
TYPE Original Research
PUBLISHED 27 March 2025
DOI 10.3389/feart.2025.1501498

OPEN ACCESS

EDITED BY

Eric Josef Ribeiro Parteli,
University of Duisburg-Essen, Germany

REVIEWED BY

Mohammad Azarafza,
University of Tabriz, Iran
Jeffrey Perez,
Philippine Institute of Volcanology and
Seismology, Philippines

*CORRESPONDENCE

Chong Xu,
xc11111111@126.com,
chongxu@ninhm.ac.cn

RECEIVED 25 September 2024
ACCEPTED 05 March 2025
PUBLISHED 27 March 2025

CITATION

Wang Q and Xu C (2025) What are the spatial
distribution characteristics of the 4417
landslides in Minhe County, Qinghai Province,
China?
Front. Earth Sci. 13:1501498.
doi: 10.3389/feart.2025.1501498

COPYRIGHT

© 2025 Wang and Xu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
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Landslide relic inventories serve as essential data for geological disaster
investigations and risk assessments. Using a previously developed landslide relic
inventory for Minhe County, Qinghai Province, this study employs landslide
number density (LND) and landslide area percentage (LAP) to thoroughly
investigate the spatial distribution characteristics of landslides in the region.
Utilizing a GIS platform, we selected ten factors for in-depth analysis, including
elevation, slope aspect, slope gradient, relief degree of land surface, distance
to faults, lithology, land use type, distance to rivers, rainfall, and NDVI. The
results show that at least 5,517 landslide relics have developed in Minhe County,
with a total landslide coverage area of 434.43 km2. These landslides are mainly
distributed in regions with elevations of 2000–2100 m, slope gradients of
15°–25°, Neogene strata, grassland, and within 0–2 km of rivers. Both slope
and aspect are the most significant factors influencing the landslide relics in
Minhe County. The findings of this study contribute to a better understanding
of the development characteristics and spatial distribution of landslides in the
Huangshui River Basin and provide valuable data support for future landslide
assessments and disaster prevention efforts.
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huangshui river basin, upper yellow river, landslide inventory, google earth, visual
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1 Introduction

Landslides are a common geological hazard worldwide (Li et al., 2021a; Petley, 2012;
Qiu et al., 2018;Wang et al., 2021; Li et al., 2021b).Many landslides are characterized by large
scale, high frequency, and rapid occurrence, often resulting in catastrophic consequences
that pose significant threats to human life, property, and socio-economic development
(Lin et al., 2008; Wang et al., 2018; Ma et al., 2024c; Shao et al., 2024b; Nanehkaran et al.,
2022). China is one of the countries most severely affected by landslides worldwide
(Xue et al., 2023; Ma et al., 2023d; Zhao et al., 2024). Between 1950 and 2016, China
recorded 1,911 fatal landslides, resulting in 28,139 deaths (Froude and Petley, 2018). These
statistics highlight the devastating impact of landslide hazards. Therefore, understanding
the mechanisms behind landslides and conducting research on landslide prevention are
crucial (Huang et al., 2023). Current research on landslides primarily focuses on landslide
inventories (Valenzuela et al., 2017; Wang et al., 2022), spatial distribution patterns
(Frattini and Crosta, 2013; Korup, 2005; Shao et al., 2024a), susceptibility assessments
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(Cui et al., 2022; Liu et al., 2022; Cemiloglu et al., 2023; Ali et al.,
2021), hazard evaluation (Ma et al., 2022; Shao et al., 2023c),
numerical simulations (Cui et al., 2021; Xia et al., 2021), stability
analysis (Wu et al., 2023), and monitoring and early warning
systems (Yin et al., 2010a). Among these, constructing landslide
inventories is a fundamental basis for conducting further research
(Zhao et al., 2023). Landslide inventories typically provide detailed
information on the location, type, and spatial distribution of
landslides in a given region (Guzzetti et al., 2012; Piacentini et al.,
2018; Wieczorek, 1984; Xu, 2015), which is essential for subsequent
studies on their spatial patterns and risk assessment.

Building on the establishment of landslide inventories, scholars
both domestically and internationally have conducted extensive
studies on the spatial distribution patterns of landslides, utilizing
a variety of methods such as field surveys, historical aerial
imagery analysis (Kubwimana et al., 2021), satellite imagery and
the integration of InSAR technology (Chen et al., 2022). By
analyzing these spatial distribution characteristics, we can effectively
identify high-risk landslide areas and provide scientific support
for disaster prevention efforts. Moreover, to better understand
the causes of landslides, researchers often explore vital factors
influencing their occurrence. Landslides are typically the result
of the combined effects of various factors, including geological,
geomorphological, and climatic conditions (Huang et al., 2022).
Currently, there is no consensus on the selection of factors that
influence landslides in academic research. Most studies use eight
common factors: elevation, slope, aspect, lithology, distance to faults,
distance to rivers, rainfall, and land use. Additionally, depending
on the region and purpose of the study, scholars may introduce
additional influencing factors to enrich their findings. For example,
in studies of rainfall-induced landslides, researchers have included
factors such as the topographic wetness index (TWI) (Xie et al.,
2023), the relief degree of land surface (Ma et al., 2023c), the
normalized difference vegetation index (NDVI) (Li et al., 2024a). For
earthquake-induced landslides, common additional factors include
the topographic position index (TPI) (Chen et al., 2023c), peak
ground velocity (PGV) (Ma et al., 2023a), peak ground acceleration
(PGA) (Ma et al., 2024d; Shao et al., 2022), and earthquake intensity
(Shao et al., 2023b; Xiao et al., 2023). In studies on landslide
relics, factors such as curvature (Naseer et al., 2021), soil type
(Quan et al., 2014), stream power index (SPI) (Chen et al., 2023b),
and distance to roads (Bui et al., 2012) have been introduced.
Although current research offers valuable insights into the spatial
distribution patterns and triggering factors of landslides, studies on
landslides in China remain incomplete, and many landslide-prone
areas still require further exploration.

