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The frequency–Bessel transformation method has significantly advanced the
extraction of multimodal surface waves in seismic research. However, the
presence of crossed artifacts in frequency–Bessel spectrograms, particularly
when stations are regularly distributed, presents a persistent challenge. Various
methods have been proposed to mitigate these artifacts, yet their diverse
formulations often lead to confusion about their practical application and
interrelations. This study aims to demystify these ambiguities by analyzing
the existing formulations within a unified framework. We uncover that the
apparent discrepancies among these methods primarily originate from the
differing conventions across various studies. Consequently, we establish explicit
mathematical relationships among these existing formulations. Moreover, we
demonstrate that the reliance on numerical Hilbert transform can be avoided
by maintaining only the causal component of cross-correlation functions. This
approach simplifies the artifact removal process, enhancing the practical utility
of frequency–Bessel spectrograms in geophysical analysis.

KEYWORDS
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1 Introduction

Since the introduction of the frequency–Bessel transformation (FJ) method to
extract multimodal surface wave dispersion curves by Wang et al. (2019) and Forbriger
(2003), it is shortly recognized that crossed artifacts appear in the spectrograms when
the stations are regularly distributed. Forbriger (2003) suggested that these artifacts
could be reduced to use the Hankel function instead of the Bessel function in the
integration process. Following this, subsequent studies by Xi et al. (2021), Luo et al.
(2022), Zhou et al. (2023), and Yang et al. (2024) have explored diverse strategies
to address this issue.

However, Yang et al. (2024) highlighted that there is a lack of consistency among
these methods. For example, Forbriger (2003) and Xi et al. (2021) used H(2)0 in
their formulations, while Luo et al. (2022) and Yang et al. (2024) preferred H(1)0 .
Additionally, Luo et al. (2022) did not explicitly include the Hilbert transform, which
is a requirement in other studies. This disparity raises questions about which method is
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most effective in practice, whether thesemethods are fundamentally
similar, and how they are related.

In this paper, we show how to extend Forbriger (2003)’s
formulation fromactive to passive sources.We then analyze different
approaches, focusing on the works by Forbriger (2003), Xi et al.
(2021), Luo et al. (2022), Zhou et al. (2023), and Yang et al.
(2024), using a consistent convention, and explore the relationships
among these studies. We also make some clarifications on our
previous study (Luo et al., 2022) and show how the usage of the
numerical Hilbert transform can be avoided.

2 Theory

2.1 Conventions

We use the Hilbert transform in the form (Hahn, 1996)

H [ f] (ω) = 1
π
P∫
∞

−∞

f (ω′)
ω−ω′

dω′, (1)

where the symbol P denotes the Cauchy principal value. This
definition aligns with current literature (Hahn, 1996; Johnansson,
1999) and is implemented in the MATLAB software and the
Python function scipy.signal.hilbert. However, it differs in
sign from the definition of Erdelyi (1954) and the Python function
scipy.fftpack.hilbert. According to Hu (1989), as cited by Zhou and
Chen (2021) and Yang et al. (2024), the Kramers–Kronig relation
for an analytic signal χ(ω) = χ1(ω) + iχ2(ω) is

χ1 (ω) = −H [χ2] (ω) , (2)

χ2 (ω) =H [χ1] (ω) . (3)

In this notation, H(sgn(w)J0(w)) = Y0(|w|) (Erdelyi, 1954, P.
254). Note that there will be a sign difference in Equations 2, 3 if the
other definition of the Hilbert transform is used.

2.2 Extend Forbriger's formulation from
active to passive source

Because we focus on the ZZ component cross-correlation
functions (CCFs) CZZ(ω, r) in this study, it is shortened as
C(ω, r) for convenience. The corresponding analytic signal, with
C(ω, r) as the imaginary part, is denoted as G(ω, r). For the ZZ
component CCFs C(ω, r), the formulation for the FJ method is
as follows: Wang et al. (2019)

IWang (ω,k) = ∫
∞

0
C (ω, r) J0 (kr) rdr. (4)

In a related study, Forbriger (2003) proposed to use the following
equation to mitigate the crossed artifacts:

I0Forbriger (ω,k) = ∫
∞

0
G (ω, r)H(2)0 (kr) rdr. (5)

Note that the original version of I0Forbriger is intended for
active source seismic records G(ω, r). When applying Equation 5
to ambient noise CCFs, G(ω, r) needs to be constructed from the

