
TYPE Original Research
PUBLISHED 05 March 2025
DOI 10.3389/feart.2025.1489969

OPEN ACCESS

EDITED BY

Phaedon Kyriakidis,
Cyprus University of Technology, Cyprus

REVIEWED BY

Venkatramanan Senapathi,
National College, Tiruchirappalli, India
Wei Xi,
University of Chinese Academy of
Sciences, China
Akshay Kumar,
Indian Institute of Technology Bombay, India

*CORRESPONDENCE

Zahid Shah,
zahid.shah@nu.edu.kz

Emil Bayramov,
emil.bayramov@nu.edu.kz

RECEIVED 02 September 2024
ACCEPTED 03 February 2025
PUBLISHED 05 March 2025

CITATION

Shah Z, Bayramov E, Neafie J, Seltmann R and
Rahnama Z (2025) Determination of
geospatial criteria and prediction of potential
areas for porphyry copper deposits in
Kazakhstan.
Front. Earth Sci. 13:1489969.
doi: 10.3389/feart.2025.1489969

COPYRIGHT

© 2025 Shah, Bayramov, Neafie, Seltmann
and Rahnama. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Determination of geospatial
criteria and prediction of
potential areas for porphyry
copper deposits in Kazakhstan

Zahid Shah1*, Emil Bayramov1,2,3*, Jessica Neafie4,
Reimar Seltmann5 and Zohreh Rahnama6

1School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan, 2Institute of Smart
Systems and Artificial Intelligence (ISSAI), Nazarbayev University, Astana, Kazakhstan, 3Institute of
Geodesy and Geoinformation Science, Technical University of Berlin, Berlin, Germany, 4School of
Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan, 5Centre for Russian and Central
Eurasian Mineral Studies, Natural History Museum, London, United Kingdom, 6Anglo Rem CA
Exploration Mining Ltd., Astana, Kazakhstan

Determining spatial parameters related to mineral deposits is crucial for
analysing mineral prospectivity. These spatial parameters, called Geospatial
Criteria (GC), can serve as input data for modelling mineral prospectivity.
Porphyry Copper (Cu) deposits are the major source of the world’s Cu
supply, and reliance on these deposits has significantly increased over the
past decade. Kazakhstan produces 2%–4% of global Cu production, with
most sources are porphyry Cu deposits. This study applies data-driven and
knowledge-based overlay techniques to define region-scale GC for porphyry
Cu deposits in Kazakhstan to be used for mineral prospectivity modelling. The
spatial attributes of highly prospective porphyry Cu deposits in Kazakhstan are
systematically integrated into a Geographic Information System (GIS) to identify
and evaluate the GC. Regional spatial datasets, including tectonics, lithological,
geochronological, gravity, and magnetic data related to porphyry Cu deposits
in Kazakhstan are comprehensively compiled and integrated within the GIS
environment. An overlay analysis and Venn diagram analysis are performed using
anomalous geospatial data. This results in a prospective area map based on GC
highlighting targeted zones for porphyry Cu deposits in Kazakhstan. The study
presents a framework for mineral prospectivity mapping that is scalable and
can be applied to similar geological settings worldwide. It enhances exploration
targeting, reduces costs, and supports sustainable resource discovery.

KEYWORDS

geospatial criteria, porphyry Cu deposits, geographic information system, exploration,
Kazakhstan

1 Introduction

Geospatial Criteria (GC) are specificmappable parameters derived from geospatial data.
The geospatial data include geological, geophysical, and other spatial attributes useful for
targeting mineral deposits. Although this study utilizes the term GC to define the input
parameters used for prospectivity mapping, the concept itself is not a novel one. Spatial
geological and geophysical attributes are commonly used to guide mineral exploration in
literature. For example, Joly et al. (2015) use the term “spatial criteria” in the context of
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prospectivity modeling to describe geological, geochemical,
and geophysical datasets used as predictors of mineralization.
Yousefi et al. (2019) elaborates on geospatial parameters in their
proposal for Exploration Information Systems (EIS), emphasizing
their role in integrating and analyzing datasets for mineral
targeting. Porwal and Carranza (2015) highlight the integration
of thematic layers, such as faults, lithological boundaries, and
geophysical anomalies, as key criteria for prospectivity mapping.
However, the term GC has not formalized in literature but serves as
a descriptive phrase for the integration ofmappable features relevant
to mineralization.