The Huangshui River Basin, situated in the upper reaches
of the Yellow River, lies in the transition zone between the first
and second steps on the northeastern edge of the Qinghai-Tibet
Plateau. This region is characterized by intense tectonic activity
and complex lithology, with large landslides widely distributed
(Zhang et al., 2023). The hilly areas in the middle and lower
reaches of the basin are highly prone to geological disasters, both
within Qinghai Province and across the country (Cui et al., 2015;
Zhou et al., 2002). According to surveys conducted by the Qinghai
Hydrology and Environmental Engineering Department, loess
landslides in the Huangshui River Basin have caused 26 deaths,
destroyed 1,007 houses, and resulted in direct economic losses

exceeding 4 million yuan (Zhou et al., 2013). In recent years,
significant progress has been made in the study of landslide spatial
distribution patterns and causal mechanisms in the upper reaches of
the Yellow River (Li Z. et al., 2024; Tu et al., 2023). Existing research
has primarily focused on critical parameters such as slope gradient,
geotechnical structure, and stratigraphic chronology (Zhang and
Liu, 2010; Zhao et al., 2025; Huang et al., 2022; Li Z. et al., 2024),
offering in-depth insights into the developmental mechanisms
and spatial characteristics of landslides in this region. However,
despite substantial advancements, the spatial heterogeneity and
evolutionary processes of landslide hazards across different
subregions remain insufficiently explored and require further
refinement. The Huangshui River, one of the most significant
tributaries of the upper Yellow River, flows through a geologically
complex and tectonically active landscape. This river basin also
constitutes the political, economic, and cultural center of Qinghai
Province, where its geographical and environmental conditions
exert profound influences on regional socioeconomic development
and ecological security. Among the areas within this basin, Minhe
County, located in the lower reaches of the basin, has emerged as
a high-risk area for landslide hazards due to its highly undulating
topography, loosely consolidated geotechnical materials, and the
compounded effects of multiple contributing factors. Building
upon prior research, this study utilizes a systematically compiled
landslide inventory for Minhe County to analyze the spatial
distribution characteristics of landslides. Ten key influencing
factors were selected, including elevation, aspect, slope gradient,
topographic relief, distance to faults, lithology, land use type,
distance to rivers, precipitation, and the NDVI. Through a
comprehensive spatial analysis, we investigated the relationships
between these factors and landslide occurrence, providing
preliminary insights into the primary controlling mechanisms of
landslide activity in the region. This research not only enhances the
understanding of landslide formation processes and evolutionary
patterns in Minhe County but also provides a robust scientific
foundation for regional disaster risk assessment, infrastructure
safety planning, and land-use optimization. Ultimately, the
findings contribute to the development of an integrated
disaster prevention and mitigation framework, supporting the
long-term sustainability and resilience of the region against
geohazards.

2 Study area overview

Minhe Hui and Tu Autonomous County (referred to as Minhe
County) is located in the eastern part of Haidong City, Qinghai
Province, China (coordinates: 102°26′–103°04′E, 35°45′–36°26′N),
covering a total area of 1,890 square kilometers (Figure 1). Minhe
County lies in the transition zone between the Loess Plateau
and the Qinghai-Tibet Plateau, featuring a complex terrain with
deep ravines and overlapping mountain ranges. The topography
is generally higher in the northwest and lower in the southeast,
with the southwestern part dominated by high mountains. The
Huangshui and Yellow Rivers flow from west to east through the
northern and southern parts of the county, forming the Huangshui
andYellowRiver valleys.The region experiences a temperate, plateau
continental arid climate with an average annual temperature of 9°C.
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FIGURE 1
Overview of the study area.

Precipitation is unevenly distributed throughout the year, mainly
concentrated between May and September, with an average annual
rainfall of approximately 292.2 mm.

Minhe County is situated between the South Qilian and
North Qilian geosynclinal fold belts and primarily falls within
the eastern extension of the Central Qilian fold belt. The main
geological structures include the Sangjia-Guantan thrust fault, the
Baijiasi-Zhaojia thrust fault, and the Zhaerleng-Keer’ao thrust
fault. Stratigraphically, the region is dominated by formations
from the Quaternary, Paleogene, Neogene, and Cambrian
periods. The Quaternary loess, along with the Paleogene and
Neogene red beds, constitutes the main landslide-prone units in
the region (Kou et al., 2017).

According to the earthquake catalog published by the China
Seismic Network (CSN), the earthquake data for the study area are
presented in Supplementary Table S1.

3 Data and methods

3.1 Selection and processing of influencing
factors

3.1.1 Selection of influencing factors
To analyze the spatial distribution of landslides in Minhe

County, we referenced studies conducted by previous scholars
(Wang et al., 2022). Landslide number density (LND) and
landslide area percentage (LAP) were selected as key indicators
for measuring the spatial distribution of landslides in the study

area. LND describes the concentration of landslides, representing
the number of landslides per square kilometer (Equation 1).
LAP, on the other hand, represents the scale of landslides,
expressed as the percentage of the landslide area relative to various
influencing factors (Equation 2).

LND = Landslidenumber
Classif ied areaof variable I

(1)

LAP = Landslidearea
Classif ied areaof variable I

(2)

By comparing the number of landslides and the areas affected
under different influencing factors, we can analyze the spatial
distribution patterns of landslides. This method is regarded as the
simplest and most fundamental approach for studying landslide
spatial distribution (Cui et al., 2024). We used a GIS platform for
this analysis. By reclassifying the raster layers of each influencing
factor and extracting the values for multiple factors at each landslide
point, we determined the number and area of landslides within each
factor category. Based on these data, we calculated the LND and LAP
values for each category and conducted an in-depth investigation of
landslide spatial distribution patterns.

In this study, considering the availability of existing data and
drawing on previous research, we selected 10 influencing factors
for analysis. These include four topographic factors (elevation, slope
aspect, slope gradient, Relief degree of land surface), three geological
and geomorphological factors (distance to faults, lithology, land
use), and three hydrological and ecological factors (distance to
rivers, rainfall, NDVI).
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3.1.2 Processing of influencing factors
For the convenience of subsequent calculations in our study, we

processed the raw data of the influencing factors to transform them
into a format suitable for machine learning model analysis. In this
study, two types of factor data need to be processed and converted:
continuous factors and categorical factors.

