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Studies of three dimensional
stagged-grid finite difference for
Z-axis tipper electromagnetic
numerical simulation

Yu Wang
�

, Junhao Qu*, Tingting Chen, Shaohui Zhou and
Yajun Li

Shandong Earthquake, Jinan, China

ZTEM (Z-Axis Tipper Electromagnetic System) is a frequency-domain airborne
electromagnetic exploration method that utilizes natural field sources. This
method is highly efficient and capable of probing great depths, making it widely
applicable in the exploration of polymetallic mineral deposits. However, large-
scale 3D forward modeling faces computational challenges due to the increase
in data volume. This study employs the Aggregation-based Algebraic Multigrid
(AGMG) and staggered grid finite-difference methods to achieve rapid solutions
for three-dimensional ZTEM problems. The study shows that the AGMG-CG
algorithm requires fewer iterations and achieves faster solutions, significantly
enhancing computational speed, especially for large-scale 3D forwardmodeling
problems. By analyzing the forward response characteristics of ZTEM, we show
that tipper data accurately reflect lateral electrical interfaces. Furthermore,
through extensive model testing, we analyze the main factors influencing the
forward response of ZTEM. The study reveals that topographical variations may
produce false anomalies, that a reasonable data acquisition bandwidth is crucial
for identifying anomalies at different depths, and that low-altitude flights yield
better responses.
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1 Introduction

ZTEM is a new technique developed based on the audio-frequency magnetotelluric
method (AFMAG) and incorporating MT data processing techniques (Lo and Zang,
2008). This method observes natural magnetic field signals in the audio frequency range
(25–720 Hz) and obtains tipper data based on the linear relationship between the horizontal
(Hx, Hy) and vertical (Hz) components of the magnetic field in the frequency domain
(Kuzmin et al., 2005; Lo and Zang, 2008). The tipper data is then inverted to obtain
subsurface conductivity distribution information (Labson et al., 1985). Field observations
for this method typically consist of ground-based measurements and aerial surveys.
The ground-based measurements capture the orthogonal horizontal components of the
magnetic field, while the vertical component is measured during aerial surveys across
the study area (Legault et al., 2009). Therefore, compared to artificial source airborne
electromagneticmethods (AEM), ZTEMhas the advantage of greater exploration depth and
reduces the labor and time costs associated with ground data collection (Sattel andWitherly,
2012). Since its introduction in 2006, the method has quickly found successful applications
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in mineral exploration (Lo and Zang, 2008; Pare et al., 2012).
Legault et al. (2009), Sattel and Witherly (2012), and Pare et al.
(2012) evaluated the ZTEM and AirMt systems through field tests,
confirming their efficiency in detecting subsurface anomalies across
geothermal and mineral-rich regions. Holtham and Oldenburg
(2010) applied the Gauss-Newton inversion method to ZTEM
data in Utah, effectively delineating the distribution of conductive
and porphyry deposits. Soyer and Mackie (2018) study showed
that ZTEM can refine MT data, enhancing resistivity information
retrieval. Kaminski and Oldenburg (2012) demonstrated ZTEM’s
superior resolution and penetration in kimberlite exploration
compared to VTEM, marking its advantage in airborne
electromagnetic surveys. However, compared to hardware
advancements, the relatively lagging state of electromagnetic data
processing and interpretation technology has, to a certain extent,
constrained the rapid development of electromagnetic methods.
Currently, previous achievements are primarily focused on two-
dimensional data processing and interpretation (Prikhodko et al.,
2024a), but actual geological conditions are challenging to conform
to the assumptions of a two-dimensional model (Ji et al., 2018).
Therefore, it is essential to develop three-dimensional inversion
methods that are closer to the actual geological conditions.

Currently, numerical simulations of electromagnetic methods
mainly include integral equation methods (Xiong, 1992; Ren et al.,
2017), finite element methods (Huang and Dai, 2002; Kordy et al.,
2016; Ansari and Craven, 2022), and finite difference methods
(Tan et al., 2003; Varılsüha and Candansayar, 2018). Integral
equation methods only require partitioning of the target area,
which significantly reduces the number of grids and improves
computational efficiency. However, for complex models, further
improvements are needed in terms of solving difficulty and
computational accuracy. Finite element methods are widely applied
in three-dimensional electromagnetic numerical simulations due to
their good adaptability to models. However, this method involves a
large number of unknowns when forming linear equation systems,
resulting in extensive computational load and long computation
time. Similarly, finite difference methods can also handle complex
models with faster solving speed and higher solution accuracy.
Many geophysicists have conducted research on grid partitioning
techniques and linear equation solving techniques to accelerate
the forward process. These methods are now widely used in
electromagnetic forward simulations (Yang et al., 2016; Li et al.,
2012). Forward simulations ultimately require solving systems of
equations, and the speed and accuracy of equation solving directly
affect the computational precision and efficiency of the forward
algorithm (Wu et al., 2010). Due to the large-scale nature of
the linear equation systems in forward modeling, both direct
solution methods and traditional iterative solvers experience a
sharp increase in computation time as the model size grows,
making them inadequate for meeting the demands of large-scale
three-dimensional electromagnetic forward modeling problems.
Among them, the Multigrid (MG) method, which originated
in the 1960s, has a core advantage of being independent of
grid scale in terms of convergence speed, maintaining stability
even on highly discretized fine grids (Fedorenko, 1964). This
characteristic makes it particularly effective in dealing with complex
problems. Hackbusch’s research has demonstrated that for linear
elliptic partial differential equations, the MG algorithm is optimal

in computational efficiency, with computational effort growing
linearly with the number of grid nodes (Hackbusch, 2013).
The Algebraic Multigrid (AMG) method defines the selection
of coarse grids and the transfer operators between grids based
on the coefficient matrix of the fine grid. The flexibility of this
approach allows it to adapt to complex computational regions and
variable material properties, thus gaining widespread application
in geophysics (Stüben, 1983). Geophysicists have applied multigrid
methods in seismic exploration, DC resistivity methods, as well
as magnetotellurics and controlled-source electromagnetic methods
(Bunks et al., 1995; Gao et al., 2002; Chen et al., 2017; Yin, 2016).
Researchers such as Lan (2015) and Chen et al. (2017) conducted
comparative analyses of various combination solving strategies
using AGMG as a preconditioning operator (V-AGMG, V-AGMG-
CG, V-AGMG-GCR, K-AGMG-CG, K-AGMG-GCR). They found
that the AGMG algorithm’s iteration speed is independent of grid
partitioning, and its iteration error decreases rapidly, making it an
efficient and fast iterative solution algorithm.