Most high-grade ores have been extracted globally, leading
exploration and mining companies to focus on low-grade
ores. Consequently, there have been significant advancement
in the development of techniques for mineral perspectivity
mapping (MPM) over the last few decades. These techniques
are based on the integration of various data sources, including
geological, geochemical, and geophysical information, to assess
the probability of potential areas for mineral deposits (Joly et al.,
2015; Dadykin et al., 2021). Integrating geographical information
systems (GIS) in MPM has significantly enhanced decision-making
processes (Grupe, 1990). GIS facilitate the storage, analysis, and
visualization of spatial data, enabling the integration of various
datasets and the identification of patterns and relationships that
may not be clearly visible (Bonham-Carter, 1994; Woodhouse et al.,
2000). Therefore, the integration of spatial data has enhanced the
efficiency and effectiveness of the MPM by reducing exploration
costs resulting from unsuccessful exploration efforts and increasing
the probability of new deposits in unexplored areas.

There are various approaches to MPM; however, the two basic
approaches are (i) the knowledge-driven approach and (ii) the
data-driven approach (Harris et al., 2015). The knowledge-driven
approach to mineral prospectivity modelling integrates various
geological, geochemical, and geophysical data layers according to the
expertise of geologists (Maleki and Emery, 2020).The experts utilize
their knowledge of ore-forming processes, spatial relationships
between mineral deposits, and various geological features to assign
weights and ratings to different data layers (Agterberg, 1992) and
fuzzy logic (An and Moon, 2013). This approach is beneficial
when limited data are available or ore-forming processes are poorly
understood (Singh et al., 2022). The latter approach to mineral
prospectivity modelling uses known mineral deposit locations as
training points for estimating model parameters (Breiman, 2001;
Vapnik, 1995;Maleki and Emery, 2020).This approach is often based
on methods such as weights of evidence and logistic regression
because they allow for quantifying the spatial relationships between
mineral occurrences and various geological, geochemical, and
geophysical features (Nikitin et al., 2022). On the contrary, the
data-driven approach is beneficial when a large amount of data
is available and the ore-forming processes are relatively well-
understood (Singh et al., 2022). Both approaches have been applied
to numerousmineral deposits, including porphyry Cu deposits (Rad
and Busch, 2011).

Porphyry Cu deposits are large-sized, low-grade Cu ore bodies
that are usually found in intrusive igneous rocks. In recent decades,
they have become increasingly important as a source of the world’s
copper supply, as the depletion of higher-grade ores has led to greater
reliance on these deposits (Singer et al., 2022; Cunningham et al.,

2007). Estimated porphyry Cu deposits globally account for ∼57%
of discovered Cu (Singer, 1995). In the context of Kazakhstan,
mineral prospectivity modeling techniques are particularly relevant
due to the country’s vast resources of porphyry Cu deposits. The
porphyry Cu deposits of Kazakhstan are part of the Central Asia
Cu belt, the fourth most endowed province after the Andes, the
North American Cordillera, and Southeast Asia. Berger et al. (2010)
comprehensively assessed porphyry Cu deposits in western Central
Asia, including Kazakhstan, using remote sensing Techniques. The
vast area of the Central Asian Orogenic Supercollage comprises
amalgamated collages formed during the Neoproterozoic to the
Mesozoic (Yakubchuk et al., 2012). According to Seltmann and
Porter (2005), magmatic arcs linked to Altaid and Transbaikal
Mongolian Orogenic microplates (collages) are part of a broad
Palaeozoic subduction- accretion. The evolution of these tectonic
collages began in the Neoproterozoic and continued until the
early Mesozoic. The tectonics of the region are also linked to the
closure of back-arc rift basins situated behind margins facing the
paleo ocean. Porphyry-type ore deposits were formed during the
Ordovician and Jurassic periods, with Kazakhstan experiencing
its most significant period of porphyry ore formation during the
Palaeozoic era (Yakubchuk et al., 2012).