For continuous factors, such as DEM, slope, rainfall, and
topographic relief, we discretized the data. Discretization involves
dividing the numerical range of continuous factors into several
intervals, with each interval representing a specific factor level.
For example, for DEM values (which represent the elevation of
the region), we typically start with the lowest value in the area
and divide it into intervals of 100 m, creating multiple levels. The
methods used for discretization include equal interval classification
and natural breaks classification. Discretization helps simplify the
model analysis process, making the model easier to understand and
interpret.

For categorical factors, such as lithology and land type, we
convert their attribute information into numerical format by
assigning specific values, so that the model can accurately identify
and analyze the influence of different categories. For example,
the lithology factor contains information about various geological
ages, and we can convert this information into numerical values
(such as assigning values like 1, 2, 3) to facilitate further analysis
in the model.

3.1.3 Correlation of influencing factors
We selected the Pearson Correlation Coefficient (PCC) to

further investigate the correlations between the influencing factors.
The Pearson Correlation Coefficient is a statistical measure
that quantifies the degree of linear correlation between two
variables (Ullah et al., 2024). The value of the Pearson Correlation
Coefficient ranges from −1 to 1. A positive rxy indicates a positive
correlation between the two factors, while a negative rxy indicates a
negative correlation. If rxy is close to 0, it suggests that there is almost
no linear correlation between the two factors.

When the absolute value of the correlation coefficient between
two factors exceeds 0.7, a strong correlation is considered to
exist between them (Hong et al., 2020; Qin et al., 2021).
By calculating the Pearson Correlation Coefficients between
the influencing factors, we can effectively identify factor pairs
with strong correlations and selectively retain one factor from
such pairs, thereby avoiding interference between factors and
addressingmulticollinearity issues (Selamat et al., 2024). Specifically,
the formula for calculating the Pearson Correlation Coefficient
is as follows:

rxy =
∑n

i=1
(Xi −X)(Yi −Y)

√∑n
i=1
(Xi −X)

2 ×√∑n
i=1
(Yi −Y)

2

Where:
R = Correlation Coefficient.
Xi = Values of x-variable.
X = mean of x-variable.
Yi = Values of y-variable.
Y = mean of y-variable.

3.1.4 Importance of influencing factors
Variable Importance Measure (VIM) is a quantitative method

used to describe the contribution of each feature to classification
or regression tasks. In this study, we utilize the Random Forest
(RF) model to calculate the relative importance of influencing
factors.

Random Forest is an ensemble learning method introduced
by Breiman (2001). It works by constructing multiple decision
trees and combining their predictions to improve the accuracy
of data analysis and forecasting (Cutler et al., 2012). RF models
generally exhibit high predictive accuracy (Chowdhury et al.,
2024) and are capable of effectively analyzing data with non-
linear relationships, collinearity, and interactions. Additionally,
Random Forest not only provides prediction results but also
assigns relative importance scores to each variable, making it a
widely used and effective tool for evaluating feature importance.
In the RF model, feature importance is determined by evaluating
the contribution of each feature to the prediction results during
the model training process. These importance scores reflect the
relative influence of each feature within the model, helping us
identify which features have a greater impact on the subsequent
susceptibility evaluation results. Therefore, feature importance
assessment not only improves the interpretability of the model but
also provides a critical basis for further feature selection and model
optimization.

3.2 Data sources

The data and sources used in this study are
presented in Supplementary Table S2. We clipped the layers of each
factor to fit the study area and applied the Universal Transverse
Mercator (UTM) projection within the WGS84 coordinate system.
The data were resampled to a uniform raster resolution of 12.5 m
× 12.5 m. The Digital Elevation Model (DEM), with a resolution
of 12.5 m × 12.5 m, was primarily used to extract elevation, slope,
aspect, and Relief degree of land surface.

3.3 Landslide data

An accurate and comprehensive landslide inventory is
essential for subsequent research, risk assessment, prediction,
and disaster management (Du et al., 2020; Wang et al., 2022).
In recent years, an increasing number of scholars have focused
on constructing landslide relic inventories. For example, using
high-resolution remote sensing imagery, scholars have developed
landslide inventories for major mountain ranges in China, such
as the Yin Mountains (Sun et al., 2024), Taihang Mountains
(Zhang et al., 2024), and Qinling Mountains (Feng et al., 2024).
Additionally, relatively complete inventories have been created
for landslide-prone regions like the Loess Plateau (Peng et al.,
2019) and the Qinghai-Tibet Plateau (Wang W. et al., 2024).
However, no comprehensive landslide relic inventory has yet
been established for Minhe County, the area selected for
this study.

In response to this gap, we previously constructed the most
comprehensive landslide inventory to date for Minhe County

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2025.1501498
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang and Xu 10.3389/feart.2025.1501498

FIGURE 2
(a) Overall spatial distribution of landslides in Minhe County; (b) Distribution of landslides of varying magnitudes across different latitudes and
longitudes.

(Wang Q. et al., 2024), which serves as the data source for this
study. A total of 5,517 landslide relics were identified in the
Minhe region, covering a total area of 434.43 km2, approximately
22.98% of the county’s area. The overall distribution of landslides
is shown in Figure 2a. The largest single landslide covers an area
of 1.62 × 106 m2, while the smallest measures 880.22 m2, with
an average landslide area of 78,743.04 m2. Statistics indicate that
there are 437 landslides with an area smaller than 10,000 m2,
accounting for approximately 7.92% of all landslides. Additionally,
2,547 landslides have an area between 10,000 m2 and 50,000 m2,
accounting for 46.17% of the total. Moreover, there are 1,318
landslides with an area between 100,000 m2 and 500,000 m2,
and 1,141 landslides with an area between 500,000 m2 and
1,000,000 m2, representing 23.89% and 20.68% of the total,
respectively. There are also 74 large landslides with areas exceeding
1 × 106 m2.