Therefore, this paper begins by providing a brief overview
of the ZTEM detection system. Subsequently, the three-
dimensional forward modeling of ZTEM is achieved using the
Aggregation-based Algebraic Multigrid (AGMG) method. Through
numerical simulations of geoelectric models at different scales, the
computational efficiency of the AGMG technique is analyzed. The
study investigates the response characteristics of typical geoelectric
models and discusses the impact of topographic variations,
anomalous body depths, and flight heights on ZTEM data. This
analysis deepens our understanding of the response characteristics,
laying the groundwork for anomaly interpretation.

2 ZTEM theory

2.1 ZTEM system

The ZTEM method shares the same natural field sources as
magnetotellurics (MT), both of which utilize vertically incident
plane waves. Within a certain range, the horizontal components
of the magnetic field can be approximated as uniform. Therefore,
the horizontal magnetic field across the entire study area can be
represented using the horizontal magnetic field measured at a
remote reference station (Sattel and Witherly, 2012). Consequently,
the ZTEM tipper can be expressed as:

Hz(r) = Tzx(r, r0)Hx(r0) +Tzy(r, r0)Hy(r0) (1)

where r represents the position of the vertical magnetic field’s aerial
measurement, r0 represents the position of the ground reference
station, and Tzx and Tzy denote the vertical magnetic field transfer
functions, also known as tippers.

We consider natural electromagnetic waves as plane waves,
which can be decomposed into the equivalent effects of two
orthogonal field sources, SX and SY. Under the polarizationmode of
the SX field source, the horizontal magnetic field components at the
ground base station are denoted as Hx

(1) and Hy
(1), and the vertical

magnetic field component in the air is denoted as Hz
(1). Similarly,

under the polarization mode of the SY field source, the horizontal
magnetic field components at the ground base station are denoted
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as Hx
(2) and Hy

(2), and the vertical magnetic field component
is denoted as Hz

(2) (Holtham and Oldenburg, 2012). Therefore,
according to Equation 1, the vertical magnetic field components in
the air for these two polarization modes are:

H(1)z = TzxH
(1)
x +TzyH

(1)
y (2)

H(2)z = TzxH
(2)
x +TzyH

(2)
y (3)

Solving the system of Equations 2, 3, the expression for the
vertical magnetic field transfer function in the ZTEM method can
be obtained as:

Tzx =
H(2)y H(1)z −H

(1)
y H(2)z

H(1)x H(2)y −H
(2)
x H(1)y

(4)

Tzy =
H(1)x H(2)z −H

(2)
x H(1)z

H(1)x H(2)y −H
(2)
x H(1)y

(5)

Tomore intuitively display the response characteristics of ZTEM
tipper data, the components of the two tippers are integrated by
calculating the transverse partial derivative to obtain a parameter
that highlights more significant lateral conductivity changes. From
Equations 4, 5, the divergence of the ZTEM tipper can be obtained,
and it can be expressed as Equation 6:

DT =
∂Tzx

∂x
+
∂Tzy

∂y
(6)

2.2 Three-dimensional numerical
simulation of ZTEM with staggered grid
finite differences

Therefore, this paper starts with Maxwell’s integral equations.

∮Η ⋅ dl =∬ J ⋅ dS =∬σΕ ⋅ dS

∮E ⋅ dl =∬ iμ0ωH ⋅ dS
(7)

E: Electric field strength vector; H : Magnetic field strength vector;
μ0: Magnetic permeability in vacuum; σ : Electrical conductivity of
the medium; J : Current density; dl: Closed loop; ds: Closed loop’s
enclosed area.

The study area is discretized into several cubic grid cells
using staggered grids. For any grid cell, we define the electric
vector potential components along the edges of the cuboid,
with the recording points at the midpoints of the edges. The
magnetic vector potential components are defined at the center
positions of the cuboid’s surfaces, As shown in Figure 1. After
discretizing the study area using a hexahedral grid, Maxwell’s
equations need to be discretized using finite differences. Therefore,
based on the relationships between the magnetic field and current
density, the electric field and current density, and the magnetic
field and electromagnetic effects as described in Equation 7, we
discretized along the xyz directions, then eliminated the current
density and electric field components, ultimately deriving the
Maxwell’s equations that depend solely on a single magnetic field
component. Specifically, the magnetic field component Hx within

the study area is only related to the surrounding 12 magnetic field
components (Tan et al., 2003).

C1 ⋅Hx(i, j,k− 1) +C2 ⋅Hx(i, j− 1,k) +C3 ⋅Hx(i, j,k) +C4 ⋅Hx(i, j+ 1,k)+
C5 ⋅Hx(i, j,k+ 1) +C6 ⋅Hy(i, j− 1,k) +C7 ⋅Hy(i+ 1, j− 1,k)+
C8 ⋅Hy(i, j,k) +C9 ⋅Hy(i+ 1, j,k) +C10 ⋅Hz(i, j,k− 1)+
C11 ⋅Hz(i+ 1, j,k− 1) +C12 ⋅Hz(i, j,k) +C13Hz(i+ 1, j,k) = 0

(8)

Similarly, as with Equation 8, we can obtain the analogous
expressions forHy andHz. Each component on the grid is calculated
according to these three sets of equations, progressing step by step
to the grid edges. The field values on the boundaries are given
by the field sources, forming a large system of equations. In the
entire solution domain, Hx has Nx (Ny-1) (Nz-1) unknowns to
be solved, Hy has Ny∗(Nx-1)∗(Nz-1) unknowns, and Hz has (Ny-
1)∗(Nx-1)∗Nzunknowns.We obtain a linear equation system for the
magnetic field, which can be expressed as Equation 9:

A ·Η = b (9)

A is a large complex sparse matrix, H represents the magnetic field
components to be determined, and b is the right-hand side term
related to the boundary conditions.

