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Slow-moving landslides pose significant long-term hazards in seismically
active mountainous regions. However, their subtle deformation patterns and
complex internal structures present challenges for accurate identification
and monitoring using conventional methods. This study integrates remote
sensing technologies, including InSAR, DIC, LiDAR, and UAV photogrammetry,
to comprehensively analyze the Shibatai creep landslide in the Wenchuan
earthquake-affected area. Results reveal that the landslide exhibits a four-
stage evolution process, from initial gravity-induced creep to earthquake
disturbance, rainfall influence, and multi-level sliding formation. The study
identifies six secondary sliding bodies within the landslide, with the most
intense deformation occurring at their boundaries. Notably, DIC and UAV
technologies demonstrated superior performance in detecting significant
deformation features, aligning closely with field observations. The research
proposes a multi-scale, multi-technology combination strategy for landslide
investigation, emphasizing the complementary nature of different remote
sensing techniques. Furthermore, the study highlights the importance of
focusing onmain deformation areas, particularly at the boundaries of secondary
blocks, for efficient field verification and monitoring. These findings provide
valuable insights for refining landslide identification processes, optimizing
monitoring strategies, and enhancing risk assessment in post-earthquake
environments.
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1 Introduction

Landslides represent one of the most pervasive and destructive
natural hazards globally, causing thousands of casualties annually
and inflicting significant economic losses (Fang et al., 2023a).
These geological disasters pose a persistent threat to human
lives, infrastructure, and economic development in mountainous
regions worldwide. Of particular concern are slow-moving
landslides, which often exhibit long-term creep deformation before
catastrophic failures (Zhan et al., 2024). These gradual movements,
while less dramatic than rapid landslides, can persist for years
or even decades, slowly compromising the stability of slopes and
potentially leading to devastating consequences if left undetected or
unmanaged.

The catastrophic Wenchuan earthquake (Ms 8.0) that struck
Sichuan Province, China, on 12May 2008, serves as a stark reminder
of the long-lasting impact of seismic events on landscape stability.
This devastating event not only triggered numerous coseismic
landslides but also generated substantial amounts of loose deposits
on hillslopes (Huang and Li, 2014). These seismically induced slope
instabilities have set in motion a prolonged period of geological
adjustment, with landslide activities expected to continue for
20 years or more after the earthquake (Li et al., 2018). Many of these
post-earthquake landslides have entered a stage of slow, continuous
deformation, exhibiting characteristics of creep activity. Although
these slow-moving landslides may appear benign due to their
gradual nature, they often remain concealed and can pose serious
threats to the lives and property of residents living on or near the
landslide body. The danger becomes particularly acute if accelerated
deformation occurs due to external triggering factors such as heavy
rainfall or human activities (Lacroix et al., 2020). The complex and
often subtle nature of slow-moving landslides presents significant
challenges for their identification, monitoring, and risk assessment.
Traditional field-based methods, such as inclinometers and GPS
surveys, are often limited in monitoring slow-moving landslides.
Thesemethods provide point-basedmeasurements, whichmaymiss
deformation outside the instrumented area and are labor-intensive
and costly for large-scale applications. Recent advancements in
physical modeling, such as centrifuge modeling, have highlighted
these limitations and provided insights into complex landslide
processes (Fang et al., 2023a). In response to these challenges, remote
sensing technologies have emerged as powerful tools in the field
of landslide research, offering significant advantages in terms of
large-scale coverage, high temporal resolution, and the ability to
detect subtle surface changes (Lin et al., 2021; Zhao et al., 2012;
Jaboyedoff et al., 2012; Lucieer et al., 2014).

The array of remote sensing techniques applicable to landslide
studies is diverse, including high-resolution optical imagery,
Interferometric Synthetic Aperture Radar (InSAR), Light Detection
and Ranging (LiDAR), and Unmanned Aerial Vehicle (UAV)
photogrammetry. Each of these technologies brings unique
capabilities to landslide investigation: High-resolution optical
imagery provides a rich historical archive and enables visual
interpretation of landslide features (Lissak et al., 2020). However,
its effectiveness can be limited by cloud cover and dense vegetation,
which may obscure subtle surface deformations (Zhu et al., 2019).
InSAR technology has revolutionized landslide monitoring by
enabling the detection of millimeter-level ground displacements

over vast areas. This capability makes InSAR invaluable for
identifying and monitoring slow-moving landslides that might
otherwise go unnoticed. However, the technique can be affected
by temporal decorrelation in areas of dense vegetation or rapid
land cover changes (Zhao et al., 2012). LiDAR offers unparalleled
capabilities in generating high-resolution, three-dimensional
topographic data. Its ability to penetrate vegetation canopy makes it
excellent for identifying subtle geomorphological features associated
with landslides. However, the high cost of LiDAR surveys can limit
its application in large-scale or long-term monitoring programs
(Jaboyedoff et al., 2012; Xu et al., 2023).UAV photogrammetry has
gained popularity due to its flexibility, high spatial resolution, and
cost-effectiveness for small to medium-scale surveys. UAVs can
be rapidly deployed to capture detailed imagery of landslide areas,
enabling the creation of high-resolution orthophotos and digital
elevation models (Lucieer et al., 2014).

Despite the individual strengths of these technologies, each
has its limitations, making it challenging for any single remote
sensing technique to comprehensively and accurately identify
and assess landslides (Xu et al., 2023; Dai et al., 2023). For
instance, while InSAR can accurately measure extensive landslide
deformations, creep landslides detected by InSAR often lack obvious
deformation evidence, such as cracks and downward scarps, during
field surveys (Xu et al., 2022; Lissak et al., 2020). This limitation
underscores the need for integrated approaches that combine
multiple remote sensing technologies. Recognizing these challenges,
an increasing number of researchers are adopting multi-technology
approaches to landslide detection across various stages and scales.
The combination of InSAR and optical remote sensing images has
proven effective in broad-scale active landslide detection (Xu et al.,
2023; Xu et al., 2019; Lu et al., 2024), as well as in the study of
individual landslides (Xie et al., 2020; Wang et al., 2021). More
comprehensive studies have integrated additional technologies to
provide multi-dimensional insights into landslide dynamics. For
example, researchers have combined InSAR, UAV photogrammetry,
and optical remote sensing to study the morphological changes,
spatiotemporal evolution, and destructionmechanisms of landslides
such as the Jiangou, Jiangdingya, and Shanyang landslides
(Zhan et al., 2024; Zhu et al., 2021; Ma et al., 2021). Others have
explored the integration of LiDAR with UAV photogrammetry
for detailed feature extraction (Wang et al., 2024) or combined
InSAR, LiDAR, and high-resolution optical imagery for potential
landslide identification (Dong et al., 2022).TheAniangzhai landslide
study demonstrated the power of integrating InSAR, LiDAR, and
UAV photogrammetry for comprehensive landslide assessment
(Dai et al., 2023), while the Gokseong landslide investigation
further incorporated UAV multispectral data to enhance analysis
capabilities (Choi et al., 2024).