As shown in the landslide distribution map, landslide features
are widely distributed throughout Minhe County, except in
the high-altitude areas in the west and small parts of the
northern and southern regions. Additionally, a significant number
of landslides are concentrated along the tributaries of the
Huangshui and Yellow Rivers, with denser distributions around
river bends. Figure 2b illustrates the geographical distribution of
landslides of different sizes. The map clearly shows that small
landslides are concentrated in the northwest, east, and southeast
regions of the county, while larger landslides are primarily located
in the northern and southwestern parts.

4 Results

4.1 Spatial distribution of landslides

Using landslide data from previous work, we utilized a GIS
platform and applied the Kernel Density method with a 2 km
search radius to generate landslide point density and landslide area
percentage maps for Minhe County (Figures 3a,b). The results show
that the maximum point density in the region is 13.17 km−2, and
the maximum area percentage is 87.38%. The spatial distribution of
areas with high area percentages largely coincides with those of high
point densities, though some regional differences exist. For instance,
in the southwestern part of the county, particularly in Xinger
Township andGuanting Town, the landslide area percentage ismore
prominent compared to point density, suggesting that landslides in
these areas tend to be larger in scale. In contrast, in the northwestern
part of the county, near Xinmin Township and Songshu Township,
the landslide point density is more pronounced, indicating a higher
number of landslides, though these tend to be smaller in size.

4.2 Analysis of influencing factors

4.2.1 Topographic factors
Theelevation of the landslide-affected areas ranges from1,686 m

to 3,565 m. We divided the elevation into 15 intervals, starting from
1,600 m, with each interval spanning 100 m. The statistical results
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FIGURE 3
Landslide density map. (a) Point density map; (b) area density map.

are shown in Figure 4. In the 2,000–2,100 m interval, the LND
and LAP reach their maximum values of 5.798 km−2 and 39.23%,
respectively, indicating that both the number of landslides and the
total landslide area in this range are significantly greater than in
other intervals. A total of 1,122 landslides occurred in this interval,
covering an area of 75.91 km2, accounting for 20.35% of the total
number of landslides and 39.23% of the total landslide area.

The slope range of the study area is 0°–78.59°, but the maximum
slopewithin the landslide-affected areas is 59.86°.Therefore, we only
considered slopes in the 0°–60° range, divided into intervals of 5°.
The results are shown in Figure 5. In the 15°–20° slope range, LAP
peaks at 29.84%, while LND reaches its secondary peak at 3.45 km−2.
Conversely, in the 20°–25° slope range, LND reaches its peak at
3.88 km−2, while LAP reaches its secondary peak at 28.94%.

Slopes with different orientations receive varying amounts of
solar radiation, leading to significant differences in vegetation cover,
soil conditions, and evaporation rates (Ma et al., 2024a). In areaswith
stronger solar radiation, higher evaporation reduces soil moisture,
making the soil more prone to weathering, which increases the risk
of landslides.The results (Figure 6) indicate that landslides inMinhe
County are predominantly concentrated on slopes facing northeast,
northwest, west, east, and north, with the northeast-facing slopes
covering an area of 54.17 km2. Both LND and LAP reach their peak
values on west-facing slopes, at 3.77 km−2 and 30.78%, respectively.
On northwest-facing slopes, LND and LAP reach secondary peak
values, at 3.39 km−2 and 27.88%, respectively.

Relief degree is one of the key parameters in geomorphology,
used to describe and reflect the macro features of a region’s surface
topography. It refers to the difference in elevation between the highest
and lowest points within a specific area. Previous studies have shown
that the greater the relief degree, the higher the likelihood of landslide
occurrence (Wang et al., 2010). The relief degree in Minhe County
ranges from4 to 530, but in the landslide-affected areas, theminimum
value is 51 and the maximum value is 453. Therefore, we divided
the relief degree into intervals of 50, starting from 50. Due to the
smaller number of data points above 250, values between 250 and 413
were merged into a single interval, resulting in five total relief degree
intervals. The spatial and numerical distribution of these intervals
is shown in Figure 7. As can be seen from the figure, most landslides
are distributed in the 100–150 relief degree interval, covering an area
of 173.29 km2, accounting for 41.22% of the total landslide area. The
second largest landslide distribution occurs in the 150–200 interval,
but the LND and LAP values reach their peak in this interval, at
5.05 km−2 and 33.96%, respectively.

4.2.2 Geological and geomorphological factors
The distance between landslide occurrence points and faults in

the study area ranges from 0 to 21,204 m. Considering that faults
located more than 18 km away have a limited impact on landslides,
we combined all distances beyond 18 km into one category, while
setting intervals of 3 km for the remaining distances. The statistical
results are shown in Figure 8. It is evident that although the landslide
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FIGURE 4
Relationship between elevation and landslide distribution. (a) Elevation distribution in the study area. (b) Statistics of landslide indicators in the elevation
intervals.

FIGURE 5
Relationship between slope and landslide distribution. (a) Slope distribution in the study area. (b–e) Statistics of landslide indicators in the slope
intervals.

area percentage is highest within the 0–3 km range from faults,
the LAP and LND values are the lowest, at only 1.04 km−2 and
2.23%, respectively. The LAP and LND values reach their peak in
the 12–15 km range, at 4.88 km−2 and 6.29%, respectively.

The oldest stratigraphic units in the study area date back to the
Early Paleozoic Cambrian period, while the youngest units consist
of Quaternary Holocene alluvium and Late Pleistocene glacial
deposits, along with other types of sedimentary deposits. Due to the
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FIGURE 6
Relationship between aspect and landslide distribution. (a) Aspect distribution in the study area. (b–e) Statistics of landslide indicators in the aspect
intervals.

complex lithology, the stratigraphic sections were categorized based
on geological age. The statistical results are presented in Figure 9.
These results show that the Neogene (N) and Paleogene (E) units
exhibit significantly higher LAP and LND values compared to other
strata. The Neogene units display the highest LND and LAP values,
reaching 4.74 km−2 and 42.89%, respectively, while the Paleogene
units rank second, with LND at 4.20 km−2 and LAP at 32.02%.

