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Improvement of rock surface
roughness accuracy by
combining object space
resolution error and 3D point
cloud features
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To enhance the accuracy of joint roughness coefficient (JRC) estimation in
photogrammetry, this study employed a fixed-camera shooting strategy guided
by a Structure-from-Motion-based shooting parameter selection algorithm to
reconstruct 3D models of rock samples at 16 different shooting distances.
The analysis at profile intervals of 0.25 mm, 0.5 mm, and 1 mm revealed a
strong correlation between JRC accuracy and three parameters: object space
resolution error, spatial distance between point cloud points, and spatial errors
of checkpoints on the orientation board. Using these three parameters as
input variables and JRC error as the output variable, five machine learning
algorithms—Support Vector Regression, Gaussian Process Regression,Multilayer
Perceptron, XGBoost, and CatBoost—were employed to predict JRC errors
across different shooting distances. TheMultilayer Perceptronmodel performed
best at profile intervals of 0.25 mm and 0.5 mm, while XGBoost was optimal
at the 1 mm interval. Under the predictions of these models, JRC accuracy
improved by an average of 84.7% across the three intervals. Finally, the
applicability and limitations of the proposed method were further discussed.

KEYWORDS

photogrammetry, rock surface roughness, JRCoptimization, 3D reconstrution,machine
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1 Introduction

Accurately estimating the joint roughness coefficient (JRC) is crucial for evaluating the
stability of rock masses in engineering projects like slopes, tunnels, and underground
caverns (ISRM, 1978). The JRC, which plays a key role in geological sketching for
rock engineering, provides insight into the shear strength of rock joints (Patton,
1966; Barton and Choubey, 1977). In recent years, non-contact measurement methods
for rock joint characterization, represented by laser scanning and photogrammetry
techniques, have been extensively studied and applied by numerous researchers
(Fardin et al., 2001; Ge et al., 2012; Cignetti et al., 2019; Francioni et al., 2019).
These advanced optical and computational technologies enable the rapid acquisition of
high-resolution 3D models of rock joints, which can be used to quantify joint roughness
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parameters and further estimate the shear strength of rock joints
(Tse and Cruden, 1979; Grasselli and Egger, 2003; Ge et al., 2014;
Lin et al., 2021; Ge et al., 2022; Lin et al., 2024; Yong et al., 2024).

With the rapid development of computer vision, optical
measurement, and sensor technologies, photogrammetry, known
for its low cost, portability, and short data processing time, has
gained widespread popularity and usage in obtaining the JRC
(Battulwar et al., 2021; Ge et al., 2022; Xia et al., 2022; Ling et al.,
2022; Paixão et al., 2022). García-Luna et al. (2021) used a camera
and tripod to collect images of slope rock masses, analyzing the
impact of shooting distance, focal length, and the number of images
on roughness. Paixão et al. (2022) provided a detailed description
of the application process of the Structure-from-Motion (SfM)
photogrammetry method in estimating the surface roughness of
small-scale rock samples, exploring the effects of shooting angles,
angular intervals, and data processing software on JRC accuracy.
Ge et al. (2022) employed a similar data collection strategy to
investigate the performance of smartphones in estimating JRC and
compared the results with those obtained using digital cameras.
Due to smartphones utilizing CMOS sensors, the resulting JRC
accuracy was lower. In the same year, An et al. (2022) employed
a similar convergence strategy to estimate the roughness of small-
scale rock samples and proposed the “moving smartphone capture”
method, which uses only a smartphone.When comparing the results
with those obtained using data collection methods involving fixed
devices such as tripods and turntables, the latter demonstrated
higher JRC accuracy.

The detailed examination of photogrammetry techniques
utilizing SfM technology reveals a shift in JRC assessment
towards greater cost-efficiency and ease of use. However, it
must be acknowledged that in practical applications, regardless
of the hardware used or the implementation of fixed settings,
JRC estimates will inevitably deviate to some extent from
actual values. Moreover, parameters such as camera resolution
and shooting position cannot always be optimally configured.
Although numerous studies have investigated the effects of
factors like equipment resolution and shooting configurations
on errors in roughness parameter estimation (García-Luna et al.,
2021; An et al., 2022; Ge et al., 2022; Yang et al., 2024),
there is still a lack of research focused on innovative methods
to improve JRC accuracy in photogrammetry. Against this
backdrop, machine learning technology emerges as a powerful
tool for addressing complex nonlinear problems with multiple
intertwined parameters, offering new insights and approaches for
optimizing JRC accuracy in photogrammetry. The introduction
of this cutting-edge technology not only breathes new life into
traditional photogrammetry methods but also holds the potential
for significant improvements in JRC estimation accuracy. By
leveraging machine learning algorithms for in-depth analysis of
large datasets, it is possible to uncover more potential factors
affecting estimation accuracy and design more precise and efficient
estimation models.