Where H represents the three components of the magnetic
field, Hx,Hy and Hz, resulting in a total of Nx (Ny-1) (Nz-1)+
Ny∗(Nx-1)∗(Nz-1)+ (Ny-1)∗(Nx-1)∗Nz unknowns. Based on grid
numbering, ordered sequentially by the indices i, j and k from
small to large, b denotes the right-hand side corresponding to the
magnetic field, while A represents the coefficient matrix. Since a
specific unknown is only related to its neighboring 12 unknowns,
each row in A will have only 13 nonzero elements, with all other
elements being 0. Given the large scale of the sparse matrix, the
speed of solving the linear equation system determines the speed
of forward simulation, necessitating the use of optimized methods
for solving.

The boundary conditions employ the first type of Dirichlet
boundary conditions. Divergence correction techniques are
commonly applied during the iterative solving process to enhance
the speed and accuracy of solving this equation system.

2.3 Aggregated algebraic multigrid

In the process of forward modeling, the computation time
and complexity of solving the equation system account for a
substantial proportion of the entire numerical simulation (Wu et al.,
2010). When using fine grid discretization to improve solution
accuracy, the number of unknowns becomes very large. If general
iterative methods such as Conjugate Gradient (CG) or Bi-Conjugate
Gradient (BCG) are employed, their convergence is poor and they
require a large number of iterations (Chen et al., 2017, Chen et al.,
2018). In some cases, with the geometric increase of unknowns
due to grid refinement, convergence may still not be achieved. To
address these challenges, this section introduces the Aggregation-
based Algebraic Multigrid (AGMG) method developed by Notay,
2010, accompanied by a related database. This method effectively
mitigates the aforementioned solving issues and is considered the
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FIGURE 1
Staggered finite difference discretization with electric fields on cell edges and magnetic fields placed on cell faces.

optimal approach for solving large linear equation systems (Notay,
2010; Notay, 2012; Napov and Notay, 2011).

The Algebraic Multigrid (AMG) method enhances the stability
of the traditional AMG algorithm by achieving matrix coarsening
through smooth aggregation based on matrix graph theory. This
method consists of two main stages: aggregation coarsening and
iterative solving. Matrix coarsening is a crucial part of multigrid
methods (Lu et al., 2009). In algebraic multigrid, detached from grid
geometry, achieves coarsening through algebraic matrix operations.
A prolongation matrix P of size n × nc is generated based on the
coefficient matrix A to achieve matrix coarsening, where nc is the
number of coarsening variables and is less than n (Li et al., 2011).
According to the Galerkin criterion (Notay, 2010), the coarse grid
matrix can be obtained, which can be expressed as Equation 10:

Ac = PTAP (10)

Meanwhile, we define the transpose of the prolongation matrix
as the restriction matrix.

In the process of aggregation coarsening, define set
Gi(i = 1,…,nc) which can be geometrically considered as the nodes
of the coarsened grid after mesh coarsening. Gi is disjoint from
matrix A. The number of aggregation variables, nc is then the
number of elements in Gi. Thus, the prolongation matrix P can
be expressed as Equation 11.

Pij =
{
{
{

1, if i ∈ Gj

0, other
(1 ≤ i ≤ n,1 ≤ j ≤ nc) (11)

In the equation, i represents the variable index of matrix A, and
j represents the index of the aggregated variable set Gj. From this
equation, it can be seen that the prolongation matrix P is a Boolean
matrix, with at most one non-zero element per row. The coarse grid
coefficient matrix, Equation 12, can be written as:

(Αc)ij = (P
TAP)

ij
= ∑

k⊂Gi

∑
l⊂Gj

aM,1 ≤ i, j ≤ nc (12)

i and j respectively represent the row and column indices of the
coarse-grained coefficient matrix Ac.

In the AMG algorithm, the selection of the coarse-grid matrix
Ac directly influences the stability and efficiency of the algorithm,
making the construction of the extension matrix P crucial. This
paper adopts the pairwise aggregation algorithm to construct the
extension matrix (Notay, 2010). The algorithm achieves aggregation
by regular covering of the matrix graph, clustering along the
direction of the strongest connectivity. For any virtual grid node
in the coefficient matrix A, pairing and aggregation are performed
by identifying the strongest connected points (Muresan and Notay,
2008; Yin, 2016). To do so, the set of strongly connected points for
virtual node i is defined first, which can be expressed as Equation 13:

Si = {j ≠ i|aij < −βmaxaμ<0|aik ∣} (13)

In the equation, β represents the threshold for strong-weak
connections, and its selection depends on the characteristics of the
coefficient matrix A. For electromagnetic problems, β is typically
chosen in the range of 0.4–0.6 (Chen et al., 2018). Therefore, the
aggregation variable set can be expressed as Equation 14:

Gi =
{
{
{

{i, j}, if j ∈ Sj
i, other

(1 ≤ i ≤ nc) (14)

In the multigrid algorithm, nested iterative techniques are
crucial for connecting various grid layers or matrices.The V-cycle is
one common cycling approach with relatively lower computational
requirements. It efficiently smoothens the fine grid by applying the
Gauss-Seidel iteration method to eliminate high-frequency errors.
Subsequently, the residual error on the fine grid is restricted to the
coarse grid using the restriction operatorPT, followed by coarse-grid
calculations until a direct solution is achieved on the coarsest grid,
providing an accurate numerical solution. Finally, the correction
from the coarse grid is back-propagated through the interpolation
operator P for solving on the fine grid until convergence is reached
(Notay, 2010; Yin, 2016; Chen et al., 2018).

To address the challenges of the large sparse characteristics of
the algebraic equation system in the finite-difference simulation of
ZTEM and the difficulty of achieving good results with AGMG,
especially in certain complex scenarios where solutions tend to
diverge, a common approach is to combine the AGMG algorithm
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with conjugate gradient (CG) methods. Specifically, AGMG is
utilized as a preconditioner for the conjugate gradient method,
leveraging the advantage of AGMG’s lower iteration count and
effectively reducing the condition number of the coefficient matrix.
This hybrid approach accelerates the convergence rate of iterations
and enhances the stability of the algorithm.We employ the conjugate
gradient method (CG) as the Krylov subspace iterative algorithm,
referred to as AGMG-CG. The main implementation process
is as follows:

Input: Matrix A; Right-hand side b; Initial guess H0; Maximum
iterations m; Solution tolerance ε;