CCFs C(ω, r), which corresponds to the imaginary part of G(ω, r)
(Sánchez-Sesma and Campillo, 2006; Wang et al., 2019). Using the
Kramers–Kronig relation in Equation 2, we obtain

G (ω, r) = −H [C] (ω, r) + iC (ω, r) . (6)

Consequently, IForbriger for CCFs can be reformulated as

IForbriger (ω,k) = ∫
∞

0
{−H [C] (ω, r) + iC (ω, r)}H(2)0 (kr)dr. (7)

Note that the extension of Forbriger (2003)’s work from active to
passive sources intuitively leads to the adoption of H(2)0 .

2.3 Formulation without the numerical
Hilbert transform

The FJ method has been extended to multicomponent CCFs
(Hu et al., 2020). Correspondingly, the method of Forbriger (2003)
to remove crossed artifacts has been adapted for multicomponent
CCFs in another slightly different approach by Luo et al. (2022).
At this point, we would like to clarify specific aspects of
the study by Luo et al. (2022).

Notably, in the approach by Luo et al.’s (2022), there is an implicit
assumption that solely the causal part of the CCFs, denoted as ̄c(t), is
utilized. Explicitly, ̄c(t) = 1

2
[c(t) + sgn(t)c(t)]. Therefore, the Fourier

transform (denoted by F) of 2 ̄c(t) will be

2C̄ (ω) = F [c (t) + sgn (t)c (t)] = C (ω) − iF [isgn (t)c (t)] (ω) . (8)

Using the Fourier transform of the signum function,
F(isgn(t)) = 2

ω
and the Fourier transform of a product of functions,

F[g(t) f(t)] = 1
2π
( ̂g∗ f̂)(ω), where the symbol ∗ represents the

convolution and F( f) = f̂(ω), as well as the definition of the
Hilbert transform in Equation 1, there is a relation

2C̄ (ω) = C (ω) − i 1
π
1
ω
∗C (ω) = C (ω) − iH [C] (ω) . (9)

From Equation 9, there are relations Re{C̄(ω)} = 1
2
C(ω) and

Im{C̄(ω)} = − 1
2
H[C](ω). Therefore, H[C](ω) = − 2Im{C̄(ω)}. We

emphasize that the abovementioned relation offers an alternative
approach to computing the Hilbert transform without relying on
pure numerical methods. Specifically, it involves first constructing
the Fourier transform of the causal part of the CCFs ( ̄c(t)) and then
extracting the imaginary part of the result. Equation 9 has been
validated through numerical tests, as depicted in Figure 1, where
Im{C̄(ω)} is compared with − 1

2
H[C](ω). Specifically, as shown in

Figure 1A, we first constructed a causal signal ̄c(t) = 1
2
e−t

2
for t > 0

and then calculated its Fourier transform C̄(ω). The plot juxtaposes
Im{C̄(ω)} in green with − 1

2
H[C](ω) in red, demonstrating their

concordance and thereby validating Equation 9. Figure 1B depicts a
parallel test using CCFs between two virtual stations in a numerical
experiment. The phase agreement between the green and red lines
is evident. However, a discrepancy in amplitude between the two
lines is observed, which is most likely a consequence of edge effects
associated with the numerical Hilbert transform.

According to Equation 9, the numerical execution of the Hilbert
transform can be circumvented in practical scenarios. This is
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FIGURE 1
Validation of Equation 9 by comparison of different methods to construct the imaginary part of C̄(ω, r): (A) with the input signal described as ̄c(t) = e−t

2/2

for t > 0, (B) with the input signal as a sample CCF between two virtual stations in a numerical test. Blue lines are the real part of C̄(ω, r), which equals
1

2
C(ω, r). Green lines are the imaginary part of C̄(ω, r) constructed by the Fourier transform of the causal part of CCFs (Im{C̄(ω)}). Red lines are the

imaginary part of C̄(ω, r) constructed by the numerical Hilbert transform − 1
2
H[C](ω).

because the Hilbert transform is inherently incorporated during
the retention of only the causal portion of the CCFs. Practically,
due to the potential asymmetry between the causal and acausal
parts of the CCFs, we define the causal part as the average of
the positive and negative segments of the CCFs. Additionally,
in Luo et al. (2022), only the real part of the integration is
used to construct the F-J spectrograms. Therefore, an equivalent
expression of the equations used by Luo et al. (2022) would be (see
Appendix in Luo et al. (2022)):