A particularly promising development in landslide research
is the application of digital image correlation (DIC) technology
(Paz and Malcolm, 2016; Caporossi et al., 2018; Bickel et al.,
2018). DIC calculates high-resolution horizontal displacement from
multi-temporal images, offering new deformation information for
landslide movement. When combined with InSAR technology,
DIC effectively compensates for the limitations of line-of-sight
(LOS) deformation detection, providing a more comprehensive
view of landslide dynamics. This powerful combination has been
successfully applied in studies of various slow-moving landslides,
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including the Home Hill landslide (Lucieer et al., 2014), Harmaliere
landslide (Paz and Malcolm, 2016; Lacroix et al., 2018), MAPE
landslide (Bivic et al., 2017), Mindu landslide (Yang et al., 2020),
and Bage landslide (Ding et al., 2021), demonstrating significant
effectiveness in unraveling the complex behavior of these gradual
yet potentially destructive geological phenomena.

In light of the complexity of slow-moving landslides and
their persistent threat in post-earthquake environments, this study
aims to conduct a comprehensive analysis of the Shibatai creep
landslide in the Wenchuan earthquake-affected area by integrating
multiple remote sensing technologies, including InSAR, DIC,
LiDAR, and UAV. Our objectives are to evaluate the effectiveness of
various remote sensing techniques in identifying and characterizing
slow-moving landslides, analyze the spatiotemporal deformation
patterns and morphological features of the landslide, investigate
its movement mechanism and evolution stages, and develop an
optimal framework for combining remote sensing technologies
for landslide identification and monitoring at different scales.
Additionally, this research will explore how to utilize multi-
source remote sensing data to refine landslide identification and
field verification processes. By achieving these goals, we aim
not only to advance the scientific understanding of landslide
processes but also to provide practical insights for future landslide
monitoring strategies and risk management practices in seismically
active mountainous regions, ultimately enhancing our ability
to predict, assess, and mitigate landslide hazards and protect
vulnerable communities.

2 Methods

2.1 Study area

The Shibatai landslide (103°35′38.3″E, 31º27′50.8″N) is located
in southeastern Wenchuan County, Sichuan Province, China
(Figure 1A). The regional geological structure is part of the
Longmenshan Fault seismic activity zone and is near theWenchuan-
Maoxian Fault. The fault trends NNE-NE and consists of a
series of imbricate reverse faults that dip northwest. Significant
activity was observed during the early Pleistocene, continuing into
the middle and late Pleistocene (Huang, 2009) (Figure 1B). The
surrounding geomorphological type of the landslide comprises
erosional highmountain terrain, characterized by steep upper slopes
and gentler lower slopes, with some local slopes exceeding 70°.
The landslide strata are part of the Devonian Yuelizhai Group
(Dy1), consisting of dark gray phyllite, limestone, and sandstone
(Figure 1C), overlain by Quaternary residual slope deposits (Q4el
+ dl), colluvial layers (Q4col), and landslide deposits (Q4del). The
residual slope deposits mainly consist of gravel, sandy soil, and
strongly weathered loess (Figure 1D).

Intense mountain earthquakes often triggered numerous
coseismic landslides, resulting in severe damage to surface
vegetation (Li et al., 2022). According to multi-temporal remote
sensing images acquired by Google Earth Engine from July
2008 to December 2014 (Figures 1E–G), the central part of the
slope had been subject to a large-scale landslide following the
Wenchuan earthquake. After more than a decade of vegetation
recovery, the landslide traces on the slope surface were no longer

evident in images. However, reports from frontline geological
disaster prevention personnel in 2022 indicated that the walls
of houses in the middle and lower parts of the landslide had
continued to deform and bend due to rainfall. This indirectly
suggested that the loosening of the slope caused by the earthquake
had affected the post-earthquake stability of the slope for
nearly 14 years.

This study utilized multiple remote sensing technologies,
including InSAR, DIC, LiDAR, and UAV photography,
for detailed interpretations of the Shibatian landslide’s
deformation displacement, morphological structure, and micro-
geomorphological features. Conclusions were drawn through
comprehensive comparison and cross-validation (Figure 2). The
technical process was as follows: 1) For landslide deformation
displacement analysis, SBAS-InSAR technology was used to
process multi-temporal SAR images to obtain LOS deformation
and analyze overall deformation and spatiotemporal patterns of
the landslide. DIC technology processed two periods of optical
satellite images to obtain horizontal displacement, assessing macro
changes and severely deformed areas of the landslide. 2) For
landslide morphological contour and micro-geomorphological
feature identification, LiDAR point cloud data was used to generate
high-precision DEM and high-resolution UAV optical images,
identify the three-dimensional morphology of the landslide,
delineate boundary zones, and identify micro-geomorphological
features. 3) The LOS deformation, DIC horizontal displacement,
and boundary contours obtained by these methods were compared
and analyzed to achieve refined identification and analysis
results. 4) Based on comparison and field verification results, the
landslide movement mechanism, the practicality of multi-source
combination technology, and remote sensing application insights
were discussed. Table 1 summarizes the specifics of the dataset used
in this study.