There has been considerable research focusing on the creation
of predictor maps or targeting criteria for mineral deposits (Porwal
and Carranza, 2015; Kreuzer et al., 2020; Yousefi and Nykänen,
2017; Knox-Robinson andWyborn, 1997). However, there has been
no research on creating regional-scale GC or input parameters
for mineral deposits to be used in mineral MPM, specifically for
porphyry Cu deposits in Kazakhstan. Porwal and Carranza (2015)
and Yousefi and Nykänen (2017) have demonstrated how various
MCDM methods are useful in integrating various datasets for
mineral exploration. For instance, Weight of Evidence (WoE) has
been widely used for prospectivity mapping by assigning statistical
weights to evidence layers based on known deposit occurrences
(Agterberg, 1992). Similarly, Analytic Hierarchy Process (AHP)
is able to assign relative importance to different criteria through
expert input (Saaty, 1980), while Logistic Regression (LR) and
Frequency Ratio (FR) have facilitated the quantitative analysis of
spatial relationships, as demonstrated by Rad and Busch (2011).
These MCDM methods provide robust frameworks for integrating
datasets; however, their application requires well-structured, high-
resolution data to ensure precise predictions.

Previous studies, such as those by Seltmann and Porter (2005)
and Yakubchuk et al. (2012), have highlighted the tectonic and
lithological framework of the region, while Berger et al. (2010) used
remote sensing techniques to assess porphyry Cu deposits in Central
Asia. Despite these contributions, no systematic methodology exists
to define geospatial criteria for prospectivity mapping of porphyry
Cu deposits inKazakhstan.This paper addresses this gap by focusing
on the GIS-based analysis of highly prospective porphyry Cu
deposits in Kazakhstan as a case study.The spatial attributes of these
deposits are integrated into the GIS environment to determine GC.
Based on the input parameters extracted from GC, the prospective
area map of the porphyry Cu deposit in Kazakhstan has been
created. To our knowledge, this is the very first study to use regional-
scale GC in a systematic manner for porphyry Cu prospectivity
mapping in Kazakhstan. The results serve as a baseline for future
exploration efforts in one of the world’s most promising mineral
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belts.The study defines GC that can be updatedwith high-resolution
deposit-scale datasets, enabling scalability for local exploration
targets. This makes the approach applicable at both regional and
local scales. The results obtained from this study can be further
enhanced by incorporating the Exploration Information System
(EIS) as described by Yousefi et al. (2019). The EIS concept fits
into the hierarchical nature of mineral exploration which starts with
broad regional-scale analyses and progressively narrows down to
deposit-scale targeting as higher-resolution data is incorporated.
The resultant input parameters that can be used for MPM of
Porphyry Cu deposits in Kazakhstan.

2 Study area

The study area includes nine highly prospective porphyry Cu
deposits in Kazakhstan (Figure 1), as reported by Seltmann and
Porter (2005) and Yakubchuk et al. (2012). It includes a 5- km buffer
zone for each deposit, and studies cover each zone’s geophysical and
geological characteristics.The deposits include Yubileinoe, Benqala,
Bozshakol, Nurkazgan, Kounrad, Borly, Sayak, Aktogai and Koksai.

2.1 Bozshakol deposit

The Bozshakol deposit is in the Pavlodar region, Ekibastuz
district of Kazakhstan. According to Mutschler et al. (2000), the
deposit contains a resource exceeding 1 gigatonne (Gt), with an
average grade of 0.67% Cu and 0.05 g/t gold. Proven reserves are
estimated at 176.2 million tonnes, with an average grade of 0.72%
Cu, 0.014%molybdenum, and 0.28 g/t gold.This deposit was formed
approximately 481 million years ago, within the oceanic part of the
Kipchak magmatic arc (Kudryavtsev, 1996).

2.2 Nurkazgan deposit

The Nurkazgan deposit is in the Karaganda region, Temirtau
district of Kazakhstan. It was formed between the late Silurian
and early Devonian period (approximately 410 Ma). It is part
of Devonian period Kazakh-Mongol magmatic arc. The deposit
contains 65 tonnes of Au and 1.5 million tonnes of Cu, with
an average Cu grade of 1.2% and Au grade ranging from
0.4 to 1 g/t (Seltmann et al., 2004). The deposit lies within
granodiorite and monzonite porphyries of the Turkulamsky
uplift, which intruded host rocks of late Silurian and Devonian
(Seltmann et al., 2004).

