transparent, R = 0) and test 4 (R = 1.2); the scatterplot represents test 5 with the maximum roundness (R = 6); the
arrow highlights the data dispersion with increasing roundness.

microscope image. This technique can be applied to any image as
long as a precise contour of the object of study is obtained and
transformed into a 2D-binary image. However, the image resolution
must exceed a certain threshold to obtain unbiased results. This
threshold can vary depending on the applied descriptor; for the
tested form descriptors, a higher threshold of 130 pixels is set
for object length (Sun et al., 2019). The segmentation technique
must also be coherent with the image and mineral properties
to ensure proper segmentation. Segmentation inaccuracies can
produce significant errors in the shape descriptor results (Zheng and
Hryciw, 2016).

Regarding the generated images, there are newer tools
available for simulating more realistic grain images (Mollon
and Zhao, 2013). However, evaluating the Fourier amplitudes

on generated images using the same techniques and
tools would be inappropriate, given their reliance on
Fourier’s methods.

The most commonly used formula (see Appendix B) is used to
compute circularity. However, there exists a wide range of formulas
for circularity, differing in whether the circularity is squared or
square-rooted. These equations describe the same concept, but
the distribution of the function changes. This change highlights
differences within certain intervals of x. For example, the square root
exaggerates x values between 0 and 1, whereas the square exaggerates
high values of x. Using PCA, we can determine which of those
functions has a greater effect, providing valuable insights into a data
set. If the square root of circularity has a more significant effect on
the variance, it indicates that the differences in our data set lie in
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FIGURE 10
Rθ PCA plot showing the 13 forms divided into two columns for visualization purposes. Subplots (A,C,E) present a close-up of the PC axes, showing the
differences between shapes close to a circle (high number of sides), while subplots (B,D,F) present the other shapes. The zones and the points
represent the convex hull of the test 1 data and test 8 data, respectively.

very low circularity values, illustrating the degree of roundness of
the grains. Emphasizing these differences will assist with clustering
in a later step.

7.2 Results

Form discrimination can be improved in several ways. First, the
orientation of objects influences the results of the Fourier method

because of the finite number of pixels (Wettimuny and Penumadu,
2004). Aligning all objects in the same direction would reduce
this influence. Additionally, using the convex hull rather than the
actual grain outline for rough shapes can minimize the roughness
effect and improve form recognition. The form of the grain convex
hull can be considered as the grain form. Finally, size difference
affects PCA output. Scaling all images to the same height or width
while maintaining the aspect ratio should, therefore, enhance form
discrimination.
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TABLE 4 Principal component analysis loadings for the galena grains
and their related descriptors.

Descriptor
names

Abbreviations PC1 PC2 PC3

Particle perimeter P 0.476 0.070 0.181

Polygon to circle area Pol −0.061 0.547 0.165

Diameter elongation Ed 0.115 −0.541 −0.252

Minimum
circumscribed circle
diameter

dcir 0.480 0.022 −0.062

Maximum inscribed
circle diameter

dins 0.404 0.322 0.102

Circularity C −0.129 0.447 −0.834

xy_1 amplitude XY1 0.463 0.166 −0.040

xy_3 amplitude XY3 0.363 −0.268 −0.406

The loadings have been rounded to the nearest thousandth. A color map highlights the
positive (red) or negative (blue) effect of each descriptor on the principal components, with
a more intense color reflecting higher values.

Our PCA output demonstrated that roundness and roughness
significantly influence form descriptors, and the reverse should also
be true. Therefore, including roundness and roughness descriptors
in the PCA analysis will enhance form discrimination.

Regarding the analysis of real grain images, we focus on galena
grains extracted from glacial sediments. Within this population,
only a few grains are large (exceeding a value of 4 on PC1), and
none exhibit a high degree of roundness. Additionally, many grains,
such as grain 494, are medium-sized and exhibit a rounded side
along with an angular one, leading to their classification as sub-
rounded. Given galena’s perfect cleavage properties, it is plausible
that large grains often fracture into smaller pieces, resulting in
grains showing an angular and rounded side. These shape analysis
results are consistent with a short distance of glacial transport for
such minerals (Paulen et al., 2011). With extended transport, sub-
rounded grains would likely become smaller, as they would result
from the separation of medium-rounded grains and the number of
medium-rounded grains would increase.

7.3 Future directions

Our results on real grain images (Figure 11) demonstrated that
combining PCA with form descriptors can reveal shape patterns
within the data set. The next step is to use clustering algorithms on
the captured PCA data to automatically identify and quantify the
number of distinct grain shape clusters and the number of grains
in each category. However, a greater distance between points is
required to cluster the data set more accurately and efficiently. In
a future study, we will enhance these differences by including the
roundness and roughness descriptors.

More advanced techniques, such as machine-learning
algorithms (Li and Iskander, 2022), can be applied to the data

generated by all form descriptors. Nevertheless, PCA retains
the advantage of interpretability. The loadings indicate the role
of each descriptor in shape discrimination, and the related
formulas help understand the physical parameters underlying these
variations.

7.4 Potential applications of the method

The quantitative framework for grain shape analysis
proposed in this study has significant potential for applications
in various real-world scenarios. The proposed method can
be directly applied to geological problems where object
shape is a critical factor. It has the potential to advance
research applications, such as developing a quantitative
zircon classification algorithm inspired by Pupin (1980),
or addressing exploration challenges, like gold grain
classification in till sediments, which relies on morphological
characteristics (Girard et al., 2021).