The study area has diverse land types, including cropland,
grassland, forest land (evergreen broadleaf forest, deciduous
broadleaf forest, evergreen coniferous forest), shrubs, grasslands,
wetlands, bare land, artificial surfaces, water bodies, and
glaciers/snow. However, landslides only occur in seven types
of land cover: cropland, grassland, forest land (deciduous
broadleaf forest and evergreen coniferous forest), bare land,
herbaceous-covered areas, and sparsely vegetated areas. The land
use summary is presented in Figure 10. Notably, compared to
other land use types, grassland shows the highest LND and
LAP values, at 4.23 km−2 and 27.39%, respectively. Cropland
follows with LND and LAP values of 2.58 km−2 and 22.95%,
respectively.

4.2.3 Hydrological and ecological factors
The study area is located in the Huangshui Valley, with the

Yellow River and Huangshui River flowing through it, making
rivers widely distributed. The farthest landslide from a river in
the study area occurred at a distance of 8,128 m. Given that
only two landslides occurred more than 8 km from a river, we

divided the distances into five intervals of 2 km each. The statistical
results are shown in Figure 11. As seen from the figure, the
area of each interval decreases with increasing distance from the
river. Simultaneously, both the LND and LAP values decrease
as the distance from the river increases, with both reaching
their peak in the 0–2 km interval at 2.55 km−2 and 21.62%,
respectively.

The maximum annual average rainfall in the study area
is 482.9 mm, while the minimum is 151.4 mm. In landslide-
affected areas, the maximum annual average rainfall is 324.3 mm.
Therefore, starting from 150 mm, we divided the rainfall into
intervals of 50 mm, resulting in four categories. The statistical
results are shown in Figure 12. The figure clearly indicates that
landslide areas are primarily concentrated in the 150–200 mm
rainfall interval, followed by the 300–350 mm interval. However, the
LND and LAP peak in the 250–300 mm interval, at 4.03 km−2 and
27.28%, respectively. Both values show an increasing trend before
this interval, followed by a decline.

The NDVI index in the study area ranges from −0.2006 to
0.9989, while the NDVI values within the landslide-affected areas
fall between 0.1313 and 0.959. Based on this, we set 0 as the
starting point, with an interval increment of 0.2, resulting in five
categories. The statistical results are shown in Figure 13. In the
0.4–0.6 interval, LND and LAP reach their peak values at 3.62 km−2

and 27.16%, respectively. The second highest values for LND
and LAP occur in the 0.2–0.4 interval, at 3.29 km−2 and 25.20%,
respectively.
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FIGURE 7
Relationship between relief degree and landslide distribution. (a) Distribution of relief degree in the study area;(b) Statistics of landslide indicators in the
relief degree intervals.

FIGURE 8
Relationship between fault distance and landslide distribution. (a) Spatial distribution of faults and landslides within the study area. (b) Statistical
distribution of landslide occurrences across different distance intervals from faults.

4.3 Correlation and importance analysis of
influencing factors

To avoid collinearity issues among the factors, this study
conducted a correlation analysis of the 10 factors using the Pearson
correlation coefficient. As shown in Figure 14, the absolute values
of the correlations between all factors are below 0.7, indicating
that there is no collinearity among them. Therefore, the factors are
suitable for input into the model for further training.

Based on the analysis results from the Random Forest model,
this study systematically ranks the importance of the influencing
factors. The results show that slope (0.43428) and aspect (0.38838)
have the most significant impact on the landslide relics in Minhe
County (Figure 15). In addition, DEM (0.06263), topographic
relief (0.03861), and NDVI (0.02697) also exhibit significant
statistical correlations. These factors interact through various
physical processes such as tectonic movements, human engineering
activities, and climate change, collectively affecting surface stability.
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FIGURE 9
Relationship between lithology and landslide distribution. (a) Lithology distribution in the study area. (b) Statistics of landslide indicators in the lithology
intervals. (Strata:Є-Cambrian,C-Carboniferous,E-Paleogene,J-Jurassic,K-Cretaceous,N-Neogene,O-Ordovician,P-Permian,Q-Quaternary,S-Silurian,γ-
Intrusive rock).

FIGURE 10
Relationship between land use type and landslide distribution. (a) Land use type distribution in the study area. (b) Statistics of landslide indicators in the
land use type intervals.

Slope, as an important intrinsic condition for landslide occurrence
(particularly shallow landslides), is one of the primary controlling
factors for landslide development (Guo et al., 2013). Generally,
the steeper the slope, the stronger the gravitational forces acting
on the soil and rock masses, which reduces shear strength and

makes landslides more likely (Mao et al., 2024). Aspect, on the
other hand, influences the degree of solar radiation and precipitation
received by a slope, further adjusting the degree of weathering
and moisture content in the soil, thus significantly affecting slope
stability. Additionally, aspect affects vegetation growth on the slope;
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FIGURE 11
Relationship between the distance from rivers and the landslide distribution. (a) The distribution of the distance from rivers in the study area. (b)
Statistics of landslide indicators in the intervals of the distance from rivers.

FIGURE 12
Relationship between average precipitation and landslide distribution. (a) Average precipitation distribution in the study area. (b) Statistics of landslide
indicators in the average precipitation intervals.

sunny slopes typically have sparse vegetation and weaker erosion
resistance, while shady slopes have denser vegetation but accumulate
more moisture, potentially leading to shallow landslides.

In contrast, the influence of lithology (0.0048) and land use
(0.0051) on the landslide relics in this region is relatively small.
We hypothesize that the lower weight of lithology’s impact may
be related to several factors: first, the significant topographic relief
in the study area makes the influence of gravity on slope stability
more direct, overshadowing the effect of lithological differences

on landslide formation. Second, the weathering degree of different
lithological layers within the region may be relatively similar, which
weakens the control of lithology on landslides. As for land use,
its limited influence on landslides may be attributed to the fact
that most of Minhe County is located in mountainous areas, where
extensive natural vegetation is likely present, and land use changes
are minimal. In such areas, vegetation plays a role in reinforcing
slopes and conserving soil andwater, thus reducing the direct impact
of land use changes on landslide occurrence.
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FIGURE 13
Relationship between NDVI and landslide distribution. (a) NDVI distribution in the study area. (b) Statistics of landslide indicators in the NDVI intervals.