 Output: Approximate solutionHm; Residual: rm = b−AHm
 Initialize: r0 = b−AH0

For j = 1,2,3…m
 z j = Prec(rj−1)
 c(1)j = Az j

Loop i = 1,2,3 … j-1
 γij = c

T
i c
(i)
j ,c
(i+1)
j = c

(i)
j − γijci

 γjj = ∥c
(j)
j ∥;cj = γ

−1
jj c
(j)
j

 αj = cTj rj−1;rj = rj−1 − αjcj
 if∥rj∥ < ε ∥ b∥,exit andm = j
 Hm = [z1…zm](Γ−1a)

   a =
[[[[

[

α1
⋮

αm

]]]]

]

 and Γij =
{
{
{

γij, i ≤ j

0,otherwise

END

3 Computational efficiency analysis

To analyze the computational efficiency of the AGMG-CG
algorithm, we selected the widely used Quasi-Minimal Residual
(QMR) method (Siripunvaraporn et al., 2002). We compared the
time required for both algorithms in 3D forward modeling. All
algorithms in this paper were executed on a computer with an Intel
Core i7-7700K 3.4 GHz processor, 16 GB of memory, and a 64-
bit Windows 10 operating system. In 3D electromagnetic forward
modeling, precise numerical methods are required, as analytic
solutions are unavailable in three-dimensional cases.The accuracy of
numerical simulations primarily depends on the grid discretization.
In cases where the size of the modeling domain is fixed, using finer
grids results in higher solution accuracy but increases the number of
unknowns and computational load. Conversely, coarser grids reduce
accuracy andmay not provide accurate electromagnetic field values.
Therefore, the size and number of grid elements are crucial factors
in balancing computational accuracy and efficiency. In this study,
we compared these two solving methods with grids of varying sizes.
In the low-resistivity electrical model, four different grid sizes were
designed while keeping the modeling domain constant: 32 × 32 ×
42, 49 × 49 × 61, 84 × 84 × 96, and 114 × 114 × 126. We then
employed theQMRandAGMG-CGalgorithms to solve the airborne
electromagnetic forward modeling for typical electrical models in
the X-polarization and Y-polarization directions. With a period of
0.03 s and a flight altitude of 100 m, the relative error was solved to
be 1.0E-8, and the decay curves for the iteration errors over iterations
are shown in Figure 2.

As depicted in Figure 2, the traditional QMR iterative algorithm
exhibits swift decay in the initial iterations, displaying a relatively
smooth error curve. Concurrently, with an escalation in the
number of iterations, the error curve tends to plateau. Conversely,
the Krylov subspace iterative algorithm AGMG-CG, employing
AGMG preprocessing, displays a linear decay characteristic.
With an augmentation in the number of iterations, its decay
curve consistently maintains a linear trend. A comprehensive
analysis of the iteration decay curves at different grid scales
reveals that QMR exhibits a substantial increase in iteration
counts with the growing number of grids, while AGMG-CG
maintains an approximately linear and rapid descent as the
number of grids increases, accompanied by a relatively slow
increment in iteration counts. To further compare the computational
efficiency of the algorithms, this study conducted a detailed
analysis of the results for both methods across various grid
quantities, as presented in Table 1. It is evident from the table
that both approaches achieve the desired solution accuracy.
For the small-scale grid of 32 × 32 × 42, the QMR algorithm
exhibits fewer iterations and shorter forward simulation times.
However, with an increase in the grid quantity, there is a
significant escalation in the solution times and forward simulation
times for both algorithms. This escalation is attributed to the
increased computational load resulting from the expanded
grid scale. In the case of the large-scale grid of 114 × 114
× 126, AGMG-CG demonstrates significantly fewer iterations
and shorter solution times compared to the QMR algorithm.
In summary, utilizing AGMG as a preconditioning operator
at large grid scales offers the advantage of reduced iteration
numbers and enhanced computational efficiency. Particularly
in the case of large-scale exploration techniques such as
ZTEM, The AGMG-CG algorithm ensures fast and stable
computation processes.

4 Model example

4.1 Typical electrical models

This section presents a low-resistivity electrical model as an
example, which is advantageous for summarizing regularities
and making method comparisons. This model exhibits a single
response curve and is easy to understand. As shown in Figure 3,
the geological body has dimensions of 2000 m in length, 2000 m
in width, and 500 m in height. The top layer is buried at a depth of
250 m with a resistivity of 10 Ω m, while the background resistivity
is 100 Ω m. The survey is conducted at a flight height of 100 m,
with the base station located at (5000 m, 5000 m, 0). Ten periods
ranging from 0.0001s to 0.03s, logarithmically spaced, are chosen
for calculation. This electrical model uses Three-dimensional
numerical simulations to compute tipper and divergence
response maps.

Figure 4 shows the contour plots of the real and imaginary
components of the tipper responses for different ZTEM
components at 0.03s. The figures show that the real and imaginary
components of the tipper response for the Tzx component
create closed regions with symmetric positive and negative
extreme anomalies at the boundaries of the low-resistivity
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FIGURE 2
Comparison of computational efficiency of two algorithms under different grid sizes.

zone in the x-direction. Moreover, at symmetric positions,
the absolute values of the real and imaginary components of
the tipper responses are equal, reflecting information about
the low-resistivity boundary in the x-direction. Similarly, the
Tzy component exhibits similar characteristics but reflects
information about the low-resistivity boundary in the y-direction.
The real and imaginary components of the tipper responses
for Tzx and Tzy exhibit a good symmetric relationship at the
boundaries of the anomalous body, with the anomaly range
in the real part being smaller than that in the imaginary
part. This indicates that the projection of low resistivity in
the x-y plane lies between the maximum and minimum
values, highlighting the high lateral resolution of the ZTEM
tipper response.

After calculating the horizontal derivatives of Tzx and Tzy
in their respective directions, a better representation of the
contour information of the anomalous body in the x-y plane
can be achieved. The real and imaginary responses of DT
indicate that they display positive maxima at the center of the
low-resistivity body, clearly revealing the position of the low-
resistivity prism in the X-Y plane. This demonstrates that DT
is better at reflecting the lateral distribution of the anomalous
body’s position.