2.3 Yubileinoe deposit

The Yubileinoe deposit is in the Aqtobe region, Mugalzhar
region of Kazakhstan. The deposit is situated within the Urals, in
the proximity of the Mugodzhar deep regional fault, which runs
north-southwest. It was formed approximately 380 Ma (million
years ago) in the Urals-Zharma magmatic arc. Yubileinoe is a
medium-sized, Au-bearing ore porphyry deposit containing low-
grade Cu ore (Seltmann et al., 2004).

2.4 Aktogai deposit

The Aktogai deposit is in the Abbay region, in the
district of Ayagoz of Kazakhstan. According to Zvezdov et al.
(1993) and Seltmann et al. (2004), the deposit is related to
granodiorite stock with porphyritic texture, which is further
intersected by the elongated stock of mineralised granodiorite
and plagiogranite porphyries. The orebody is characterized by an
elliptical annular shape at its surface.

2.5 Kounrad deposit

The Kounrad deposit is in the Karaganda region, Balkhash city
in Kazakhstan. It was formed during the Upper Paleozoic period
in the Kazakh-Mongol magmatic arc. According to Zvezdov et al.
(1993) and Mutschler et al. (2000), the estimation of Kounrad
deposit contained over 800 million tons of ore prior to the
commencement of mining, with an average Cu grade of 0.62%
and sporadic concentrations of Au that reach up to 0.76 g/t. As
of 1996, the remaining reserves, primarily composed of hypogene
mineralization, were reported to comprise 220 Mt of ore, with grades
of 0.35% Cu and 0.1 g/t Au (Seltmann et al., 2004).

2.6 Koksai deposit

The Koksai deposit is in the Jetisu region, Kerbulak district
of Kazakhstan. According to Seltmann et al. (2004) the deposit
contains an estimated 320 Mt of ore, with an average Cu grade
of 0.52% and Au content of 0.12 g/t. This deposit lies within a
porphyry laccolith which intrudes Lower to Middle Carboniferous
dacitic and rhyolitic lavas and unconformably overlies Silurian
basement rocks (Seltmann et al., 2004).

2.7 Borly deposit

The Borly deposit is in the Karaganda region, Aktogay
district of Kazakhstan. According to Seltmann et al.
(2004), the deposit is hosted within a Carboniferous
intrusive body, which is a part of Kyzylzhalsky pluton. The
deposit contains estimated average grades of 0.03 g/t Au
and 0.34% Cu (Seltmann et al., 2004).

2.8 Sayak deposit

The Sayak deposit is in Karaganda region, Balkhash
district of Kazakhstan. It is a part of the upper Paleozoic
Kazakh-Mongol magmatic arc and lies in the geological zone
called Balkhash- Ili. This geological zone also encompasses
the significant Kounrad and Aktogai Group porphyry Cu-
Au deposits (Bespaev et al., 2004). The deposit is medium-
sized containing Cu and Au. It is hosted within Middle
Carboniferous rocks and is associated with granodiorite
intrusions (330 Ma) (Seltmann et al., 2004).
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FIGURE 1
Tectonic Subdivision map of Kazakhstan with study area of porphyry Cu deposits location point (modified from Seltmann and Porter, 2005).

2.9 Benqala deposit

The Benqala Deposit is in the Aktobe region, Ayteke Bi
district of Kazakhstan. The deposit is estimated to contain
approximately 30 tonnes of Au with an average grade of
0.3 g/t, with roughly 100 million tons of ore. The Cu grade is
estimated on average 0.42%, while the copper grade in the oxide
zone is 0.55% (Seltmann et al., 2004).

3 Materials and methods

The research paper focuses on a comprehensive GIS
analysis of the nine most potential regions of porphyry Cu
deposits in Kazakhstan. A buffer zone of 5 km around each
deposit point was created to analyse geological and geophysical

characteristics within these area zones. The objective is to
define patterns and spatial associations of these deposits
in the GIS environment, which results in developing the
geospatial criteria.