FIGURE 14
Pearson correlation coefficient analysis of influencing factors.

5 Discussion

5.1 Landslide inventory

A landslide inventory refers to the systematic organization of
landslide characteristic information for a specific region, forming

a database. The completeness of such an inventory is crucial to
the accuracy of disaster assessments (Guo et al., 2024). Landslide
inventories can be divided into event-based landslide inventories
and historical landslide inventories. Event-based inventories record
landslides triggered by a single event, such as earthquakes (Dai et al.,
2011; Xu et al., 2014; Ma et al., 2024b; Shao et al., 2023a) or
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FIGURE 15
Importance of influencing factors.

rainfall (Ma et al., 2023c; Xie et al., 2023; Gao et al., 2024;
Shao et al., 2023d). Historical landslide inventories, on the other
hand, encompass landslide events accumulated over hundreds or
even thousands of years (Chen J. et al., 2023; Li et al., 2022a;
Li et al., 2022b; Shao et al., 2020). In our previous work, we focused
on historical landslides and, using high-resolution satellite remote
sensing imagery for interpretation, created the most comprehensive
landslide relic inventory for Minhe County to date.

However, existing landslide surveys in Minhe County still need
further refinement. Most current research in this region has focused
on individual landslides (Mu et al., 2020), clustered landslides
(Cui et al., 2008), or landslides triggered by single events. Only
a few scholars have studied landslide distribution and disaster
assessments in Minhe County. For instance, Kou et al. in their
geological hazard investigation and zoning project, identified 224
landslide disasters in Minhe County (Kou et al., 2017). Zhao et al.
used historical geological disaster data provided by the Qinghai
Provincial Geological Environment Monitoring Station and found
569 landslide traces in Minhe (Zhao et al., 2021). Additionally,
Peng et al. focused on the Loess Plateau region, conducting
landslide interpretation and analysis of triggering mechanisms.
They identified 14,544 landslides across the entire Loess Plateau,
with 1,823 landslides located in the Haidong-Lanzhou-Tongwei
area (HLTZ), covering a total area of 3,530 km2 (Peng et al.,
2019).Meng et al. using InSAR technology, created a comprehensive
landslide inventory for the Huangshui River region, identifying 31

landslide traces in the 16,000 km2 area (Meng et al., 2020). While
these studies provided valuable references for our interpretation
and cross-verification, the number of landslides identified in
previous studies is far lower than the 5,517 landslide relics
we identified.

Additionally, the southern Guanting Basin in Minhe County,
located along the Longyangxia-Liujiaxia section of the upper
Yellow River, is a region with frequent landslide disasters. In
recent years, many scholars have studied the characteristics and
mechanisms of landslides in this area. For example, Yin et al.
identified 205 landslides of various sizes along this river section,
with seven landslides located in the Guanting Basin, primarily
mudstone landslides (Yin Z. et al., 2010). He et al. also obtained
similar results (He et al., 2017). Among the landslide relics we
identified, 260 are located in the Guanting Basin, far exceeding the
number reported in existing studies.

In conclusion, the landslide inventory we developed in previous
work is themost comprehensive and high-quality landslide database
for Minhe County and its surrounding regions to date. Using
this inventory, we analyzed the spatial distribution and possible
controlling factors of landslides in Minhe, providing valuable
insights. However, there are some limitations to our study. The
method we used is based on human-assisted visual interpretation.
For smaller landslides, due to the resolution limitations of satellite
imagery or subjective interpretation, some landslidesmay have been
missed. However, these omissions have a relatively small impact on
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the overall accuracy of the inventory. In future research, we will
consider integrating additional methods to address this limitation.

5.2 Spatial distribution of landslides

The areas with high point density and high area density
of landslide relics in Minhe County generally exhibit similar
spatial distributions, although some differences still exist. In the
southwestern part of the county, the area density of landslides is
more prominent compared to the point density, suggesting that the
landslides in this region tend to be larger in scale. Conversely, in the
northwestern part of the county, the point density of landslides is
more significant.

The higher area density of landslides in the southwestern part
of the county indicates that the region experiences more large-
scale landslides. Our preliminary analysis suggests that the frequent
occurrence of large-scale landslides in this area is the result of
multiple geological, geomorphological, and environmental factors.
The relatively steep slopes and topographic relief lead to the
accumulation of gravitational potential energy, while fault structures
cause rock fragmentation and weakening. The easily weathered
Paleogene strata provide abundant landslide material, and river
erosion continually undermines slope stability. Additionally, the
abundant precipitation increases pore water pressure, and sparse
vegetation exacerbates slope instability. These factors interact
spatially, reinforcing one another, making large-scale, long-runout,
and far-reaching landslides more likely to occur in this region.

In contrast, the more significant point density of landslides in
the northwestern part of the county suggests a higher frequency
of landslides, but the landslides are relatively smaller in scale. We
believe this is mainly due to the relatively gentle slopes, stable
geological structures, and widespread loose deposits in this region.
While local topographic relief and rainfall conditions may trigger
landslides, the lack of fault zones, weaker erosion at the slope toes,
and limited thickness of loose materials contribute to the prevalence
of shallow, small-scale landslides. Furthermore, the low vegetation
coverage further reduces slope stability, increasing the frequency of
landslides, though it does not significantly affect the scale of the
landslides.

In addition, as noted by Kou et al. (2017), landslides in
the study area show a certain degree of clustering, with high-
risk landslide zones in Minhe County mainly distributed along
the middle and lower reaches of the Huangshui River and the
tributaries of the Yellow River. Our findings are consistent with
this pattern. Wei et al. (2021) summarized the spatial distribution
patterns of landslide hazards in Qinghai Province, taking into
account administrative regions, geomorphology, agricultural and
pastoral zones, and watershed divisions. Their study demonstrated
that landslides are predominantly concentrated in the agricultural
areas of the Huangshui River Basin in eastern Qinghai, further
supporting our results.