4.2 Analysis of influencing factors

4.2.1 Terrain influence analysis
Regardless of the detection method employed, the influence

of topography cannot be ignored. To investigate the impact of
terrain variations on the response of ZTEM data, this study
designed three-dimensional models of mountain peaks and valleys,
analyzing and discussing the responses at different frequencies
and measurement points. Figure 5 illustrates the three-dimensional
models of mountain peaks and valleys, where the mesa-shaped
mountain peak has a relative height of 600 m, with a top base length
of 500 m and a bottom base length of 2000 m. The valley has a
relative depth of −600 m, with a top base length of 2000 m and a
bottom base length of 500 m. The surrounding rocks underground
have a resistivity of 100Ωm, and the resistivity of the air layer is
10^10 Ωm. Measurements were taken along a flight path 100 m
above the mountain peak, with the base station located at (5000 m,
5000 m, 0). Ten logarithmically spaced periods were selected within
the range of 0.0001s–0.03s. Through three-dimensional numerical
simulations, the forward responses were obtained as shown
in Figure 6.

In the tipper response shown in Figure 6, the real and imaginary
parts of the tipper components Tzx, Tzy, and the divergence

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2025.1496312
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1496312

TABLE 1 Iterative results of different iterative algorithms for ZTEM forward modeling.

Method Error Iterations (Ts/s) (Ta/s) Error Iterations (Ts/s) (Ta/s)

32 × 32 × 42 X-polarization Y-polarization

AGMG-CG 0.78E-08 104 38 40 0.10E-07 107 42 77

QMR 0.98E-08 101 9 10 0.98E-08 101 11 18

49 × 49 × 61 X-polarization Y-polarization

AGMG-CG 0.88E-8 135 122 140 0.87E-8 144 160 260

QMR 0.88E-8 125 38 58 0.88E-8 125 58 78

84 × 84 × 96 X-polarization Y-polarization

AGMG-CG 0.95E-8 306 573 810 0.1E-7 278 761 1,115

QMR 0.99E-8 476 663 1,040 0.99E-8 436 940 1,263

114 × 114 × 126 X-polarization Y-polarization

AGMG-CG 0.94E-8 388 1,189 1899 0.99E-8 374 1898 2,384

QMR 0.99E-8 992 3,306 5,114 0.99E-8 932 4,829 6,404

“Error” refers to the final iteration relative error, “Iterations” denotes the number of iterations, “Ts” is the iteration solution time, and “Ta” is the forward solution time.

FIGURE 3
The sketch of Low-resistivity model.

DT are influenced by undulating terrain, exhibiting gradual
changes without abrupt variations. Whether in mountainous
or valley terrain, both the real and imaginary parts of the
three tipper components decrease with an increase in period,
with relatively minor changes in the imaginary part of the
tipper responses. The extreme points of Tzx and DT are located
at the mountain peaks (valley bottoms), while in the tipper
response of Tzy, the extreme points are mainly concentrated
at the boundaries between the mountain peaks and valleys,
especially in terrains with continuous variations from peaks
to valleys. Furthermore, in the context of varying periods, the
real part of the tipper response experiences more pronounced

changes compared to the imaginary part, emphasizing the
substantial impact of terrain. Therefore, in practical exploration,
considering the terrain’s influence, particularly when assessing
phase information during data processing, may yield more
favorable outcomes.

4.2.2 Impact of anomalous body depth
Anomalous bodies exhibit different responses at varying depths.

To enhance the quantitative analysis of their positions, in the
previous section’s single low-resistivity model, burial depths of the
low-resistivity anomaly were set at 50 m, 150 m, and 250 m, while
keeping other parameters constant. The optimal observation period
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FIGURE 4
Imaging results of low-resistivity anomalies from the ZTEM system (the right image shows the real and imaginary parts of the tipper Tzx, the middle
image presents the real and imaginary parts of the tipper Tzy, and the left image depicts the real and imaginary parts of the divergence DT).

FIGURE 5
The sketch of model.

of 0.03s was selected for assessing the variations in tipper at different
burial depths (as depicted in Figure 7).

In Figure 7 with increasing burial depth of the low-resistivity
anomaly, both the real and imaginary parts of Tzx gradually decrease
only at the boundary of the target area, with overall small changes in
the imaginary part. For Tzy, the real and imaginary parts decrease
gradually at the center of the target area. The real and imaginary
parts of DT exhibit significant variations at the boundary of the

target area, with noticeable anomalies, and at the center of the
anomaly, the amplitude decreases, although the magnitude of the
change is small.

4.2.3 Impact of flight height
In three-dimensional scenarios, the effects of varying flight

altitudes on ZTEM responses require further investigation. To
explore this, a single low-resistivity electrical model was used with
other parameters held constant, while flight altitudes were varied
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FIGURE 6
ZTEM response diagram for undulating topography at X = 50 m (the upper figure shows the real and imaginary parts of the tipper Tzx, the middle figure
shows the real and imaginary parts of the tipper Tzy, and the lower figure shows the real and imaginary parts of the divergence DT).

to [0 m, 100 m, 200 m, 500 m], and simulations were conducted
to compare and analyze the response characteristics of ZTEM
at different flight altitudes. For a clearer analysis, profiles were
extracted along the X-direction (Y = 50 m), as shown in Figure 8,
it can be observed that the poles of the tipper response (Tzx)
correspond to the boundary positions of the anomalous body,
while the extremum points of the Tzy response correspond to
the center of the anomalous body in the X-direction. As the
flight altitude increases, the amplitude of the tipper response
gradually decreases, indicating an inverse relationship between the
tipper response and flight altitude. The response curves under
different flight altitude conditions exhibit consistent shapes, but
with increasing altitude, the response range of the tipper becomes
larger, leading to a reduced ability to identify boundary information.

The divergence (DT) reveals that extremum points in the response
correspond to the central position of the anomalous body, aiding
in anomaly localization. It is recommended to maintain a low
flight altitude during actual measurements as lower flight altitudes
yield larger tipper amplitudes. Additionally, stable flight conditions
are conducive to obtaining relatively stable data. To achieve high-
precision results, using an altimeter for recording can facilitate
amplitude correction and create favorable conditions for subsequent
inversion calculations.

5 Discussion

With advancements in airborne electromagnetic exploration
instruments and the growing demand for refined and transparent
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FIGURE 7
ZTEM response diagram for anomalous bodies at different depths at Y = 50 m (the upper figure shows the real and imaginary parts of the tipper Tzx,
the middle figure shows the real and imaginary parts of the tipper Tzy, and the lower figure shows the real and imaginary parts of the divergence DT).

three-dimensional geological exploration (Chang-Chun et al.,
2015), the ZTEM has gained increasing favor due to its high
efficiency and ability to probe great depths. However, the extensive
detection area of ZTEM necessitates a greater subdivision of model
units for detailed inversion interpretations. Under the current
computational efficiency of existing forward modeling algorithms,
conducting detailed inversion interpretations of full-area data
remains challenging, even when utilizing the most advanced high-
performance computers (Mengli et al., 2024). Consequently, rapid
forwardmodeling research using ZTEM has become a focal point in
the field of airborne electromagnetic exploration.