This study aims to improve the accuracy of photogrammetric
JRC estimation using machine learning algorithms. Initially,
rock sample point cloud models were collected through a
combination of a camera parameter selection algorithm and a
tripod-based data acquisition strategy. The study then investigated

the effects of object space resolution error, spatial distance, and
spatial error on JRC estimation accuracy. Finally, five machine
learning algorithms were employed to predict JRC errors at
different shooting distances, resulting in the development of a
photogrammetric JRC accuracy optimization model based on the
tripod strategy.

2 Methodology

2.1 Point cloud extracted from SfM-based
photogrammetric data

The SfM-based photogrammetry technique has become a
standard in rock engineering applications (Hartley and Sturm,
1997; Kong et al., 2021). As depicted in Figure 1A, the process
starts by identifying feature points (Pmj) from two initial images
and matching them with corresponding target points (Pj). This
matching process helps estimate the initial camera positions
(O1, O2). These correspondences are then extended across
additional images to refine the camera pose (Om) estimates for
each image. Using this information, a sparse 3D model of the
scene is constructed. Subsequently, depth maps, which represent
the depth values of all pixels, are generated and combined
into a single, consistent depth map (see Figure 1B). Finally, a
dense point cloud is produced from the merged depth map,
as illustrated in Figure 1C.

2.2 Specimen preparation and
experimental setup

Figure 2 illustrates the use of the underside of an artificially
split sandstone sample as the test object. This sample, which has
a slightly uneven surface, measures 100 × 100 × 50 mm. It is
placed within an orientation plate (OP) equipped with four ground
control points (GCPs) spaced 160 mm apart. The OP is utilized to
orient and scale the point cloud of the rock sample. Additionally,
the OP contains twelve checkpoints (CPs). The discrepancy
between the point cloud coordinates of these checkpoints and their
actual coordinates provides a partial measure of the point cloud
reconstruction quality (ASPRS, 2015; Cultural Heritage Imaging,
2015). According to Agisoft Metashape (2022) guidelines, the
checkpoint size is set to five times the ground sampling
distance (GSD), which is determined by the image pixel count
(Yang et al., 2024).

Images of the target rock samples were captured using a
Canon EOS 90D digital single-lens reflex (DSLR) camera. The
camera uses a high-resolution CCD sensor with a sensor size of
22.3 × 14.8 mm and a pixel capacity of 6,960 × 4,640 pixels.
The lens used is EF-S 18–135 mm f/3.5–5.6 IS USM. To
precisely control the relative position and angle between the
rock samples and the camera, a turntable and tripod were
utilized as support and adjustment tools. Additionally, a precision
angle ruler was employed to accurately adjust the rotation angle
of the rocks, allowing images to be captured at each angular
interval. Natural lighting was used to accurately reflect the
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FIGURE 1
Overview of SfM-based photogrammetry in rock data acquisition. (A) The principle of SfM-based photogrammetry. (B) A rock depth map. (C) A 3D
rock model.

FIGURE 2
JRC estimation experiment for small-scale rock sample.

rock’s morphology under authentic environmental conditions.
As shown in Figure 2, a field rock specimen roughnessmeasurement
setup was established.

2.3 Data acquisition

The fixed camera capture (FCC) method offers a cost-
effective way to capture rock images, ensuring high image overlap
and providing excellent stability and ease of use (Ge et al.,
2022). The shooting parameter selection algorithm (SPSA),
introduced by Yang et al. (2024), generates tailored shooting
parameters based on the specific camera and rock dimensions.
In this study, FCC is utilized in conjunction with SPSA, following
the principles of SfM.

To begin with, the specific dimensions of the target rock, the
GSD, and the key parameters of the imaging equipment were all
entered into the SPSA, as detailed in Table 1. In this study, the
camera’s shooting angle and positional interval adhered to the
professional recommendations of Ge et al. (2022), being set at
30° and 15° respectively. This configuration facilitated the capture
of 24 high-resolution images to ensure a high degree of image
overlap. Furthermore, in accordance with the guidelines provided
by Edmund Optics (2023), one-third of the GSD was set as the
threshold for spatial resolution, intended to allow a reasonable
tolerance for uncertainty in the accuracy of spatial points during the
3D reconstruction process, thereby enhancing the reliability of the
results. Subsequently, based on SPSA calculations, with a GSD set
at 1, the camera’s shooting layout at various positions is illustrated
in Figure 3. These positions were sampled at 100 mm intervals. It is
noteworthy that the positions depicted in Figure 3 not only indicate
spatial locations but also visually represent the dynamic variations
in objective space resolution error (OSRE) through changes in
size and color.