Mapping mineral prospectivity has been done using different
methodologies, from traditional knowledge-driven approaches to
advanced data-driven algorithms. To address specific limitations
observed in previous approaches, both methodologies are used
in this study. Previous knowledge-driven methods, such as the
weight of evidence (WoE) approach and fuzzy logic, rely on using
expert judgment to integrate multiple geospatial datasets, whereas
this research systematically determine GC using regional-scale
datasets, which minimizes subjective bias inherent in knowledge-
driven methods. Furthermore, a GIS-based Venn diagram analysis
makes the integration process transparent and reproducible. In
contrast to machine learning models, the GIS-based methodology
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FIGURE 2
Research Methodology workflow schematic illustration.

TABLE 1 Showing scale for each dataset used in the study.

Input data type Scale

Geology 1:500 K

Gravimetric 1:2.5 M

Magnetic 1:5 M

used in this study avoids overgeneralization by directly linking
geospatial criteria to known mineralization processes. This ensures
that the identified prospective areas are geologically significant
and localized. The study utilizes a deterministic approach through
Venn diagram analysis, emphasizing the intersections of GC instead
of probabilities. This reduces the complexity of the modeling
process while maintaining relevance geoscientific concepts. The
Venn diagram approach ensures that only zones satisfying all
criteria (e.g., favorable gravity and magnetic anomalies, high
fault density) are identified, providing a straightforward and
interpretable output.

3.1 Data collection

Lithological and age information for the buffer zones have
been digitised from the Russian Geological Research Institute
(VSEGIE) maps at a scale of 1:500,000. The location of the
deposits, the fault layer, and the regional geophysical (i) Anomalous
magnetic Field thematic map layer – 5 M scale (ii) Gravimetric

thematic map layer – 2.5 M scale have been derived from
the Center for Russian and Central EurAsian Mineral Studies
(CERCAMS) database (Seltmann et al., 2005).

The datasets were compared and associated geospatially
using GIS analysis, which relied on the available geological and
geophysical data.Themethodology workflow is divided into various
steps as follows:

The workflow for determining geospatial criteria and
creating a prospective area map for porphyry Cu deposits
in Kazakhstan involves two primary input datasets that are
categorised into geology (lithology, age, tectonics) and geophysics
(gravity and magnetic data) (Figure 2). These datasets are
integrated into a GIS platform, where geospatial criteria are
developed for each layer and analysed using Venn analysis
to identify regions that follow GC. The process results in
the creation of a porphyry Cu Prospective Area map, which
highlights potential areas for porphyry copper deposits in
Kazakhstan based on the detailed analysis of geological and
geophysical data.

To analyze a diverse range of spatial datasets, the GIS-
based workflow used in this study utilizes overlay and Venn
diagram analyses. Overlay analysis pinpoints zones that satisfy
multiple geospatial criteria simultaneously, while the Venn diagram
analysis can be used to prioritize prospective areas by showing
the intersections of key datasets. These techniques improve the
quality and accuracy of the prospectivity map by ensuring that
only regions with overlapping geospatial parameters are selected.
However, the methodology assumes equal weight for all input
layers, which may oversimplify geological processes. Despite these
limitations, the GIS methodology provides a framework that is both
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TABLE 2 Geospatial attributes of porphyry Cu deposits of Kazakhstan.

Geological data (igneous rocks) Geophysical data

Deposit Lithology Gravity data range (mGal) Magnetic data range (nT)

Borly

Feldspathic Granite

−50–(−75)

100–300

Granodiorite 0–100

Rhyolite 300–500

Bozshakol

Trachybasalt

50–75

100–300

Plagiogranite 0–100

Trachytes −100–0

Benqala Gabbro Diorite −25–(−50) 300–500

Aktogai

Granodiorite −50–(−75) 100–300

Rhyolite
−25–(−50)

−100–0

Quartz Porphyry 300–500

Koksai

Trachydacite

−100–(−125)

−300–(−100)

Granodiorite
0–100

Granodiorite

Andesite

Sayak

Quartz Diorites, Tonalites −75–(−100) −300–(−100)

Andesite −100–(−125) 0–100

Andesite
−50–(−75)

100–300

Kounrad
Granodiorite 0–100

Granite −75–(−100) −100–0

Nurkazgan Rhyolite −25–(−50) −300–(−100)

Yubileinoe

Andesite Basalt

50–75

0–100

Amphibole Biotite Granite −100–0

Plagiogranite 100–300

efficient and interpretable for mapping mineral prospectivity at the
regional scale.