2.2 Processing of SBAS-InSAR

This study employed the Small Baseline Subset Interferometric
Synthetic Aperture Radar (SBAS-InSAR) technique, a time-series
InSAR method capable of detecting slow-moving deformations
with millimeter-level precision by stacking SAR interferograms
(Berardino et al., 2002). Compared to traditional D-InSAR,
the SBAS-InSAR method overcame spatial and temporal
decorrelation issues (Dai et al., 2023), making it particularly
suitable for high-precision and temporally continuous monitoring
of large-scale surface deformations. In this study, we used GAMMA
software to process C-band Sentinel-1 SAR satellite images from
the European Space Agency to detect landslide deformation.
Specifically, we collected and processed 104 ascending and 96
descending images, totaling 200 images, from 12 October 2018,
to 17 May 2021, providing 31 months of continuous observation
data. We processed C-band Sentinel-1 SAR images using GAMMA
software, setting temporal and spatial baselines to 120 days and
202 m, respectively, to balance coherence and deformation signal
capture. To enhance processing accuracy, we used a 1:10,000 scale
digital elevation model (DEM) with 10-m resolution to eliminate
flat-earth effects and topographic phases. For interferometric
processing parameter settings, we set the temporal baseline to
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FIGURE 1
Geological and imaging characteristics of the Shibatai landslide area. (A) Geographic location of the landslide; (B) Regional seismicity and fault
distribution; (C) Regional stratigraphic lithology; (D) Longitudinal section showing landslide structure; (E) Landslide image from 1 July 2008; (F)
Landslide image from 4 April 2010; (G) Landslide image from 12 December 2014.

120 days and the spatial baseline to 202 m. These parameter
choices were based on a comprehensive consideration of the
study area’s surface deformation characteristics and image quality.
Adaptive filtering was applied during interferogram generation
to reduce phase noise. Tropospheric correction was performed
using the Generic Atmospheric Correction Online Service for
InSAR (GACOS), and precise orbit data refined satellite orbit
parameters. The longer temporal baseline (120 days) allowed us
to capture slow defohile the moderate spatial baseline (202 m)
helped maintain high interferometric coherence. The SBAS-InSAR
processing involved several key steps: SAR image registration,
interferogram generation, topographic phase removal, phase
unwrapping, orbit refinement, atmospheric correction, and
time-series inversion.

2.3 Processing of DIC

Digital Image Correlation (DIC) is an advanced optical
method for monitoring surface deformation. It accurately measures
large-scale horizontal displacements by analyzing changes in
surface texture (He et al., 2019). DIC excels in detecting north-
south displacements and resists noise from dense vegetation,
effectively complementing InSAR technology (Ding et al., 2016).

This study used a frequency-domain phase correlation algorithm
with the COSI-Corr software developed by the California
Institute of Technology, achieving sub-pixel accuracy of up to
1/20 pixel (Leprince et al., 2007). Based on the best image pair
principle (Yang, 2020), we selected two GF-2 satellite images
from 9 February 2016, and 15 February 2022, with a resolution
of 0.8 m. The processing workflow included four main steps:
1) image preprocessing, involving selection of the best image
pair, cropping, registration, resampling, and masking; 2) cross-
correlation calculation to obtain deformation images in east-
west (E-W) and north-south (N-S) directions; 3) error post-
processing, including handling decorrelation noise, stripe errors,
systematic displacement compensation, and filtering; and 4) final
calculations to determine total displacement and movement
direction based on the processed E-W and N-S deformation
images. For parameter settings, we used an initial window of
128 × 128 pixels, a final window of 16 × 16 pixels, a step size
of 1 × 1 pixel, a masking threshold of 0.9, and 5 iterations to
balance computational accuracy and efficiency. This method not
only provided high-precision horizontal displacement information
capable of detecting millimeter-level surface deformations but
also effectively complemented InSAR technology’s limitations
in monitoring large gradient deformations and vegetation-
covered areas.
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FIGURE 2
Technical flowchart of the multi-source remote sensing approach, illustrating the integration of InSAR, DIC, LiDAR, and UAV technologies for landslide
analysis. (A) Data processing and results; (B) Deformation analysis and refined interpretation; (C) Comprehensive comparison and accuracy verification;
(D) Discussion.

TABLE 1 Research dataset.

Dataset Type Resolution Date Results

Sentinel-1 SAR images 5 m × 20 m 2018.10.12–2021.05.17 LOS deformation

GF-2 Satellite images 0.8 m 2016.02.09, 2022.02.15 Horizontal deformation

LiDAR Points 0.5 m 2022.06.04 DEM

UAV photogrammetry Aerial images 0.1 m 2022.06.04 DOM
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TABLE 2 Parameter settings for VAT.

DEM multi-feature images Settings Histogram stretch type
Min–Max

Blending
Order, type, and opacity

Sky-view factor Radius of 5 m, 16 directions Linear, 0.65–1.00 3, multiply, 25%

Positive openness Radius of 5 m, 16 directions Linear, 68º-92° 2, overlay, 50%

Slope Linear, 0º-55° 1, lumiosity, 50%

Hill-shading from three directions Angle 35°, azimuth: Red 315°, Green
22.5°, Blue 90°

Linear, 0.00–1.00 0, base layer

2.4 Processing of LiDAR and UVA

Airborne LiDAR, with its high accuracy, high density, and
ability to penetrate vegetation, effectively eliminates the impact
of vegetation cover on landslide identification and monitoring,
thereby providing 3-D information on the actual ground
surface. This is particularly useful for the densely vegetated,
rugged terrain of the western mountainous regions (Xu, 2020).
Visualization methods derived from LiDAR-DEM clearly and
accurately delineate the boundaries of landslide activities and
micro-geomorphic features. In this study, LiDAR point clouds
from 14 June 2022, were acquired using the D-LiDAR2000 laser
radar sensor mounted on the FEIMA D2000 aerial photography
platform. The average density of the point cloud exceeded 150
points/m2. Through spatial interpolation of the filtered ground
point clouds, DEM data with an accuracy of better than 0.5 m
was produced.

Hillshading images are commonly used for DEM visualization;
however, due to the sun’s azimuth and altitude angles, some micro-
geomorphic features may not be effectively displayed. To enhance
the stereoscopic and micro-geomorphic display effects of DEM
visualization, the Visualization for Archaeological Topography
(VAT)method (Kokalj and Somrak, 2019)was employed, combining
mountain shading, slope, positive openness, and sky view factors.
This method retains the advantages of the four aforementioned
visualization techniques while enhancing the recognition of micro-
geomorphic features (Verbovšek et al., 2019). The VAT parameter
settings are provided in Table 2, and the generated results are
displayed in Figure 3C.