2.4 Data processing and JRC estimation

Agisoft Metashape (2022) was chosen for the three-dimensional
reconstruction of the rock surface, as it alignswith the SfMprinciple.
The reconstruction parameters were configured with the highest
alignment accuracy, and the depth maps and point clouds were
generated with exceptional precision. For the GCPs, the software
automatically identified these points within the point cloud using
the imported real-world coordinates, facilitating the overall rotation
and scaling of the point cloud. Following this, CloudCompare
(2023) was used to segment and extract the rock surface point
cloud, standardizing its dimensions and enabling the analysis of JRC
variations across different shooting distances.

Object space resolution is a variable that reflects the density
of 3D point clouds, determined by shooting parameters and
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TABLE 1 Application of shooting parameter selection algorithm.

Input parameter Value Input parameter Value

Focal length 18 mm Minimum field of view 293.82 × 195 mm

Sensor size 22.3 × 14.8 mm Shooting distance range 250–3,600 mm

Camera resolution 6,960 × 4,640 pixel Focal length range 18 mm

GSD 1 mm/pixel
Number of shooting parameter combinations 16

Target area size 100 × 100 × 50 mm

FIGURE 3
Results of SPSA generation based on convergence strategy.

pixel size. According to the study by Yang et al. (2024), a
strong correlation exists between the object space resolution error
(OSRE) and the JRC error. The equation for calculating this
value is as follows:

ErrorOSR =
h f
Z− f

(1)

where h is the pixel size, f is the camera focal length,
Z is the shooting distance, and ErrorOSR is the calculated
value of OSRE. This value can be calculated solely using the
shooting parameters.

In studies evaluating joint roughness, the spatial distance
between points in the point cloud reflects the accuracy of the
roughness to some extent (Paixão et al., 2022; Ge et al., 2022). This
value is defined as the ratio of the area of the selected rock surface
point cloud to the number of points, and it can be calculated using
statistics from post-processing software.

According to the positional accuracy standards for
digital geospatial data provided by the American Society for
Photogrammetry and Remote Sensing (ASPRS), researchers can
evaluate point cloud accuracy using the spatial errors of check
points (ASPRS, 2015). The spatial error between the point cloud
coordinates and the true coordinates of the twelve checkpoints, used
as a parameter to reflect JRC accuracy in this study, is represented

by the average root mean quare error (RMSE) calculated manually,
as shown in Equation 2:

RMSE = √ 1
n

n

∑
i=1
(xia − xib)

2 + 1
n

n

∑
i=1
(yia − yib)

2 + 1
n

n

∑
i=1
(zia − zib)

2

(2)

where xia, yia, zia represent the coordinates of the center point of CPs
in the point cloud, while xib, yib, zib represent the true coordinates of
CPs in the OP. n denotes the number of CPs. RMSE represents the
spatial error (ASPRS, 2015).

In rock engineering, the JRC is essential for classifying rock
mass quality and assessing stability (Barton and Choubey, 1977;
ISRM, 1978). When estimating JRC from point cloud coordinates,
the accuracy is significantly affected by the choice of profile intervals
(PI) (Tse and Cruden, 1979). Following the method outlined by Yu
and Vayssade (1991), JRC values for profile intervals of 0.25 mm,
0.5 mm, and 1 mm were calculated using Equations 3, 4 and are
shown in Figure 4. The JRC for each profile (JRC2D) is determined
using Z2:

Z2 = √
1
L

N−1

∑
i=1

(zi+1 − zi)
xi+1 − xi

(3)

{{{{
{{{{
{

JRC2D = 60.32Z2 − 4.51 (for profile interval = 0.25 mm)

JRC2D = 61.79Z2 − 3.47 (for profile interval = 0.5 mm)

JRC2D = 64.22Z2 − 2.31 (for profile interval = 1 mm)

(4)

where the coordinates xi, zi, xi+1, and zi+1 correspond to
points ith and i+ 1th in the x and z axes, respectively. N
indicates the total number of points along the rock joint
profile, while L refers to the profile’s length. Equation 5 shows
that the overall JRC value for rock joint, known as JRC3D, is
calculated by taking the average of the JRC2D values across all
profiles (Ge et al., 2022):

JRC3D =
M

∑
j=1

JRCj
2D

M
(5)

where M represents the total number of profiles.
To validate the accuracy of roughness parameters at different

shooting distances, a high-resolution point cloud of the rock surface
was generated using an AutoScan-630W laser scanner with a
precision of 0.05 mm and an average point spacing of 0.005 mm.
The JRC values derived from this point cloud were used as the
benchmark for comparison.
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FIGURE 4
Point clouds of rock surface with profile intervals (PI) of (A) 0.25 mm,
(B) 0.5 mm and (C) 1 mm respectively.