Additionally, earthquakes, as a typical representation of
neotectonic activity, can lead to a “sheet-like” dense distribution of
landslides in loose soil (Li et al., 2021b), a phenomenon also reflected
in our study. For example, following the 1987 earthquake in Xigou
Township, Minhe County (magnitude 4.1), many landslides were
densely distributed around the epicentral area (Figure 16). Active

faults are potential sources of destructive earthquakes (Wu et al.,
2024), and further research is needed to determine whether the
landslides triggered by this earthquake are related to active faulting.
We will continue to collect detailed geological data from the region
to conduct an in-depth analysis of the mechanisms behind these
earthquake-induced landslides.

5.3 Correlation between landslides and
influencing factors

In terms of topographic factors, the majority of landslides in the
study area occurred at elevations between 1,900 and 2,400 m,mostly
in mid-high altitude, moderately rugged mountainous terrain,
accounting for about 85.6% of the total. Other researchers have
also found similar results (Li et al., 2021b; Qiu et al., 2018), where
landslides are concentrated at elevations of 2,000–2,800 m. This
range corresponds to mid-low mountain hilly areas, adjacent to
river valley alluvial plains. We believe that the dense distribution
of landslides in this elevation range is closely related to the
well-developed erosion gullies in the area. Additionally, the
intensity of human activity in this elevation range plays a
significant role in landslide development (Tian et al., 2024;
Zhang et al., 2015; Zhao et al., 2021).

Slope gradient is another crucial factor influencing slope
stability (Ma et al., 2023b). Our results show that most landslides
occurred on slopes with gradients between 10° and 40°, mainly
concentrated in the 15°–20° range. This is consistent with previous
studies. For example, Li et al. (2024b) found that in the upper reaches
of the Yellow River, including the Guanting Basin in Minhe County,
landslides are primarily concentrated on slopes between 15° and
40°, with most in the 15°–20° and 35°–40° ranges. Field surveys
also revealed that most landslides in the 15°–20° range are relatively
stable, with a low likelihood of further movement. However, those
in the 35°–40° range are more unstable and may reactivate under
heavy or prolonged rainfall. Wang et al. (2015) reached similar
conclusions, noting that slopes with a gradient of 15°–30° contribute
themost to landslide development, followed by slopes of 10°–15° and
30°–40°, while slopes less than 10° and greater than 40° contribute
the least. However, Zhou et al. (2013) presented a different view,
suggesting that geological disasters in the Huangshui River Basin,
particularly in loess regions, occurmainly on steep slopes of 30°–60°.
Variations in slope gradients across different studies are common
in landslide research. We believe that, aside from the southwestern
mountainous area, the overall terrain in Minhe County is relatively
flat, leading to lower overall slope gradients in landslide-affected
areas. Furthermore, landslide relics often represent older events,
and over time, unstable landslides may move or shift, resulting in
a gradual decrease in slope gradients.

The properties of the soil and rock also affect slope stability. In
terms of lithostratigraphy, the study area is primarily composed
of Quaternary deposits, Paleogene strata, and Neogene strata.
Among these, Quaternary deposits have the largest exposed
area, covering 54.77% of the total study area and predominantly
distributed across the northern, central, and eastern regions of
Minhe County. The Paleogene and Neogene formations follow,
accounting for 15.13% and 9.87% of the study area, respectively.
The occurrence of landslides is closely associated with lithological
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FIGURE 16
Distribution of landslides in the vicinity of the earthquake.

characteristics. Studies have demonstrated that landslides are
most prevalent in Quaternary loess deposits, with a total of 3,150
recorded landslides in these formations, a trend consistent with the
findings of Li et al. (2021a). Additionally, the primary lithological
components of regional slopes include Late Pleistocene loess and
Neogene mudstone, both of which significantly influence slope
stability due to their unique geotechnical properties. Neogene
mudstone is characterized by a high clay mineral content (Xin et al.,
2017), making it highly susceptible to softening upon water
infiltration. This hydration-induced weakening substantially
reduces shear strength, facilitating the formation of sliding zones
and increasing the likelihood of slope failure. Similarly, Quaternary
loess exhibits large porosity, well-developed vertical joints, and
high permeability. These attributes render it particularly prone to
softening and slope instability when subjected to prolonged rainfall
infiltration (Huang et al., 2022). Collectively, these lithological
and hydrogeological characteristics create favorable conditions
for landslide initiation and evolution in the region. A deeper
understanding of the influence of different lithological units on
slope stability is essential for improving landslide susceptibility
assessment and providing a scientific foundation for regional
geohazard prevention and mitigation strategies.

Land use in Minhe County is predominantly grassland,
cropland, and forest. Landslides mainly occur in grassland
and cropland areas, likely influenced by human activities and
agricultural irrigation (Huang et al., 2022). Agriculture is the main
livelihood in the loess regions, and long-term irrigation raises the
groundwater level, leading to soil deformation at the base of slopes
and slope instability.The frequent landslides in theHeifangtai region
of Gansu are a typical example of this (Xu and Yan, 2019).

The Huangshui River is the most important tributary of the
upper Yellow River, and its river channel is highly meandering in
the study area. In this phase, intense river erosion leads to stress

transfer in the valleys, causing slope unloading and fracturing,
which increases the instability of rock masses (Zhao et al., 2021).
Our results show that most landslides occur within 0–2 km from
the river, and both the number and area of landslides decrease as the
distance from the river increases. This indicates that river erosion is
one of the main factors influencing landslides in the region.

The NDVI reflects the extent of vegetation cover, with higher
NDVI values representing denser vegetation. Landslides in the study
area are primarily concentrated in areas with NDVI values between
0.4 and 0.8. This result differs from the commonly held view that
landslides are more likely to occur in areas with sparse vegetation
(Chen et al., 2021). Minhe County is mostly composed of mid-low
mountain hilly areas, except for its western highlands. We speculate
thatmost of the area has relatively good vegetation cover, but the root
systems are shallow, primarily concentrated in the topsoil layer. The
significant difference in soil properties between the root layer and
the subsoil makes it easy to trigger large-scale shallow landslides,
especially during short periods of heavy rainfall (Xu et al., 2022).
Huang Hengwei (Huang, 2017) also supports a similar viewpoint.
Additionally, with the implementation of the “Green is Gold”
ecological protection policy, vegetation cover in Minhe County has
been increasing, which may have affected the NDVI values used in
this study, potentially introducing some statistical bias.