This approach could also help in planetary science,
where chondrule shape and size analysis provides valuable
insights into the relationships among meteorite groups, the
classification of ungrouped chondrites, and the temporal
and spatial variability within the solar nebula (Ebel et al.,
2024; Floyd et al., 2024). Moreover, the shape (or texture)
of the corundum-bearing Ca–Al-rich inclusions found
within chondrites could indicate different origins for
these inclusions: condensation (rough and irregular) or
crystallization from a melt (rounded inclusion with radiated
corundum; Needham et al., 2017).

The method also holds potential for industrial applications.
For instance, geometallurgy relies on a quantitative
understanding of the characteristics of primary resources
(Frenzel et al., 2023), with shape being a key factor.
Improved measurement of roughness, and by extension,
surface area could enhance understanding of grain flotation
capacity (Wang and Zhang, 2020), aiding in the optimization
of flotation processes. Additionally, more consistent size
measurements would contribute to the improved design
of gravimetric separation processes, where size plays a
critical role (Andò, 2020).

The shape of soil grains plays a crucial role in determining
various soil properties, significantly impacting geotechnical
behavior. Studies have shown that grain shape influences
factors such as compaction, permeability, and shear strength
(Altuhafi et al., 2016; Lu et al., 2019). For instance, rough
grains tend to interlock more effectively than rounded
grains, resulting in higher shear strength (Lu et al., 2019)
and better stability in soil structures. Additionally, the
arrangement and packing of different grain shapes can
affect the void ratio and porosity of the soil (Lu et al.,
2019), which in turn influences water retention and drainage
capabilities. As a result, understanding and analyzing grain
shape is essential for predicting soil behavior in engineering
applications, ensuring the reliability and safety of geotechnical
projects.

Finally, by offering a reproducible and adaptable tool,
this approach could enhance precision and standardize grain
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FIGURE 11
PCA plots obtained with galena grain images for the three principal components (A–C), showing both the training data (blue points) and testing data
(plus signs), (D) alongside their binary images and (E) the transmitted light image of the entire galena data set.

analysis practices across disciplines. Future studies should
further explore these applications. It includes integrating the
methodology with different imaging techniques and assessing
its impact on existing practices in related fields. Such efforts
will help fully realize the broader utility and influence of this
framework.

8 Conclusion

The framework proposed in this study offers an alternative to
the question, “What are the best descriptors?”. The idea is to identify
and use the most meaningful descriptors to describe the shape data
set. This approach involves three main steps: 1) obtaining the grain
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contours and calculating all form descriptors; 2) conducting a first
PCA to select the appropriate descriptors using the eigenvectors and
the total explained variance; and 3) conducting a second PCA using
the selected descriptors.

The comprehensive literature review on shape descriptors
enabled us to identify and compute meaningful size, orientation,
and form descriptors (available on GitHub). The size measurements
and PCA outputs clearly demonstrated that the most precise
measurements for the long and short axes were the minimum
circumscribed circle diameter and the maximum inscribed
circle diameter, respectively (Figure 5; Tables 3, 4). However, the
minimum enclosing rectangle also yielded excellent results for both
size and orientationmeasurements using the long axis (Figures 5, 6).
The advantage of this descriptor lies in directly measuring the
object’s length rather than the longest distance, which could be
a diagonal in the case of a rectangle. Selecting the appropriate
size measurement enables the most accurate computation of form
descriptors.

The form descriptors, when applied in PCA, successfully
discriminated 8 of the 13 ideal shapes (Figure 10), showcasing the
precision achievable with noiseless data. When applied to a real
grain population, our method produced very promising results
by effectively and quantitatively describing the shape tendencies
within a galena grain population (Figure 11). These results also
underscored the significant influence of roundness and roughness
on form descriptors (Figures 8, 9, 11), elucidating the challenges
in identifying the best descriptors. In conclusion, the capacity
of PCA to discriminate shapes and the difficulty in finding
ideal descriptors emphasize the relevance of our approach. The
inclusion of descriptors dedicated to roughness and roundness,
as a continuation of this study, will enhance the description and
discrimination of grain shape.
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Appendix

deq =
2√4A
π

Equivalent disc diameter (deq), where A is the
grain area (Figure 2A).

C = 4πA
P2

Circularity (C), where is the (P) particle perimeter

Rp =
P

2hrec + 2wrec

Rectangularity perimeter (Rp)

Ra =
A

hrec ×wrec

Rectangularity area (Ra)

Elp =
P

π [1.5× (lell + sell) −
2√(1.5× lell + 0.5× sell) × (0.5× lell + 1.5× sell)]

Ellipsoidity perimeter (Elp): The equivalent ellipse perimeter
is computed using the Ramanujan formula. It is the best
approximation using simple mathematical operators and
parameters.

Ela =
4A

π× lell × sell

Ellipsoidity area (Ela)

E f =
dFmax

dFmin

Feret elongation (E f)

Ed =
dcir
dins

Diameter elongation (Ed)

Pol =
4A

π(d2
cir − d

2
ins )

Polygon to circle area (Pol): This formula has been designed for
this paper. Its role is to describe the difference in area between the
minimum circumscribed circle and the maximum inscribed circle
normalized to the particle area. This difference decreases with a
higher number of sides for ideal shapes.
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