2.5 Machine learning algorithms

The prediction model’s input feature set includes three
parameters: OSRE, spatial distance, and the checkpoint spatial
error of point clouds at various shooting distances. These features,
combined with the JRC error as the target output, create a
comprehensive dataset. As shown in Figures 5–7, both the input
and output parameters are based on actual measured data rather
than a set of predetermined values. The core of this prediction
task is a multivariate regression analysis, designed to explore the
relationships between the input features and the target output.
To achieve this, five machine learning models were utilized for
predicting the JRC error. To ensure robust generalization and
accurate predictions, the data was split using a 70/30 ratio: 70%
of the data was randomly chosen as the training set for model
development and parameter optimization, while the remaining 30%
served as the validation set to independently assess the model’s
predictive performance and mitigate overfitting (Liu et al., 2024).
To ensure the convergence of generalization error in a more stable
manner, K-fold cross-validation was employed (Fushiki, 2011). The
training set was first divided into five subsets, each of which could
serve as a validation set. Then, one subset was used for validation,

and the process was repeated five times, with a different validation
and training set used in each iteration.

2.5.1 Support Vector Regression
Support Vector Regression (SVR) is a technique rooted in

Support Vector Machines (SVM) that models a regression function
by identifying an optimal hyperplane within the feature space,
enabling the projection of sample points into a higher-dimensional
space. The objective of SVM is to find a function that places most
data points within this margin while minimizing the prediction
errors for the points that fall outside of it. These points, which fall
outside the margin, are referred to as support vectors. Compared to
traditional regression methods, SVR offers superior generalization
ability and greater robustness, effectively handling high-dimensional
data and nonlinear problems. The core idea of SVR is to balance the
trade-off between prediction error and model complexity, adjusting
hyperparameters to control the complexity and generalization
capability of themodel (Brereton and Lloyd, 2010; Awad et al., 2015).
In this study, the kernel function was preset to quadratic, while the
remaining hyperparameters were set to their default values.

2.5.2 Gaussian Process Regression
Gaussian Process Regression (GPR) is a statistical method

used for predicting continuous values. The process begins with
defining a prior distribution. A prior distribution is specified for
the function to be predicted, assuming that this function adheres
to a Gaussian Process with a zero mean function. Next, observation
data, which includes input values and corresponding output values,
are obtained. Following this, the posterior distribution is computed
by updating the prior distribution with the observational data using
Bayesian methods. The posterior distribution remains a Gaussian
Process; however, its mean and covariance are adjusted based on
the observational data. Finally, predictions are made by applying
the posterior distribution to new input data. The prediction results
are represented as a normal distribution, where the mean provides
the predicted value and the variance indicates the uncertainty of
the prediction (Williams and Rasmussen, 1995; Schulz et al., 2018).
The kernel function for GPR in this study was preset to rational
quadratic. The remaining hyperparameters are the default values.

2.5.3 Multilayer Perceptron
The Multilayer Perceptron (MLP) is a feedforward artificial

neural network model, characterized by fully connected layers
composed of multiple neurons. The architecture of MLP consists
of several layers, including an input layer, hidden layers, and an
output layer. The input layer receives data and forwards it to the
hidden layers, where activation functions transform the input values
into outputs, subsequently passed to the output layer. The output
layer generates the final prediction. Each neuron in the hidden and
output layers is associated with weights and biases, functioning as
a nonlinear operator that processes inputs from preceding neurons
through a series of computations to produce outputs. Information
transmission between neurons in adjacent layers occurs through
weighted connections, where the weights signify the strength of
these connections. A key advantage of the MLP lies in its ability
to model complex nonlinear relationships, making it suitable for
regression tasks (Gardner andDorling, 1998; Almeida, 2020). In this
study, the MLP algorithm was implemented with a neural network
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FIGURE 5
Overview of OSRE and JRCError data results. (A) Distribution chart and (B) statistical chart of JRCError. The correlation between OSRE and JRCError at PI of
(C) 0.25 mm, (D) 0.5 mm and (E) 1 mm. (F) OSRE threshold values corresponding to JRCError of 2.

architecture comprising three hidden layers, containing 25, 9, and
24 neurons, respectively. All other parameters were retained at their
default values.