Unmanned Aerial Vehicle (UAV) aerial images provide
centimeter-to-decimeter resolution, enabling detailed observation
of surface deformation and slope damage. However, vegetation
can reduce identification accuracy. The D-OP3000 oblique
photography module is also mounted on the FEIMA D2000
aerial photography platform to obtain aerial images, aiding
in the refined interpretation and identification of landslide
elements. Using position and orientation system (POS) data,
aerial triangulation, and mosaic cropping, we generated a Digital
Orthophoto Map (DOM) with a resolution better than 0.1 m, as
shown in Figure 3D.

3 Results

3.1 Spatiotemporal movement analysis of
InSAR

Based on the detailed analysis of spatiotemporal movement
patterns derived from InSAR data, we visualized the line-of-sight
(LOS) deformation distribution in the study area (Figure 4A),
which was a vector point map converted from the SBAS-
InSAR deformation raster image (Figure 3A). The line-of-sight
(LOS) deformation rates of the slope ranged from −1.6 mm/a to
−23.6 mm/a, with negative values indicating movement away from
the satellite along the LOS direction. Nine deformation points
(P1-P9) were strategically selected to form a grid-like monitoring
network, covering the rear edge, central portion, and front edge of
the landslide. These points were chosen based on spatial coverage,
deformation intensity, and alignment with key geomorphological
features (e.g., scarps, cracks, and secondary sliding bodies), ensuring
a representative distribution of deformation patterns across the
landslide. This systematic selection ensured that the points captured
the full range of deformation behaviors, from slow creep to active
sliding zones, and aligned with field observations and other remote
sensing data. The average deformation rate for the entire slope was
−12.7 mm/a, covering an area of 27.79 × 10⁴ m2, and exhibiting an
elliptical distribution on the slope.

To comprehensively reflect the slope development
characteristics and deformation patterns, nine deformation points
(P1 to P9)were selected as control points at key locations parallel and
perpendicular to themain sliding direction of the landslide, forming
a grid-like monitoring network. According to the deformation rate
curves, P4 showed relatively small deformation, while P5 exhibited
stronger deformation, with a maximum cumulative deformation
reaching −79.6 mm. The deformation intensity from strong to
weak was in the order of P2, P1, P5, P6, P3, P6, P8. Laterally, the
deformation rates at the rear edge (P1-P2-P3) were generally smaller
than those at the front edge (P7-P8-P9), with a larger deformation
area on the left side of the rear edge (P9). Longitudinally, comparing
deformation points P1-P4-P7, P2-P5-P8, and P3-P6-P9, it was
found that the deformation area on the right side of the front edge
was larger. To assess the overall deformation of the slope body,
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FIGURE 3
Processing results of multi-source remote sensing techniques. (A) SBAS-InSAR deformation map showing line-of-sight (LOS) displacement rates; (B)
DIC-derived horizontal displacement map; (C) LiDAR-DEM visualization using the VAT method; (D) High-resolution UAV-derived orthophoto (DOM).

FIGURE 4
Analysis of spatiotemporal motion patterns based on InSAR. (A) Line-of-sight (LOS) deformation distribution with key monitoring points (P1–P9); (B)
Cumulative deformation curves for Points 1–9, showing deformation characteristics across five stages.

431 deformation points within the main deformation area (red
curve in Figure 4A) were statistically analyzed to obtain the average
deformation amount for each period. To avoid the interference of
individual extreme points on the statistical results, the Iteratively
Reweighted Least Squares (IRLS) method was employed (Koch,
1999), with the results represented by the black curve in Figure 4B.

Between 12 October 2018, and 19 May 2021, the landslide
experienced five deformation stages: acceleration, creep,
acceleration, creep, and acceleration. The first and third stages had
average deformation rates exceeding −50.0 mm/a. Although the
fifth stage showed slower deformation, it still indicated continuous
subsidence.

3.2 Horizontal displacement assessment of
DIC

This study utilized Digital Image Correlation (DIC) technology
to conduct a comprehensive analysis of ground deformation in
the research area. The results (Figure 3B) revealed 14 significant
ground deformation zones within the study area, with cumulative
deformation ranges from 0 to 5.84 m (Figure 5A). By comparing
satellite images from 2016 to 2019, notable changes were observed
in some areas, such as reservoir water level decrease and road route
modifications (Figure 5B). The displacement frequency distribution
showed multi-peak patterns, reflecting diverse deformation across

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2025.1498028
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1498028

FIGURE 5
Ground deformation analysis results based on DIC technology. (A) Spatial distribution of 14 significant deformation zones; (B) Comparison of image
changes in two typical areas (Area 4 and Area 8) between 2016 and 2022, showing reservoir water level decrease and road route modifications; (C)
Relative frequency distribution of displacements across 14 areas; (D) Displacement magnitudes for each area.

regions (Figure 5C). Area 8 had the largest average displacement
(2.949 ± 0.570 m) and variability, while Area 1 had the smallest
(2.510 ± 0.037 m) and least variability. Most areas had average
displacements concentrated between 2.65–2.75 m, indicating a
widespread deformation trend in the study area (Figure 5D).
These findings not only revealed the spatial distribution and
temporal evolution characteristics of ground deformation but
also provided an important basis for identifying high-risk
areas and formulating corresponding disaster prevention and
mitigation strategies.

3.3 Identification of Landslide features and
morphology based on LiDAR

VAT image analysis (Figure 3C) identified old landslides based
on topography, showing distinct boundaries and typical landslide
morphology (Figure 6A). This LiDAR data-based analysis method
not only accurately depicted the overall contour of the landslide
but also revealed its internal structure and secondary deformation
features. The overall slope was steep, with a distinct steep scarp at
the rear edge and visible displaced side walls on both sides. Multiple

secondary deformation bodies were visible within the slope, with
10 developed cliffs irregularly distributed in semi-circular or arc
shapes at the rear, middle, and front edges of the landslide. The
identification of these detailed features highlighted the advantages
of this method in identifying and extracting characteristics of old
landslides. Measurement results showed that the elevation of the
landslide rear edge was 2,040 m, while the front edge near the
river was at 1,590 m, with a relative height difference of 450 m.
The shape was approximately tongue-like, with a longitudinal length
of about 770 m and a bottom width of about 520 m. The main
sliding direction was 257°. The slope top was steep, and the
bottom was gentle, with a planar area of approximately 37.28 m2

and an estimated volume of about 55.92 × 104 m³. Based on the
landslide elements analyzed in Figure 6A, using spatial combination
analysis methods, combined with engineering geological mechanics
and micro-geomorphological combination analysis, six secondary
sliding bodies were identified on the slope (Figure 6B). This multi-
level identification further demonstrated the method’s ability to
identify the internal structure of old landslides under complex
terrain conditions. According to the scale and spatial relationships
of the landslide, it could be divided into four levels. The first level
was the entire landslide body (HPT), which could be divided into
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FIGURE 6
Landslide element and morphology identification. (A) Interpretation results using VAT visualization, showing landslide boundaries and secondary
deformation features; (B) Multi-level sliding partitions, highlighting six secondary sliding bodies (H01–H06).