This study couples the Aggregation-based Algebraic Multigrid
(AGMG) algorithm with the traditional Krylov subspace (CR)

iterative algorithm to propose a novel AGMG-CG solving algorithm,
which is applied for the first time to the forward modeling
of ZTEM. This algorithm efficiently transforms large sparse
equations from fine grids to coarser grids through several
simple smoothing iterations, achieving effective solutions at a
reduced computational cost, making it particularly suitable for
large sparse matrix computations. Additionally, the algorithm
demonstrates high convergence accuracy, speed, and computational
efficiency. Compared to existing QMR programs, AGMG-CG can
significantly enhance computational speed by several orders of
magnitude, making it well-suited for large-scale three-dimensional
forward modeling problems in airborne electromagnetic surveys
(Wang et al., 2022; Xianyang et al., 2024).
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FIGURE 8
ZTEM response diagrams at different flight heights (the upper figure shows the real and imaginary parts of the tipper Tzx, the middle figure shows the
real and imaginary parts of the tipper Tzy, and the lower figure shows the real and imaginary parts of the divergence DT).

The analysis of the ZTEM tipper and divergence indicates
that this method can accurately reflect the lateral boundaries of
anomalous bodies, which is crucial for geological exploration and
mineral resource assessment (Sattel and Witherly, 2012). However,
due to the lack of electric field information in the ZTEM tipper
parameters, it is unable to effectively indicate the vertical boundaries
of anomalous bodies. Currently, many researchers are employing
joint inversion of ZTEM and MT to better constrain the vertical
information of underground anomalies (Cao et al., 2023).

Additionally, this study explores various factors that influence
ZTEM. The variations in topography significantly affect ZTEM
data, and different types of terrain have differing impacts on
these data. Results from case studies of undulating models
indicate that the low-resistivity false anomalies caused by
mountainous terrain and the high-resistivity false anomalies
associated with valley terrain exhibit differing characteristics. At
low frequencies, the impact of topography is relatively minor,

while at high frequencies, the influence of topography is more
pronounced. Therefore, it is essential to consider the effects of
topography on data interpretation during exploration. This finding
aligns with previous studies (Zhiqiang et al., 2021; Yue et al.,
2017) in airborne electromagnetics, highlighting the
importance of accounting for topography in data interpretation
during exploration.

The burial depth and flight altitude have significant impacts
on the identification of the boundaries of anomalous bodies.
This is mainly due to the attenuation of electromagnetic waves
during their propagation; deeper burial depths and higher
flight altitudes lead to poorer identification results. Under
specific conditions, the detection depth achievable by ZTEM
can reach 1 km (Prikhodko et al., 2024b). Lower flight altitudes
can obtain better imaging results, and the impact on the
identification effect is relatively small when the flight altitude is
within 100 m (Wang et al., 2023).
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6 Conclusion

In this study, we began with Maxwell’s equations, discretized
them using the staggered grid finite-difference method, and applied
first-type Dirichlet boundary conditions to obtain a linear equation
system for the electric field to be solved. Subsequently, we introduced
a novel multigrid algorithm, the AGMG algorithm, to solve this
linear equation system. The three-dimensional forward simulation
of ZTEM is achieved. Conclusions drawn from the numerical
simulation results are as follows:

ZTEM tippers and their divergence can accurately reflect the
lateral boundaries of anomalous bodies. However, since the ZTEM
tipper parameters lack electric field information, they cannot
effectively indicate the vertical boundaries of anomalous bodies.

Analyzing the effects of terrain, depth of anomalous bodies
and flight altitude on ZTEM responses, multiple cases demonstrate
the following: mountainous terrain yields low-resistivity false
anomalies, while valleys yield high-resistivity false anomalies; the
depth of anomalous bodies affects the variation in amplitude,
necessitating the selection of optimal observation bands for different
depths; higher flight altitudes result in smaller responses, advocating
for low-altitude flights to obtain high-quality data.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

YW: Formal Analysis, Methodology, Writing–original
draft, Writing–review and editing. JQ: Formal Analysis,
Writing–review and editing. TC: Software, Writing–review and
editing. SZ: Resources, Writing–original draft. YL: Data curation,
Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Ansari, S. M., and Craven, J. A. (2022). A fully finite-element based model-space
algorithm for three-dimensional inversion of magnetotelluric data. Geophys. J. Int. 233,
1245–1270. doi:10.1093/gji/ggac519

Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G. (1995). Multiscale seismic
waveform inversion. Geophysics 60 (5), 1457–1473. doi:10.1190/1.1443880

Cao, X., Huang, X., Yan, L., Ben, F., and Li, J. (2023). 3D joint inversion
of airborne ZTEM and ground MT data using the finite element method
with unstructured tetrahedral grids. Front. Earth Sci. 10, 998005. doi:10.3389/
feart.2022.998005

Chang-Chun, Y., Xiu-Yan, R., Yun-He, L., Yan-Fu, Q., Chang-Kai, Q., and Jing, C.
(2015). Review on airborne electromagnetic inverse theory and applications.Geophysics
80 (4), W17–W31. doi:10.1190/geo2014-0544.1

Chen, H., Deng, J. Z., Yin, M., Yin, C. C., and Tang,W.W. (2017).Three-dimensional
forward modeling of DC resistivity using the aggregation-based algebraic multigrid
method. Appl. Geophys. 14 (1), 154–164. doi:10.1007/s11770-017-0605-1

Chen, H., Yin, M., Yin, C., and Juzhi, D. (2018). Three-dimensional magnetotelluric
modeling using aggregation-based algebraic multigrid method. J. Jilin Univ. (Earth Sci.
Ed.) 48 (1), 261–270. doi:10.13278/j.cnki.jjuese.20160359

Fedorenko, R. P. (1964). The speed of convergence of one iterative process. USSR
Comput. Math. Math. Phys. 4 (3), 227–235. doi:10.1016/0041-5553(64)90253-8

Gao, Y., Guo, H., and Zhou, W. (2002). Advances in the study of forward and
inverse problems of wave equations using multigrid methods. World Geol. 21 (1), 4.
doi:10.3969/j.issn.1004-5589.2002.01.018

Hackbusch, W. (2013). Multi-grid methods and applications, Springer Science and
Business Media 4.