2.5.4 XGBoost
During each iteration, XGBoost reduces the objective function

by incorporating an additional tree model. The objective function
is composed of two elements: a loss function that quantifies
the discrepancy between actual and predicted values, and a
regularization term that manages model complexity to avoid
overfitting. This balance ensures both reduced prediction errors
and model simplicity. One of XGBoost’s defining features is the

application of second-order Taylor expansion to approximate the
loss function, thereby increasing the accuracy of the optimization
process. Furthermore, a greedy algorithm is used to identify the
best split points by evaluating changes in the objective function
before and after the split, which enhances both the model’s accuracy
and computational efficiency. Additionally, XGBoost’s capacity to
automatically manage missing data offers a distinct advantage in
handling complex datasets (Chen and Guestrin, 2016; Nielsen,
2016). In this study, the parameters for XGBoost were set
as follows: n_estimators = 100, max_depth = 6, learning_rate = 0.03,
subsample = 1, colsample_bytree = 1, and min_child_weight = 1,
with all other hyperparameters set to their default values.
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FIGURE 6
The correlation between spatial distance and JRCError at PI of (A) 0.25 mm, (B) 0.5 mm and (C) 1 mm. (D) Spatial distance threshold values
corresponding to JRCError of 2.

2.5.5 CatBoost
CatBoost is a gradient boosting framework utilizing symmetric

decision trees, distinguished by its minimal parameter requirements,
strong support for categorical variables, and high accuracy. Its
key strength is the efficient handling of categorical features.
Additionally, CatBoost effectively addresses gradient bias and
prediction shift, reducing overfitting while improving both accuracy
and generalization. Unlike XGBoost, CatBoost features an innovative
algorithm that automatically converts categorical variables into
numerical ones. This conversion starts with analyzing categorical
features to determine the frequency of each category, followed by the
use of hyperparameters to create new numerical features. CatBoost
also enhances the feature space by combining categorical features
and employs a ranking-based boosting method to handle noise in
the training data, which helps to decrease gradient estimation bias
and mitigate prediction shift (Hancock and Khoshgoftaar, 2020).
In this study, the settings included iterations = 500, max_depth =
6, learning_rate = 0.09, with all other hyperparameters remaining
at their default values.

3 Results

3.1 The relationship between OSRE and
JRC

The accuracy of this study is evaluated using the difference
(JRCError) between the JRC values obtained from laser scanning

(JRCLaser scanner
3D ) and those obtained from photogrammetry

(JRCPhotogrammetry
3D ):

JRCError = JRC
Laserscanner
3D − JRCPhotogrammetry

3D (6)

The fitting results for JRCError with profile intervals (PI) of
0.25 mm, 0.5 mm, and 1 mm are shown in Figure 5A. The image
data reveal significant differences in the computed results under
varying conditions. Figure 5B displays the error in JRCError when
the PI is 0.25 mm, 0.5 mm, and 1 mm, within the 25%–75%
range. For PI = 0.25 mm, the error ranges from 1 to 5; for PI =
0.5 mm, the error ranges from 1 to approximately 3; and for PI
= 1 mm, the error decreases to between 0 and 2. Such variations
are evidently unreasonable and not acceptable based on the typical
roughness profile classifications for JRC (Barton and Choubey,
1977). Consequently, an improvement in the accuracy of JRC
measurements is necessary.

Figures 5C–E illustrate the relationship between OSRE and
JRCError. Under the FCC strategy, instability arising from factors
such as lighting conditions, image overlap, and handheld effects
results in some variability in JRCError values as OSRE increases,
although a general linear correlation is evident. The 95% confidence
interval bands indicate that most data points fall within this range,
demonstrating a certain degree of linearity, though more precise
validation is required. Pearson’s R, a measure of correlation between
two datasets, can be used to analyze the relationship between OSRE
and JRCError.

It is observed that, for PI values of 0.25 mm, 0.5 mm,
and 1 mm, there is a strong correlation between OSRE and
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FIGURE 7
The correlation between spatial error and JRCError at PI of (A) 0.25 mm, (B) 0.5 mm and (C) 1 mm. (D) Spatial error threshold values corresponding to
JRCError of 2.