two second-level secondary sliding bodies, H01 andH02. The third-
level secondary sliding bodies H03 and H04, and the fourth-level
secondary sliding body H06 were located above H01, while the
third-level secondary sliding body H05 was located above H02.
Data indicated that H04 had the most intense deformation, with a
lateral tensile crack about 80 m long visible at its rear edge, almost
perpendicular to the slope direction.

3.4 Interpretation of recent deformation
activities based on UAV

Figure 7 presented the interpretation results of recent
deformation activities based on UAV imagery. Historical remote
sensing images (Figures 1E–G) and UAV DOM (Figure 3D)
indicated that although the overall vegetation recovery on
the slope was good, this recovery also blurred the landslide
boundaries and micro-geomorphological features, reducing
overall interpretability. However, the slope surface still showed
fresh landslide traces, with 16 surface landslide areas identified,
mainly composed of loose gravel deposits (Figure 7A). These
areas ranged from 105 m2 to 1,519 m2 in size, with an average
area of 492 m2. Most surface landslide traces were concentrated
in the middle part of the slope, showing varying degrees of
deformation. Detailed analysis revealed three types of deformation:
collapse areas (Figures 7B–D), sliding areas (Figures 7E–G), and

deformation areas (Figures 7H–J). The three deformation types
were classified based on distinct characteristics: collapse areas
exhibited abrupt elevation changes (>1 m) and clear detachment
scars; sliding areas showed continuous surface cracks (0.5–1 m
displacement) and tilted structures; and deformation areas featured
minor cracks (<0.5 m displacement) and subtle ground undulations,
indicating initial stress redistribution. Each type of deformation
had clear boundary delineations and direction indicators in the
corresponding subfigures, comprehensively displaying the spatial
distribution and characteristics of recent landslide activities in the
study area.

4 Discussions

4.1 Comprehensive comparison of
multi-source results

Through spatial overlay analysis of landslide deformation scales
identified by different datamethods, we found significant differences
in the identification results among various methods (Figure 8A).
In terms of identified area, LiDAR and InSAR identified regions
far larger than DIC and UAV, highlighting their advantages
in identifying overall landslide outlines and deformation scales
(Figure 8B). This result was consistent with the application effects
of InSAR and LiDAR technologies in large-scale landslide surveys
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FIGURE 7
Interpretation of recent deformation activities based on UAV imagery. (A) Aerial view of the landslide area, highlighting multiple deformation zones
(B–J); (B–D) Collapse areas with exposed land and visible soil/rock movement; (E–G) Sliding areas showing ongoing slow movement; (H–J)
Deformation areas with minor surface changes.

(Xu et al., 2023). Spatially, LiDAR and InSAR results were
continuously distributed across the entire slope, while DIC andUAV
results were more scattered, with sliding features mainly distributed
in the upper and middle parts of the slope and side edges. This
distribution difference reflected the complexity and non-uniformity
of internal deformation in slow-moving landslides (Lacroix et al.,
2020). There were also differences in the degree of overlap between
methods (Figure 8C). InSAR provided millimeter-level LOS time
series deformation results, while DIC, although less precise, was
not limited by time and deformation measurement scale, being
more sensitive to large gradient deformations in local areas.
This complementarity highlights the necessity of comprehensively
applying multiple techniques, especially in capturing large-scale
surface displacements (Leprince et al., 2007).

LiDAR-detected landslide boundaries aligned well with the
slope’s micro-topographic features, and VAT images revealed
more detailed elements. This highlights LiDAR’s importance
in high-precision landslide surveys (Verbovšek et al., 2019).
In contrast, although InSAR-detected deformation boundaries
extend beyond the actual landslide boundaries and show lower
consistency with micro-topographic features, they effectively
capture the spatiotemporal motion characteristics of landslides,
supporting long-term monitoring (Berardino et al., 2002). DIC-
derived horizontal displacements and movement directions were
more precise and localized than InSAR results, especially in
identifying significant deformation areas. The surface damage
features captured by UAV directly reflected the current deformation
state of the landslide, providing strong support for rapid assessment
(Jaboyedoff et al., 2012). Overall, each method had its unique
advantages and limitations, influenced by factors such as terrain,

vegetation cover, and data quality. This diversity of technical
characteristics emphasizes the importance of adopting multi-
dimensional, multi-directional technical combinations in landslide
analysis (Casagli et al., 2023). Smart measurement techniques, such
as multi-smartphone photogrammetric systems (Fang et al., 2024)
and multi-field monitoring (Fang et al., 2023b), offer significant
advantages in landslide monitoring. These methods provide high-
resolution, real-time data on surface and subsurface deformations,
enabling better understanding of slope behavior and failure
mechanisms. For instance, multi-field monitoring can capture area,
line, and point information, offering comprehensive insights into
slope deformation stages. Such systems are cost-effective, easy to
assemble, and capable of detecting changes with centimeter-level
accuracy, making them valuable tools for early warning and risk
assessment. By integrating the advantages of different technologies,
we can obtain a more comprehensive and accurate understanding
of landslide characteristics, laying a solid foundation for subsequent
monitoring and early warning work.