In our analysis of fault-related factors, we found no significant
correlation between landslide distribution and distance from faults.
If we only consider the number and area of landslides, we observe
that both decrease as the distance from faults increases. However,
this does not necessarily suggest an objective or reliable conclusion.
Our analysis shows that LND and LAP peak at a distance of
12–15 km from faults, while the values are lowest at 0–3 km. This
suggests that the influence of faults is limited and that landslide
causality in the region is highly complex. Further research will be
required to explore this in more detail.
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5.4 Policy recommendations and future
research directions

Based on the spatial distribution characteristics of landslides,
the study found that landslide relics in Minhe County are
primarily distributed in areas with an elevation of 2,000–2,100 m,
slopes of 15°–25°, aspects facing west or northwest, Quaternary
strata, and within 0–2 km from rivers. Given these spatial
characteristics, future disaster prevention and mitigation efforts
should prioritize monitoring and management of areas near
riverbanks and those with vulnerable lithology.The government and
relevant departments can use these spatial data to scientifically plan
monitoring areas, especially in regions with critical infrastructure
and high population density, to effectively reduce the potential risks
of landslide disasters (Nanehkaran et al., 2023). Moreover, these
spatial data provide a solid foundation for subsequent risk prediction
and emergency management, enabling rapid identification of high-
risk areas and the scientific allocation of disaster prevention
resources.

In the quantitative analysis of the overall spatial distribution
of landslides, the LND and LAP indices clarified the spatial
distribution density of landslides inMinheCounty, providing amore
precise basis for landslide disaster risk assessment. Through the
analysis of these quantitative indicators, the study found that the
landslide area density is more significant in the southwestern region,
while the landslide point density is higher in the northwestern
region. This suggests that, in subsequent geological disaster risk
prevention and control efforts, special attention should be given
to the larger-scale landslides in the southwestern region, while
strengthening the monitoring and prevention of shallow and
medium-sized landslides in the northwestern region. Based on these
regional risk characteristics, differentiated landslide monitoring and
management strategies should be implemented. In areas with high
landslide point density, it is essential to strengthen emergency
response mechanisms and develop detailed contingency plans to
ensure rapid and effective emergency response during disaster
events, thereby reducing the harm caused by landslides and
protecting public safety.

From the perspective of key influencing factors, slope and aspect
are the most important factors affecting landslide occurrence in
Minhe County. The study indicates that landslides are frequent in
areas with a slope of 15°–25° and a westward or northwestward
aspect. Therefore, disaster prevention and mitigation strategies
should prioritize addressing these key topographic factors. For
example, in areas with steeper slopes, measures such as slope
reinforcement and vegetation restoration should be implemented
to enhance slope stability. In regions with significant aspects,
monitoring of precipitation and water flow should be strengthened
to reduce water-induced erosion and prevent slope instability.
Additionally, landslide occurrences are typically the result of the
interaction of multiple factors (Nikoobakht et al., 2022). For other
factors that show significant statistical correlations (e.g., elevation,
topographic relief, NDVI), comprehensive mitigation measures
should be adopted based on specific regional conditions, such as
improving slope drainage systems, reinforcing slope structures, and
restoring vegetation, to effectively reduce the risk of landslides.

Overall, the findings of this study not only contribute to a
deeper understanding of the triggering factors and distribution

patterns of landslide relics in Minhe County, but also provide a
scientific basis for subsequent landslide evaluation, early warning,
and disaster prevention efforts. Moreover, the analytical methods
used in this study are not only applicable to Minhe County but
also have strong generalizability. These methods can be widely
applied to other regions with similar geological and environmental
conditions, providing effective support for landslide disaster risk
assessment,monitoring and earlywarning, and emergency response.
Similar research methods have already been successfully applied
in several landslide-prone areas, providing valuable insights for
disaster prevention in these regions. In future work, we will integrate
field investigation data to validate and deepen our findings. We
will optimize evaluation models, conduct landslide susceptibility
assessments, and comprehensively consider the impact of multiple
environmental factors and potential additional influences, thereby
achieving a more comprehensive understanding of landslide
causality. This will provide a more scientific basis for the prediction
and management of geological disasters in Minhe County.

6 Conclusion

Based on the GIS platform, this study conducted an in-depth
exploration of the spatial distribution and triggering factors of
landslides, using the previously constructed landslide relic inventory
of Minhe County, Qinghai Province, China. The earlier work
identified 5,517 landslide features in Minhe County, with a total
coverage area of 434.43 km2, accounting for approximately 22.98%
of the county’s total area. Using landslide number density (LND)
and landslide area percentage (LAP) as evaluation indicators, we
performed a statistical analysis of the correlation between landslides
and influencing factors. The results indicate that the LND and LAP
indices for Minhe County are 13.17 km−2 and 87.38%, respectively.
Furthermore, landslide relics are mainly distributed in the elevation
range of 2,000–2,100 m, where the number of landslides and
the landslide area account for 20.35% and 39.23% of the total,
respectively. The 15°–25° slope gradient range is the most favorable
for landslide development in the study area. Due to factors such
as solar radiation and soil conditions, landslides are more likely to
occur on west and northwest-facing slopes. Relief degree of land
surface values between 150 and 200 are favorable for landslide
development, and the 12–15 km range from fault lines is where
LAP and LND peak, at 4.88 km−2 and 6.29%, respectively. Neogene
strata are the main geological formations promoting landslide
development. Compared to other land types, grasslands exhibit a
higher probability of landslide occurrence. LND and LAP values
decrease as the distance from rivers increases, with the 0–2 km range
being more prone to landslides. The 250–300 mm annual rainfall
range is the most favorable for landslide development, while areas
with NDVI values of 0.4–0.6 are more susceptible to landslides.
Slope and aspect are the most significant factors influencing the
landslide relics in Minhe County, while the influence of lithology
and land use is relatively low. The results of this study contribute
to a better understanding of the triggering factors and spatial
distribution patterns of landslide relics in the region, providing
crucial support for future landslide risk assessments and local
disaster prevention and mitigation efforts.
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