JRCError, with R values approximately 0.97 in each case. The
results show that JRCError exhibits noticeable dispersion when
OSRE is around 0.5–0.8. This is attributed to the larger spacing
between points at higher OSRE values, resulting in sparser point
clouds. Consequently, the estimated area becomes less stable when
partitioned into grids.

Based on the correlation between the data, linear regression
equations for OSRE and JRCError were fitted. To better differentiate
the goodness-of-fit across different PI values, R2 was used as
a parameter for comparing the regression model’s performance.
As shown in Figures 5C–E, the fits for all three cases are quite good,
with R2 values of 0.94 for PI = 0.25 mm and 1 mm, and 0.95 for
PI = 0.5 mm. This indicates a high level of correlation in all three
scenarios.

For a deeper analysis of the impact of different profile intervals
on the regression equations for OSRE and JRCError, the JRCError
boundary value was set to 2, according to the typical roughness
profile classifications for JRC (Barton and Choubey, 1997). The
OSRE values corresponding to this boundary represent the
maximum shooting distance that meets the JRCError requirements
for each PI. In other words, a higher boundary OSRE value indicates
a larger permissible shooting range for the equipment and greater
tolerance. As shown in Figure 5F, OSRE values are 0.408 for PI =
0.25 mm, 0.527 for PI = 0.5 mm, and 0.81 for PI = 1 mm. Thus, the

JRC accuracy reflected by OSRE varies to some extent with different
contour line intervals.

3.2 The relationship between spatial
distance and JRC

Figures 6A–C illustrate the fitting of spatial distance to JRCError
under different profile intervals. Similar to OSRE, a nearly linear
relationship exists between spatial distance and JRCError, with
JRCError increasing as spatial distance grows. The results show
that linear fitting is generally satisfactory across all three intervals.
Quantitative analysis reveals that for PI = 0.25 mm and 0.5 mm,
R values are both 0.97 and R2 values are 0.94. For PI = 1 mm,
R is 0.5 and R2 is 0.9. Although there are slight differences
from the OSRE results, the fitting quality is generally good
across all intervals.

Figure 6D displays the boundary values for spatial distance
under different profile intervals. For PI = 0.25 mm, the spatial
distance is 0.012; for PI = 0.5 mm, it is 0.036; and for PI = 1 mm,
it is 0.053. When PI = 0.5 mm, the boundary value is three times
that of PI = 0.25 mm, and for PI = 1 mm, the difference in boundary
value reaches up to 4.42 times. The JRC accuracy reflected by
spatial distance exhibits significant variations across different profile
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intervals, underscoring the need to distinguish the precision impact
patterns at each interval.

3.3 The relationship between spatial error
and JRC

Figures 7A–C show the fitting of spatial error to JRCError,
which can be approximated by a linear relationship, consistent with
the behavior observed for OSRE and spatial distance. The results
indicate that for PI = 0.25 mm, the fitting quality and correlation
are the best, with R of 0.91 and R2 of 0.84. For PI = 0.5 mm, R is
0.9 and R2 is 0.81, while for PI = 1 mm, R is 0.84 and R2 is only
0.7.Therefore, among the three different intervals, PI = 0.25 mmand
PI = 0.5 mm show the best results, whereas PI = 1 mm exhibits the
poorest fitting quality. This suggests that spatial error can be used
to characterize point cloud reconstruction as well as to represent
estimation accuracy across different intervals.

Considering spatial error, the boundary spatial errors under
different profile intervals are shown in Figure 7D. For PI = 0.25 mm,
the spatial error is 0.077; for PI = 0.5 mm, it is 0.096; and for
PI = 1 mm, it is 0.14. When PI = 0.5 mm, the boundary value is
1.25 times that of PI = 0.25 mm, and when PI = 1 mm, the boundary
value is 1.82 times that of PI = 0.25 mm. Thus, the analysis of JRC
estimation using spatial error across different profile intervals can
also be extended for broader applications.

4 Discussion

4.1 JRC accuracy optimization model

In Section 3, an analysis of OSRE, spatial distance, and spatial
error reveals a strong correlation between these three factors and
JRCError. This study further examines the influence of these three
factors across three different profile intervals, as shown in Figure 8A.
The results indicate that the correlation between PI = 0.25 mm
and PI = 0.5 mm is nearly perfect, with an R value of 1. The
relationship between PI = 1 mm and both PI = 0.25 mm and
PI = 0.5 mm is also exceptionally strong, with R values of 0.96
and 0.98, respectively. Additionally, the interrelationships of other
factors are also depicted in the figure. Among these, OSRE shows a
relatively stronger correlation across different profile intervals, with
R values of 0.97, 0.97, and 0.95. The impact of spatial distance and
OSRE on different intervals is almost identical, while spatial error
shows a weaker correlation compared to the other two factors, with
R values of 0.92, 0.90, and 0.84. Therefore, it can be concluded
that, overall, the six data sets exhibit a very strong correlation,
though there are still relative differences in influence among the
different factors.