While the integration of multi-source remote sensing data
provides comprehensive insights, potential sources of error must be
acknowledged. These include temporal and spatial decorrelation in
InSAR data, misregistration in DIC processing due to terrain relief
or cloud cover, vegetation occlusion in LiDAR and UAV data, and
subjective interpretation during field verification. To mitigate these
errors, we employed optimized baseline thresholds and atmospheric
correction for InSAR, rigorous co-registration and filtering for
DIC, high-density point clouds and VAT visualization for LiDAR,
and systematic cross-verification with remote sensing data for field
observations. These measures enhance the reliability of our results
and provide a transparent framework for future studies.
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FIGURE 8
Comprehensive comparison of multi-source data interpretation results. (A) Spatial overlay of multi-source data interpretation results, showing the
integration of InSAR, DIC, LiDAR, and UAV analyses. (B) Overlapping areas between DIC and UAV interpretations. (C) Overlapping areas between InSAR
and UAV interpretations. (D) Field verification photo showing wall bulging at the slope foot. (E, F) Field verification photos of deformation slides in the
middle slope. (G) Field verification photo of tensile crack deformation in the upper slope.

4.2 Verification of identification accuracy

To ensure the reliability of the analysis results, we conducted
field verification in June 2022. During the 5-h detailed inspection
from the slope foot to the top, we focused on looking for
evidence of ground cracks, rock and soil sliding, and tensile
displacements. This systematic field verification method not only
validated the results of remote sensing analysis but also provided
direct observations for understanding the actual state of the
landslide (Fang et al., 2023a). In the residential area at the
slope foot, we found some walls bulging outward (Figure 8D),

located at the front shear outlet of the secondary landslide H05.
In the middle part of the slope, at the boundary of secondary
landslides H04 and H05, two obvious deformation slides were
observed (Figures 8E, F). In a residence in the upper part of
the slope, at the rear boundary of secondary landslide H02, a
significant tensile crack deformation was discovered (Figure 8G).
This deformation distribution pattern is consistent with the
long-term impact characteristics of post-earthquake landslides,
reflecting the different degrees of deformation that may occur
in different parts of the slope after seismic disturbance (Huang
and Li, 2014).
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Field verification showed that DIC and UAV results matched
field conditions best, while LiDAR and InSAR results had lower
consistency. This result further confirms the effectiveness of
DIC technology in identifying large-scale landslide movements
(Bivic et al., 2017), while also highlighting the advantages of
UAVs in capturing surface detail changes. This combination of
multi-source remote sensing data and field verification not only
improves the accuracy of landslide identification and monitoring
but also provides valuable insights into the performance of different
technologies in practical applications. Through this comprehensive
analysis, we can better assess the applicability and limitations of
various remote sensing technologies in landslide investigations,
guiding future technology selection and application (Xu et al., 2023).

4.3 Movement mechanism of the Shibatai
creep landslide

Based on spatiotemporal deformation and morphological
feature analysis, combined with geological processes, we identified
the Shibatai landslide as a typical creep landslide. This type
of landslide is common in loose soil slopes or rock slopes
with poor sliding conditions, exhibiting obvious time-dependent
deformation characteristics. The landslide body has experienced
multiple repetitive deformation processes from initial deformation
to final instability and failure, which can be divided into three stages:
“initial deformation, uniform velocity deformation, and accelerated
deformation” (Lin et al., 2024). This staged evolution pattern
is highly consistent with the long-term evolution characteristics
of landslides observed after the Wenchuan earthquake, further
confirming the possible long-term creep process that earthquake-
induced landslides may undergo (Li et al., 2018). According to the
comprehensive analysis results, the Shibatai landslide’s deformation
can be divided into four stages. Initially, gravity causes the slope
to creep slowly, forming tensile cracks parallel to the slope surface
at steep areas (Figure 9A). This initial stage fully reflects the key
role of gravity in the initial deformation of landslides, consistent
with the typical characteristics of the initial stage of slow-moving
landslides (Lacroix et al., 2020). Subsequently, seismic disturbances
caused severe deformation in the upper part of the slope, producing
major control cracks perpendicular to the slope direction, with local
damage and cracks appearing in the lower part of the slope (Figure
9B). This stage demonstrates the significant impact of earthquakes
on slope structure, consistent with the typical characteristics of
earthquake-induced landslides (Huang and Li, 2014).

In the third stage, the effects of rainfall and irrigation water
became more significant. Water infiltrated into previously formed
cracks, changing the shear strength of the slope body, leading to
the connection of multiple transverse tensile cracks and obvious
subsidence of the slope body (Figure 9C).This process highlights the
important role of rainfall in promoting the further development of
post-earthquake landslides (Li et al., 2018). Finally, as deformation
continued to develop, stress within the slope body began to
redistribute, and potential shear surfaces were sheared through,
ultimately forming multi-level sliding (Figure 9D). This stage
reflects the complex deformation patterns that landslides may form
during the destabilization process (Zhan et al., 2024). These stages
are driven by distinct geological mechanisms: gravity-induced

stress accumulation initiates creep, seismic disturbances disrupt
slope stability, rainfall infiltration reduces shear strength, and
stress redistribution leads to multi-level sliding. This progression
highlights the interplay between gravitational, seismic, and
hydrological factors in landslide evolution.Through this continuous,
progressive analysis, we not only gained a deep understanding of
the evolution process of the Shibatai landslide but also provided
important references for landslide early warning and forecasting
under similar geological conditions (Lin et al., 2024). Currently,
the Shibatai landslide is in the third stage, exhibiting characteristics
of a translational landslide. This judgment has important guiding
significance for formulating subsequent monitoring and prevention
measures. The findings reveal the complex interplay between
geological, seismic, and hydrological factors in landslide evolution.
The four-stage process and identification of six secondary sliding
bodies highlight the importance of long-term monitoring to capture
gradual changes and stress redistribution. The consistency between
DIC-detected deformation and field observations underscores the
potential of optical image correlation for rapid assessment and
early warning in landslide-prone areas. It is worth noting that the
evolution process of landslides is not an independent state but a
continuous, interacting process. For example, the initial gravity
action and crack formation provided conditions for subsequent
earthquake and rainfall influences, while earthquakes and rainfall
further exacerbated the instability of the slope body. This complex
interaction mechanism emphasizes the necessity of adopting multi-
dimensional, long-term monitoring strategies. Through continuous
observation and analysis, we can better understand the dynamic
change process of landslides, thereby providing a scientific basis for
precise early warning and effective prevention. At the same time, this
staged analysismethod also provides a valuable reference framework
for research on other similar creep landslides, contributing to
improving our overall understanding and management capabilities
for such complex geological hazards.