ILuo (ω,k) = Re{∫
∞

0
C̄ (ω, r)H(1)0 (kr) rdr}, (10)

= 1
2
Re{∫

∞

0
{C (ω, r) − iH [C] (ω, r)}H(1)0 (kr) rdr}. (11)

Instead of computing Equation 11 directly, Equation 10
indicates that the numerical Hilbert transform can be avoided
in the integration if only the casual part of the CCFs C̄(ω, r)
is used. Note that in the main text of Luo et al. (2022), H(2)0
in Equations 7, 8, 11, 12 should be replaced by H(1)0 . It is also
noteworthy that although the usage of Re{⋅} in Equation 10
is not mentioned in Luo et al. (2022), it is required because
the corresponding imaginary part of the integrand (denoted
by I
∗
Luo) fails to correctly constrain the dispersion curves

(see details in the Discussion section).

2.4 Comparison among different
formulations

In the following section, we summarize other formulations for
the improved FJ method with crossed artifacts removed.

Xi et al. (2021) proposed to use

IXi (ω,k) = −∫
∞

0
{iG (ω, r)H(2)0 (kr) + (iG (ω, r))

∗H(1)0 (kr)} rdr, (12)

where G is the analytic signal defined in Equation 6 and (iG)
∗
is the

complex conjugate of iG.
Zhou et al. (2023) proposed to use

IZhou (ω, r) = ∫
∞

0
[Re{C̃ (r,ω)} J0 (kr) + Im{C̃ (r,ω)}Y0 (kr)] rdr,

(13)

where C̃(ω, r) should be regarded as the analytic signal whose
real part is the CCFs C(ω, r). Therefore, Re{C̃(ω, r)} = C(ω, r)
and Im{C̃(ω, r)} =H[C](ω, r) according to Equation 3. Note
that C̃(ω, r) ≠ G(ω, r), and Equation 13 seems to be a correct
version of Zhou and Chen’s (2021)’s original formulation.

Themethods of Xi et al. (2021) and Zhou et al. (2023) have been
implemented by Li et al. (2021) for ZZ component CCFs and by
Zhang et al. (2022) for multicomponent CCFs. It is important to
note, however, that Li et al. (2021) andZhang et al. (2022) utilized the
Python function scipy. fftpack.hilbert in their implementation. This
usage has introduced an apparent sign difference when compared to
the theoretical analysis presented in this paper.

In a recent study, Yang et al. (2024) proposed the
frequency–Hankel transform

IYang (ω,k) = ∫
∞

0
[H [C] (ω, r) + iC (ω, r)]H(1)0 (kr) rdr. (14)

Combiningwith the properties of theHankel function,H(1)0 (x) =
J0(x) + iY0(x), H(2)0 (x) = J0(x) − iY0(x), and (H1

0(x))
∗
=H(2)0 (x),

formulations presented in Equations 7, 10, 12–14 can be expanded
in terms of Bessel functions as

IForbriger = ∫
∞

0
[−H [C] (ω, r) J0 (kr) +C (ω, r)Y0 (kr)] rdr

+ i∫
∞

0
[H [C] (ω, r)Y0 (kr) +C (ω, r) J0 (kr)] rdr, (15)

IXi = 2∫
∞

0
[H [C] (ω, r)Y0 (kr) +C (ω, r) J0 (kr)] rdr, (16)

ILuo =
1
2
∫
∞

0
[H [C] (ω, r)Y0 (kr) +C (ω, r) J0 (kr)] rdr, (17)

IZhou = ∫
∞

0
[H [C] (ω, r)Y0 (kr) +C (ω, r) J0 (kr)] rdr, (18)

and

IYang = ∫
∞

0
[H (C) (ω, r) J0 (kr) −C (ω, r)Y0 (kr)] rdr

+ i∫
∞

0
[H [C] (ω, r)Y0 (kr) +C (ω, r) J0 (kr)] rdr. (19)

According to Equations 15–19, there relation is given as

Im{IForbriger} =
1
2
IXi = 2ILuo = IZhou = Im{IYang} . (20)
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FIGURE 2
Frequency–Bessel spectrograms of synthetic data computed by the FJ method and three modified versions by Luo et al. (2022) and Xi et al. (2021). (A)
FJ spectrogram by integrating with the Bessel function J0 as IWang in Equation 4. (B) FJ spectrogram by ILuo as expressed in Equation 10. (C) FJ

spectrogram by IXi as expressed in Equation 16. (D) FJ spectrogram by I
∗
Luo, which is the imaginary part of the corresponding integrand in Equation 10.