Holtham, E., and Oldenburg, D. W. (2010). Three-dimensional inversion of ZTEM
data. Geophys. J. Int. 182 (1), 168–182. doi:10.1111/j.1365-246x.2010.04634.x

Holtham, E., and Oldenburg, D. W. (2012). Large-scale inversion of ZTEM data.
Geophysics 77 (4), 37–45. doi:10.1190/geo2011-0367.1

Huang, L. P., and Dai, S. (2002). 3D electromagnetic field finite element calculation
method under complex conditions. Earth Sci. 27 (06), 775–779.

Ji, Z., Li, T., and Li, T. (2018). Research on 3D forward modeling of magnetotellurics
based on fast pseudo-linear integral equation method. Progress in Geophy. 33 (2), 6.

Kaminski, V., and Oldenburg, D. (2012). The geophysical study of Drybones
kimberlite using 3D Time Domain EM Inversion and 3D ZTEM inversion algorithms.
ASEG Ext. Abstr. 2012 (1), 1–4. doi:10.1071/aseg2012ab324

Kordy, M., Wannamaker, P., Maris, V., Cherkaev, E., and Hill, G. (2016). 3-D
magnetotelluric inversion including topography using deformed hexahedral edge finite
elements and direct solvers parallelized on SMP computers–Part I: forward problem
and parameter Jacobians. Geophys. J. Int. 204 (1), 74–93. doi:10.1093/gji/ggv410

Kuzmin, P., Lo, B., and Morrison, E. (2005). Final report on modeling, interpretation
methods and field trials of an existing prototype AFMAG system. Ontario, Canada:
Ontario Geological Survey Misc Data Release 167, 1–75.

Labson, V. F., Becker, A., Morrison, H. F., and Conti, U. (1985). Geophysical
exploration with audiofrequency natural magnetic fields. Geophysics 50 (4), 656–664.
doi:10.1190/1.1441940

Lan, Z. L. (2015). Research on 3D numerical simulation of CSAMT based on
aggregation algebraic multigrid method. Nanchang, China: East China University of
Technology.

Legault, J. M., Kumar, H., Milicevic, B., and Hulbert, L. (2009). “ZTEM airborne
tipper AFMAG test survey over a magmatic copper‐nickel target at Axis Lake
in northern Saskatchewan,” in Society of Exploration Geophysicists. SEG Technical
Program Expanded Abstracts 2009, 1272–1276. doi:10.1190/1.3255083

Li, Y., Hu, X., Yang, W., Wei, W., Fang, H., Han, B., et al. (2012). Parallel computing
study of 3D staggered-grid finite difference numerical simulation for magnetotellurics.
Chin. J. Geophys. 55 (12), 4036–4043. doi:10.6038/j.issn.0001-5733.2012.12.015

Li, X. K., Wang, W., and Liu, L. (2011). Application of multigrid algorithm in
three-dimensional electromagnetic forward modeling. China Min. 20 (S1), 167–171.

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2025.1496312
https://doi.org/10.1093/gji/ggac519
https://doi.org/10.1190/1.1443880
https://doi.org/10.3389/feart.2022.998005
https://doi.org/10.3389/feart.2022.998005
https://doi.org/10.1190/geo2014-0544.1
https://doi.org/10.1007/s11770-017-0605-1
https://doi.org/10.13278/j.cnki.jjuese.20160359
https://doi.org/10.1016/0041-5553(64)90253-8
https://doi.org/10.3969/j.issn.1004-5589.2002.01.018
https://doi.org/10.1111/j.1365-246x.2010.04634.x
https://doi.org/10.1190/geo2011-0367.1
https://doi.org/10.1071/aseg2012ab324
https://doi.org/10.1093/gji/ggv410
https://doi.org/10.1190/1.1441940
https://doi.org/10.1190/1.3255083
https://doi.org/10.6038/j.issn.0001-5733.2012.12.015
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2025.1496312

Lo, B., and Zang, M. (2008). Numerical modeling of ZTEM (airborne AFMAG)
responses to guide exploration strategies. Seg. Tech. Program Expand. Abstr. 27 (1),
1098–1102. doi:10.1190/1.3059115

Lu, J. J., Wu, X. P., and Spitzer, K. (2009). Multigrid method for 3D modeling of
Poisson equation. Prog. Geophys. 24 (1), 154–158.

Mengli, T., Yin, C., Bo, Z., Xue, H., Xiujuan, R., Yang, S., et al. (2024). Three-
dimensional forward modeling of frequency-domain airborne electromagnetic data
based on the multiscale finite element method. Chinese Journal of Geophysics 67 (04),
1656–1668. doi:10.6038/cjg2023Q0725

Muresan, A. C., and Notay, Y. (2008). Analysis of aggregation-basedmultigrid. SIAM
Journal on Scientific Computing 30 (2), 1082–1103. doi:10.1137/060678397

Napov, A., and Notay, Y. (2011). Algebraic analysis of aggregation‐based multigrid.
Numerical Linear Algebra with Applications 18 (3), 539–564. doi:10.1002/nla.741

Notay, Y. (2010). An aggregation-based algebraic multigrid method. Electronic
transactions on numerical analysis 37, 123–146. doi:10.1016/0377-0273(76)90010-X

Notay, Y. (2012). Aggregation-based algebraic multigrid for convection-
diffusion equations. SIAM journal on scientific computing 34 (4), A2288–A2316.
doi:10.1137/110835347

Pare, P., Gribenko, A. V., Cox, L. H., Čuma, M., Wilson, G. A., Zhdanov, M. S., et al.
(2012). 3D inversion of SPECTREMandZTEMairborne electromagnetic data from the
Pebble Cu–Au–Mo porphyry deposit, Alaska. Exploration Geophysics 43 (2), 104–115.
doi:10.1071/eg11044

Prikhodko, A., Bagrianski, A.,Wilson, R., Belyakov, S., and Esimkhanova,N. (2024a).
Detecting and recovering critical mineral resource systems using broadband total-field
airborne natural source audio frequency magnetotellurics measurements. Geophysics
89 (1), WB13–WB23. doi:10.1190/geo2023-0224.1