4.4 Analysis of the advantages and
disadvantages of different remote sensing
technologies and applicable scenarios

In the process of landslide investigation and monitoring,
different remote sensing technologies demonstrate their respective
advantages and limitations. Our study shows that LiDAR and
InSAR technologies excel in capturing overall landslide outlines
and slow deformation signals, while DIC and UAV technologies
are more effective in detecting significant deformation features
or sliding traces. This technological difference not only reflects
the characteristics of various methods but also highlights the
importance of comprehensively applying multiple remote sensing
technologies in landslide analysis (Xu et al., 2023; Casagli et al.,
2023). To maximize the advantages of different technologies and
improve the effectiveness of large-scale engineering applications,
we conducted a comprehensive comparison of various methods,
analyzing their advantages, limitations, and applicable scenarios
(Table 3). At the same time, we used the Analytic Hierarchy
Process (Fang et al., 2024) to evaluate multiple aspects such as data
source richness, technical complexity, computational efficiency, data
acquisition cost, and result accuracy (Figure 10A). This systematic
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FIGURE 9
Schematic diagram of the movement stages and deformation characteristics of the Shibatai creep landslide. (A) Self gravity creep stage. (B) Earthquake
disturbance damage stage. (C) Water infiltrated deformation stage. (D) Unstable sliding stage.

evaluation method not only helps us better understand the
characteristics of various technologies but also provides a scientific
basis for selecting the most suitable technology combination in
practical applications. The research results show that although
DIC and InSAR have rich satellite resources, they also face
some technical challenges, such as high registration accuracy
requirements, susceptibility to cloud cover and image resolution
effects, and dependence on SAR coherence.These challenges further
emphasize the importance of selecting the best image pairs in
practical applications (Yang, 2020). In contrast, LiDAR and UAV
technologies, although having relatively fewer data resources, are
mature technologies with lower processing difficulties. However,
their high acquisition costs limit their use in large-scale applications,
which is consistent with the challenges faced by LiDAR technology
in large-scale applications (Jaboyedoff et al., 2012).

Based on these analyses, we propose a remote sensing
identification technology combination scheme for landslides at
different scales and scenarios (Figure 10B). At the regional scale,
we suggest prioritizing the use of InSAR technology, with DIC
technology as a supplement to address InSAR monitoring blind
spots and large deformation monitoring issues. This combination
not only fully utilizes the advantages of InSAR but also compensates
for its shortcomings throughDIC technology, especially in detecting
landslide precursor movements (Lacroix et al., 2018). At the
local scale, for areas with low to medium vegetation density, we
recommend using the InSAR + DIC technology combination to
obtain LOS and horizontal displacement information, forming
“multi-angle” deformation monitoring, thereby improving the
accuracy of hazard identification. This multi-dataset investigation
method can provide more comprehensive landslide analysis
information (Caporossi et al., 2018). For high-density vegetation
areas, the application of LiDAR technology can effectively remove
vegetation effects and accurately delineate landslide boundary
outlines, fully leveraging its advantages in penetrating vegetation to
obtain surface information (Jaboyedoff et al., 2012). Optimizing the

fusion of multi-source remote sensing data remains a key challenge.
Future research should focus on developing advanced algorithms to
integrate InSAR, LiDAR, UAV, and DIC data effectively, leveraging
machine learning for automated data weighting and establishing
standardized protocols for spatial-temporal registration. At the
individual scale, especially in landslide investigations in key towns,
residential areas, and densely populated areas, we suggest adopting
a combination of UAV + LiDAR technology to obtain high-
precision terrain information and accurately delineate landslide
boundaries and features. At the same time, combining InSAR + DIC
technology or specialized equipment for periodic monitoring forms
a continuous assessment and analysis system. This comprehensive
approach fully utilizes the advantages of various technologies and
can provide more comprehensive and precise landslide monitoring
information (Jaboyedoff et al., 2012).

Through this multi-scale, multi-technology combination
strategy, we can not only overcome the limitations of single
technologies but also choose the most suitable technology
combination in different investigation stages and geographical
environments.This flexible approachnot only improves the accuracy
and efficiency of landslide identification and monitoring but also
provides a reliable technical framework for large-scale landslide
investigation and long-term monitoring.

4.5 Remote sensing application insights for
refined identification and field verification
of creep landslides

In the Wenchuan strong earthquake zone, frequent seismic
activities have disturbed and damaged the internal structure of
many slopes. The surfaces of these slopes are in a long-term slow
deformation stage, with deformation rates ranging from millimeters
to centimeters. However, certain parts within the landslide or at
its edges may exhibit significant deformation, with rates ranging
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TABLE 3 Comparison of advantages and limitations of different technologies.

Technologies Advantages Limitations Application scenarios

DIC Rich optical image resources can form
long-term monitoring sequences; the
obtained horizontal displacement data
can compensate for the monitoring
needs of large gradient deformations

Requires high registration accuracy, is
significantly affected by cloud cover and

image resolution, and is difficult to
process

Screening for large-area deformations,
major landslide optical remote sensing

tracking and monitoring

InSAR Relatively abundant image resources,
active imaging that is unaffected by
cloud cover, and can monitor slow

deformations

Side-looking imaging has shadow and
overlay areas, requires high coherence,
in-situ deformations are difficult to
verify, and processing is difficult

Screening for large-area slow
deformations, typical landslide time

series analysis

LiDAR High accuracy, can penetrate vegetation
to reach the ground surface, strong
interpretive capabilities, but limited

data resources

High data costs, sparse point clouds in
densely vegetated areas, and difficulty in

obtaining rich textures

Investigating concealed landslides in
medium to high-density
vegetation-covered areas

UAV High resolution, good timeliness, clear
texture features, strong detailed

interpretive capabilities, but limited
data resources

Difficult to detect concealed disaster
information under vegetation

Investigating landslide disasters in
low-density vegetation-covered areas,
and disaster emergency assessment

FIGURE 10
Comparison and applicable scenarios of different remote sensing technologies. (A) Comparison of Radar Images with Different Technologies. (B)
Combination solutions for different technological applications.

from decimeters to meters. This difference in deformation intensity
across various parts of the same landslide increases the complexity
of landslide identification and field verification. For instance, in the
large-scale identification process of the Shibatai landslide in this
study, using only InSAR and optical remote sensing technologies
for detection initially delineated a potential hazard “target area” of
27.79 × 104 m2. However, it took 5 h during the field verification
process to discover obvious deformation evidence, such as tensile
cracks. This situation highlights the importance of comprehensively
applying multi-source remote sensing technologies in identifying
potential hazards of slow-moving landslides (Lu et al., 2024).