Therefore, after applying five machine learning algorithms,
the training and testing results of the models are shown in
Figures 8B, C. RMSE, MSE, MAE, and R2 are used as metrics
to evaluate the model performance. Figure 8B illustrates the
comprehensive performance of each model evaluated using the
integrated assessment system (Zorlu et al., 2008). The difference in
R2 between the training and testing sets, scaled up by a factor of 10,
is also depicted.

For PI = 0.25 mm, the highest overall score of 35 was achieved
by the XGBoost model. SVM and CatBoost demonstrated similar
scores of 32 and 31, respectively. Notably, SVM exhibited the
smallest R2 difference between the training and testing sets at 0.03,
whereas XGBoost and CatBoost showed larger differences of 0.07
and 0.08, respectively. In comparison, GPR and MLP displayed
weaker model performance, with overall scores of 27 and 23,
and R2 differences between training and testing sets of 0.05 and
0.15, respectively. These findings indicate that the XGBoost model
outperformed the others, achieving the best overall performance
despite its R2 difference not being the smallest, as the difference
remainedwithin an acceptable range.TheSVMmodel demonstrated
strong performance as well, making it a viable option for this
dataset. Conversely, GPR and MLP scored lower, reflecting their
comparatively poor performance.

For PI = 0.5 mm, XGBoost achieved the highest overall
score of 37, with the smallest R2 difference between the training
and testing sets at 0.05, indicating superior model performance.
CatBoost ranked second with an overall score of 32 and an
R2 difference of 0.06, demonstrating good performance and
stable data. In contrast, GPR, SVM, and MLP exhibited lower
overall scores of 29, 24, and 23, respectively. Although the R2

differences for these models were not substantial—0.09 for GPR,
0.05 for SVM, and 0.11 for MLP—their overall performance was
comparatively poor.

When PI = 1 mm, the R2 differences between the training and
testing sets increased significantly across all models, ranging from
0.05 to 0.35, indicating heightened data instability at this interval.
Overall, XGBoost demonstrated the best performance, achieving the
highest total score of 40 and an R2 difference of 0.09, making it the
most suitable choice for predicting JRC errors. CatBoost performed
reasonably well, with a total score of 36, though its R2 difference was
relatively larger at 0.13. The performance of the remaining models
was less satisfactory.

The analysis indicates that the XGBoost model outperformed all
others across all profile intervals, with R2 differences between the
training and testing sets ranging from 0.05 to 0.09, demonstrating
strong stability.The CatBoost model ranked second in performance,
with its overall scores increasing progressively as the profile
interval expanded from 0.25 mm to 1 mm. The R2 differences
for CatBoost ranged from 0.06 to 0.13. This performance can be
attributed to XGBoost’s ability to balance model complexity and
prediction accuracy by incorporating additional tree models to
minimize the objective function. Moreover, XGBoost exhibited
robust performance in noisy environments and possessed the
capability to automatically handle missing data, features that
align well with the limited dataset size in this study. Additionally,
as illustrated in Figure 8A, OSRE, spatial distance, and spatial
errors displayed strong correlations, indicating a consistent
influence of these factors, albeit with potential fluctuations
as parameters varied.

The results obtained for PI values of 0.25 mm, 0.5 mm, and
1 mm were substituted into the XGBoost model, and predictions
were made using different parameters. Subsequently, the errors
between the predicted results and the standard results were
recalculated using Equation 6, as illustrated in Figure 8D. It was
observed that the JRCError values across all three indicators ranged
between 0 and 1, with average values below 0.5. The error ranges

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2025.1497871
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yuan et al. 10.3389/feart.2025.1497871

FIGURE 8
Training results of machine learning models: (A) Correlation analysis of OSRE, spatial distance, spatial error, PI = 0.25 mm, PI = 0.5 mm, and PI = 1 mm.
(B) Comprehensive evaluation of machine learning models. (C) Performance evaluation of machine learning models. (D) Statistical distribution of
optimized JRCError. (E) Sensitivity analysis of OSRE, spatial distance, and spatial error to JRCError.

for PI = 0.25 mm and PI = 0.5 mm were similar, while the error for
PI = 1 mm was slightly lower. The accuracy of JRC improved on
average by 80.4%, 84.2%, and 89.5% for PI values of 0.25 mm,
0.5 mm, and 1 mm, respectively.