The numerical Hilbert transform was performed to construct IXi. The theoretical dispersion curves are plotted as red crosses. The normalization factors
at each frequency are also plotted at the top of the FJ spectrograms (divided by 104 for visualization).

Denoting the corresponding imaginary part of the
integrand in Equation 10 as I

∗
Luo, the relation is given as

Re{IForbriger} = 2I∗Luo = −Re{IYang} . (21)

Note that Equation 19 has already been correctly provided by
Yang et al. (2024) (Equation 21). However, the construction of
G(ω, r) in Yang et al. (2024) seems to be problematic (it should be
−a+ bi instead of a+ bi on page KS72 in Yang et al. (2024) in their
notation according to our Equation 6). The problematic derivation
results in their flawed arguments regarding the relationships among
different methods.

3 Discussion

As elucidated in Equations 20, 21, the formulations proposed
by Forbriger (2003), Xi et al. (2021), Luo et al. (2022), Zhou et al.
(2023), and Yang et al. (2024) are actually correlated with each
other. Notably, the constructions of IForbriger, IXi, IZhou, and IYang
all require the numerical computation of the Hilbert transform,
as implemented by Li et al. (2021) and Zhang et al. (2022). We
would like to emphasize that the numerical Hilbert transform can
be avoided in the implementation of ILuo by merely maintaining
the causal portion of the CCFs, or pragmatically, by designating
the average of the positive and negative parts of the CCFs as
the causal part. To substantiate the efficacy of ILuo, validate the
relationship in Equation 20, and study the effects of the real part

of IForbriger and IYang, we present a numerical example. In practice,
Li et al. (2021) and Zhang et al. (2022) implemented IXi and IZhou
using Equations 16, 18, instead of their original formulations in
Equations 12, 13.We, therefore, choose to compare the results of ILuo
and IXi using Equations 10, 16 (Figures 2B, C). We also plot I

∗
Luo to

study the effects of the real parts of IForbriger and IYang (Figure 2D).
In the numerical example, the seismic arrays are located linearly,
as shown in Figure 2B in Luo et al. (2022), and the velocity model
contains a low-velocity layer as shown in Figure 2C in Luo et al.
(2022).The synthetic waveformswere computed using theComputer
Programs in Seismology package (Herrmann, 2013). Subsequently,
the vertical–vertical component CCFs were computed. Based on
this, the FJ spectrograms of the synthetic data, in accordance with
Equations 4, 10, 16, were calculated and illustrated in Figures 2A–C,
respectively. In this example, it is clear the crossed artifacts are
effectively removed in both Figures 2B, C. Notably, the outputs of
ILuo and IXi are almost identical to each other, with the exception that
the normalization factor of IXi at each frequency is four times that
of ILuo, as delineated in Equation 20. On the other hand, the peak
locations of the I

∗
Luo spectrogram, corresponding to Re{IForbriger}

and Re{IYang}, do not coincide with the correct dispersion curves
(Figure 2D). Therefore, as discussed by Zhou and Chen (2021), the
inclusion of Re{IForbriger} reduces the resolution of FJ spectrograms.

To further demonstrate the correlations among these
methods, we conducted a parallel test using field data from a
USArray, as shown in Supplementary Figure S1. The data were
previously used in Luo et al. (2022) (see their Figure 9). This test
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also confirms that both ILuo and IXi are equally effective in removing
the crossed artifacts. Additionally, the real part of IForbriger should
not be included when generating high-resolution FJ spectrograms.

4 Conclusion

In this study, we have conducted analysis of prior
work addressing the elimination of crossed artifacts in the
frequency–Bessel spectrograms, placing these studies within a
unified framework. This approach has allowed us to uncover the
underlying relationships between various methodologies proposed
in the literature. We also have shown how to extend the formulation
proposed by Forbriger (2003) from active to passive sources.
Furthermore, we have proposed a refined approach that circumvents
the need for the numerical Hilbert transform, as has been implicitly
suggested in a previous study (Luo et al., 2022).
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