Prikhodko, A., Bagrianski, A., and Kuzmin, P. (2024b). Airborne natural total field
broadband electromagnetics—configurations, capabilities, and advantages. Minerals
14, 704. doi:10.3390/min14070704

Ren, Z. Y., Chen, C. J., Tang, J. T., Zhou, F., Chen, H., Qiu, L. W., et al. (2017). A
new 3D magnetotelluric integral equation forward modeling method. Chinese Journal
of Geophysics 60 (11), 4506–4515. doi:10.6038/cjg20171134

Sattel, D., and Witherly, K. (2012). The modeling of ZTEM data with 2D
and 3D algorithms. 82th Ann InternatMtg, SEG, Expanded Abstracts 2012, 1–5.
doi:10.1190/segam2012-0219.1

Siripunvaraporn, W., Egbert, G., and Lenbury, Y. (2002). Numerical accuracy of
magnetotelluric modeling: a comparison of finite difference approximations. Earth,
planets and space 54, 721–725. doi:10.1186/bf03351724

Soyer, W., and Mackie, R. (2018). Comparative analysis and joint inversion of MT
and ZTEM data. ASEG Extended Abstracts 2018 (1), 1–7. doi:10.1071/aseg2018abt5_2f

Stüben, K. (1983). Algebraic multigrid (AMG): experiences and
comparisons. Applied mathematics and computation 13 (3-4), 419–451.
doi:10.1016/0096-3003(83)90023-1

Tan, H. D., Yu, Q. F., John, F., and Wei, W. B. (2003). Numerical simulation of three-
dimensional staggered grid finite difference of magnetotellurics. Journal of Geophysics
(05), 705–711. doi:10.3321/j.issn:0001-5733.2003.05.019

Varılsüha, D., and Candansayar, M. E. (2018). 3Dmagnetotelluric modeling by using
finite-difference method: comparison study of different forward modeling approaches.
Geophysics 83, WB51–WB60. doi:10.1190/geo2017-0406.1

Wang, Y. F., Liu, J. X., Guo, R. W., Liu, R., Li, J., Chen, H., et al. (2022).
Efficient three-dimensional magnetotelluric forward modeling based on geometric
multigrid preconditioning technique. Chin. J. Geophy. 65 (05), 1839–1852.
doi:10.6038/cjg2022P0110

Wang, H. W., Yu, S. B., Guo, Y., and Zhou, H. G. (2023). Analysis
of detection capability of semi-aerial frequency-domain electromagnetic
tipper divergence. Geological Review 69 (S1), 412–414. doi:10.16509/
j.georeview.2023.s1.180

Wu, G., Hu, X. Y., and Liu, H. (2010). Progress in three-dimensional forward
numerical simulation of CSAMT. Progress in Geophysics 25 (5), 1795–1801.
doi:10.3969/j.issn.1004-2903.2010.05.037

Xianyang, H., Yin, C., Yang, S., YunHe, L., Bo, Z., XiuYan, R., et al. (2024). Three-
dimensional magnetotelluric inversion based on the multigrid algorithm Chinese.
Journal of Geophysics 67 (08), 3150–3161. doi:10.6038/cjg2024R0724

Xiong, Z. (1992). Electromagnetic modeling of 3-D structures by the method
of system iteration using integral equations. Geophysics 57 (12), 1556–1561.
doi:10.1190/1.1443223

Yang, H. J., Pan, H. P., Meng, Q. X., and Guo, B. (2016). Study on the
influence of conductive surrounding rock on borehole 3D transient electromagnetic
response. Petroleum Geophysical Exploration 288-293, 302. doi:10.3969/j.issn.1000-
1441.2016.02.015

Yin, M. (2016). Research on 3D forward modeling of magnetotellurics based on
aggregation algebraic multigrid method. Nanchang, China: East China University of
Technology.

Yue, Z., Xiu, L., Yipeng, W., Jianlei, G., and Youqiang, Z. (2017). Study on
the characteristics of airborne transient electromagnetic responses under three-
dimensional fluctuating topographic conditions. Chinese Journal of Geophysics 60 (01),
383–402.

Zhiqiang, L., Yang, S., Tan, H., and Chengke, Z. (2021). Three-dimensional
forward and inverse modeling of ZTEM tipper data with topography.
Geophysical and Geochemical Exploration 45 (03), 758–767. doi:10.11720/
wtyht.2021.1349

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2025.1496312
https://doi.org/10.1190/1.3059115
https://doi.org/10.6038/cjg2023Q0725
https://doi.org/10.1137/060678397
https://doi.org/10.1002/nla.741
https://doi.org/10.1016/0377-0273(76)90010-X
https://doi.org/10.1137/110835347
https://doi.org/10.1071/eg11044
https://doi.org/10.1190/geo2023-0224.1
https://doi.org/10.3390/min14070704
https://doi.org/10.6038/cjg20171134
https://doi.org/10.1190/segam2012-0219.1
https://doi.org/10.1186/bf03351724
https://doi.org/10.1071/aseg2018abt5_2f
https://doi.org/10.1016/0096-3003(83)90023-1
https://doi.org/10.3321/j.issn:0001-5733.2003.05.019
https://doi.org/10.1190/geo2017-0406.1
https://doi.org/10.6038/cjg2022P0110
https://doi.org/10.16509/j.georeview.2023.s1.180
https://doi.org/10.16509/j.georeview.2023.s1.180
https://doi.org/10.3969/j.issn.1004-2903.2010.05.037
https://doi.org/10.6038/cjg2024R0724
https://doi.org/10.1190/1.1443223
https://doi.org/10.3969/j.issn.1000-1441.2016.02.015
https://doi.org/10.3969/j.issn.1000-1441.2016.02.015
https://doi.org/10.11720/wtyht.2021.1349
https://doi.org/10.11720/wtyht.2021.1349
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 ZTEM theory
	2.1 ZTEM system
	2.2 Three-dimensional numerical simulation of ZTEM with staggered grid finite differences
	2.3 Aggregated algebraic multigrid

	3 Computational efficiency analysis
	4 Model example
	4.1 Typical electrical models
	4.2 Analysis of influencing factors
	4.2.1 Terrain influence analysis
	4.2.2 Impact of anomalous body depth
	4.2.3 Impact of flight height


	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