As a result, the performance of the trained machine learning
model in predicting JRC errors based onOSRE, spatial distance, and
spatial error is demonstrated. In practical applications, researchers
can calculate OSRE using the formula proposed by Equation 1,
while spatial distance and spatial error can be extracted from the
point cloud as described in this paper. By inputting these three
parameters into the XGBoost model, predicted JRCError values
can be obtained. These predicted JRCError values can then be

substituted into Equation 6, allowing for the reverse calculation
of a JRC value that closely approximates the laser scanner
estimate, thereby improving the accuracy of photogrammetric JRC
estimation.

Additionally, to further evaluate the influence of OSRE, spatial
distance, and spatial error on JRCError, the cosine amplitude
method proposed by Yang and Zhang (1997) was employed,
as shown in Figure 8E. It was evident that the RES values under
different profile intervals were very close, indicating that OSRE
and spatial error had a greater impact on JRCError compared to
spatial distance. It can be observed that the sensitivity of JRCError
to the three parameters remains consistent across profile intervals of
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0.25 mm, 0.5 mm, and 1 mm, with only numerical variations as the
interval increases. The RES of OSRE and spatial distance on JRCError
is identical, while the RES of spatial error is only 0.01 lower than
the other two.

4.2 Application scopes and limitations

This study highlights the practical application of
photogrammetry techniques by validating an algorithm
rooted in SfM principles to optimize shooting parameter
selection. By automatically configuring the camera’s spatial
arrangement based on equipment specifications, the algorithm
streamlines the photogrammetry data collection process, offering
accessible solutions for surveyors without expertise in computer
vision. Additionally, the research presents a novel machine
learning model designed to enhance the accuracy of JRC
measurements. This model, particularly effective in fixed tripod
scenarios, accurately predicts JRC errors across three distinct
profile intervals, thus enabling more precise JRC estimations.
Demonstrating both stability and adaptability, the model performs
consistently well even under varying conditions, such as different
shooting distances and lighting environments, underscoring its
wide-ranging applicability.

While this study provides valuable insights, several limitations
need to be addressed. A key limitation is the reliance on a dataset
generated using specific data collection methods and equipment.
Expanding the variety of strategies and tools in future studies
could improve the generalizability of the findings. Additionally,
the research is limited by a small sample size and a narrow
range of data processing software. Testing the method across
different rock sample sizes and employing various 3D reconstruction
software would enhance its overall applicability. Therefore, it is
advisable that when implementing the machine learning-based
accuracy optimization method proposed in this study, the rock
sample size and data processing environment should be closely
aligned with those used in this research. Moreover, current methods
for optimizing JRC accuracy have yet to be widely validated
in engineering settings such as slopes and tunnels. Currently,
parameters affecting and reflecting JRC accuracy have been limited
to OSRE, spatial distance within the point cloud, and spatial error
at checkpoints. The impact of additional factors, such as image
overlap, the number of feature points in stereo matching algorithms,
and lighting conditions, on JRC estimation accuracy remains
unexplored. Future research should focus on comprehensive testing
and analysis across a broader spectrum of engineering scenarios
to achieve more precise and holistic performance evaluation
and optimization.

5 Conclusion

A machine learning-based model for optimizing the accuracy
of the JRC was proposed in this study, significantly enhancing the
precision of JRC estimates at profile intervals of 0.25 mm, 0.5 mm,
and 1 mm. Initially, the FCC strategy was applied within the SPSA
framework to enable automatic selection of shooting parameters

based on a fixed tripod strategy. This approach is adaptable to rock
data acquisition scenarios guided by SfM principles. Subsequently,
the correlations between OSRE, spatial distances in the point
cloud, CPs’ spatial errors, and JRC errors were examined across
different profile intervals. The findings indicate a strong correlation
between OSRE, spatial distances, spatial errors, and JRC errors.
Ultimately, this high correlation underpinned the development of a
machine learning-based photogrammetry model for JRC accuracy
optimization. This approach is particularly suited for fixed camera
capture strategies, allowing for high JRC accuracy even at greater
shooting distances or lower camera resolutions.Under the predictive
capability of the XGBoost model, the accuracy of JRC improved on
average by 80.4%, 84.2%, and 89.5% for profile interval values of
0.25 mm, 0.5 mm, and 1 mm, respectively.
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