The integrated application of multi-source remote sensing
technologies can obtain morphological and deformation
information from different angles, improving the refinement and
reliability of landslide identification. However, in the current “space-
air-ground” large-scale landslide investigation system, due to the

vast survey area and urgent time requirements, often only InSAR
and optical remote sensing technologies can be simply combined,
which to some extent limits the full potential of remote sensing
technologies (Xu et al., 2019). The results of this study show that
the significant deformation areas observed in the field are highly
consistent with the main deformation areas identified by DIC
technology, reflecting the inadequacy of relying solely on InSAR
and optical visual interpretation. Therefore, strengthening the
application of DIC technology in landslide investigations becomes
particularly important, as it can effectively detectmajor deformation
areas, forming a comprehensive deformation target area including
“slight deformation and severe deformation” (Yang et al., 2020).
This comprehensive approach not only meets the detection needs
of various deformation characteristics but also provides more
precise guidance for ground verification, reducing the workload
of comprehensive inspection from slope foot to top and avoiding
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FIGURE 11
Schematic diagram of key locations for ground verification of creep landslides. (A) Compressive landslide plane figure. (B) Cross section of compressive
landslide. (C) Retrogressive landslide plane figure. (D) Cross section of retrogressive landslide.

blind verification. According to the field verification results in
Section 4.2, significant evidence of landslide deformation was
mainly concentrated at the front shear outlet of secondary landslide
body H05, the adjacent boundary of secondary landslide bodies
H04 and H05, and the rear boundary of secondary landslide body
H02. These locations showed the highest consistency with the
deformation areas identified by DIC and UAV. This finding suggests
that in landslides with multiple internal fractured blocks, areas of
strong deformation are often located at the boundaries or adjacent
edges of these secondary blocks, which are likely to be the most
significant areas of subsequent deformation changes in the landslide
(Zhu et al., 2021; Ma et al., 2021).

Based on these observations, we suggest that future landslide
identification and ground verification processes should focus on the
main deformation areas of the landslide body. By analyzing landslide
deformation patterns, such as compressive landslides (Figures 11A,
B) and retrogressive landslides (Figures 11C, D), we can more
accurately predict the areas where landslide deformation and
damage are most likely to concentrate in the short term (Wang et al.,
2024; Dong et al., 2022). This targeted approach not only
improves the efficiency of field verification but also provides more
precise information for landslide monitoring and early warning.
Furthermore, this study emphasizes the importance of long-term
monitoring in understanding the evolution process of slow-moving
landslides. Through continuous multi-source remote sensing data
collection and analysis, we can better capture the dynamic change

process of landslides, identify potential accelerated deformation
stages, and thus provide a scientific basis for timely warning and
effective prevention (Ding et al., 2021; Huang, 2009). At the same
time, this long-term monitoring strategy also helps us gain a deeper
understanding of the impact of external factors such as earthquakes
and rainfall on landslide evolution, providing important support for
regional-scale landslide risk assessment (Li et al., 2022).

In conclusion, the refined identification and field verification of
slow-moving landslides requires the comprehensive application
of multi-source remote sensing technologies and targeted field
investigation strategies. By integrating the advantages of different
technologies and combining them with an in-depth understanding
of landslide evolution mechanisms, we can significantly improve
the accuracy and efficiency of landslide identification. This is
not only crucial for the management of individual landslides
but also provides a reliable technical framework for large-scale
landslide investigations and long-term risk assessments. Future
research should focus on optimizing multi-source data fusion
and integrating emerging technologies like artificial intelligence
to improve landslide identification and monitoring systems.
Additionally, optimizingmulti-source data fusion through advanced
algorithms and machine learning techniques will be crucial for
improving the accuracy and efficiency of landslide identification and
monitoring. Future research should focus on integrating emerging
technologies like artificial intelligence and machine learning to
enhance landslide detection and monitoring. Advanced data fusion

Frontiers in Earth Science 15 frontiersin.org

https://doi.org/10.3389/feart.2025.1498028
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1498028

algorithms and long-term monitoring networks combining satellite,
UAV, and ground-based sensors will improve the understanding
of landslide dynamics and support effective risk mitigation
strategies.

5 Conclusion

This study analyzed the Shibatai creep landslide using
multi-source remote sensing technologies, revealing its complex
deformation characteristics and evolution. It also provides new
insights for identifying and monitoring slow-moving landslides.
The integration of InSAR, DIC, LiDAR, and UAV data enabled
a comprehensive understanding of the landslide’s spatiotemporal
deformation patterns and morphological features. Key findings
include: 1) the landslide exhibits a four-stage evolution process,
driven by gravity-induced creep, seismic disturbances, rainfall
infiltration, and stress redistribution, leading to the formation of
multi-level sliding; 2) six secondary sliding bodies were identified,
with the most intense deformation occurring at their boundaries,
highlighting the importance of focusing on these areas for field
verification and monitoring; and 3) DIC and UAV technologies
demonstrated superior performance in detecting significant
deformation features, aligning closely with field observations,
while InSAR and LiDAR provided valuable insights into overall
deformation and morphological characteristics. These findings
underscore the effectiveness of combining multiple remote sensing
technologies to overcome the limitations of individual methods and
improve the accuracy of landslide identification and monitoring,
particularly in post-earthquake environments.

While this study provides valuable insights, some limitations
should be acknowledged, such as the temporal resolution challenges
in InSAR and DIC data and the difficulties in interpreting
micro-geomorphological features in densely vegetated areas.
Future research should focus on integrating real-time monitoring
systems (e.g., multi-smartphone photogrammetry and multi-field
monitoring) to enhance temporal resolution and early warning
capabilities, developing advanced algorithms for multi-source
data fusion to improve the accuracy and efficiency of landslide
identification, and expanding the application of these methods to
other landslide-prone regions to validate their generalizability and
refine monitoring strategies.
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