The prospect area map uses three data layers at different scales
for regional scale analysis of the country (Table 1). These include
the gravity layer, magnetic layer, and Fault layer. The gravity layer
is a vector layer of the gravimetric field at a scale of 2.5 M.
The ranges in mGal unit are < −450, −450, −425, −400, −375,
−350, −325, −300, −275, −250, −225, −200, −175, −150, −125,
−100, −75, −50, −25, 0, +25, +50, +75, +100, +125, > +125. The
magnetic layer is the vector layer of an magnetic field (anomalous)
at a scale of 5 M. The ranges of value in nT unit are < −500,
−500, −300, −100, 0, +100, +300, +500, +1,000, > +1,000. Fault
Density (FD) is calculated using the total length of faults within

the buffer zone divided by the total area of the buffer zone using
the formula:

FD = Lb
Ab

Lb = Length of fault within the buffer Zone.
Ab = Total area of Buffer Zone.
Total area of buffer Zone = π∗(5 km)2 = 78.54 km2.
An overlay Venn diagram analysis of three different spatial

datasets—Gravity Anomaly Zone (G), Magnetic Anomaly Zone
(M) and Fault Density (F)—specific to porphyry Cu deposits was
performed using the intersection tool in GIS:

A= (G∩M)∩F.
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FIGURE 3
Schematic Illustration of overlay analysis Venn Diagram based on
Geospatial Criteria.

A is the prospect area zone (Red), where all three dataset values
intersect (see Figure 3).

The study is confined to the regional-scale analysis, as
indicated in Table 1. It identifies only large-scale patterns and
relationships. In this respect, the results and spatial criteria can
be relevant at small scales, while the models may not pick the
scale details. This limitation, however, highlights the need for the
district and deposit scale studies to modify Geospatial criteria for
deposit scale.

3.2 Geospatial criteria

The Geospatial Criteria (GC) were developed based on four key
relationship types (See Figure 4)

4 Results

4.1 Geospatial criteria for porphyry Cu
deposits

This research has analysed the GC indicative of Porphyry
Cu deposits. These criteria have been derived from the lithology,
age, gravity, and magnetic properties of known deposits in
Kazakhstan (Figure 5).

4.2 Geological characteristics

The lithologies associated with Porphyry Cu deposits in
Kazakhstan mainly include felsic to intermediate intrusive rocks
and volcanic rocks (Table 2). Typical lithologies identified are
felsic intrusive rocks such as granite, granodiorite, quartz diorite,

tonalite, and plagiogranite; intermediate to mafic intrusive rocks,
such as diorite, gabbro diorite; and volcanic rocks, such as
trachybasalt, trachyte, trachydacite, andesite, basalt, rhyolite, quartz
porphyrites (Figure 6). The geographic distribution pattern of such
rock types could be considered a critical geospatial criteria for
porphyry Cu deposits in Kazakhstan.

The age of deposits spans several geological periods, with a
significant concentration in the Permian, Cambrian, Devonian, and
Ordovician periods. This suggests that these periods are critical for
forming Porphyry Cu deposits in the study area. Figure 7 illustrates
the Fault Density for each Porphyry Cu deposit buffer zone in
Kazakhstan. The highest fault density is observed at Koksai, which
suggests it has a more extensive fault network within the buffer zone
than the other sites.

4.3 Geophysical characteristics

Analyzing the geophysical signatures of known porphyry Cu
deposits within the region was used to determine the threshold
Geophysical values.

4.3.1 Gravity anomalies
Thebuffer zone’s gravity data show that porphyryCudeposits are

associated with positive and negative gravity anomalies (Figure 8).
The ranges include a positive anomaly of +50 to +75 mGal and a
negative anomaly of −25 to −50 mGal, with more negative values up
to −100 mGal in some cases.

4.3.2 Magnetic anomalies
Themagnetic signature of porphyry copper deposits can provide

valuable insights into their geological context and the processes that
led to their formation. The ranges include Positive Anomalies +100
to +300 nT and negative Anomalies −300 to −100 nT (Figure 9).

4.3.2.1 Geophysical data limitations
The resolution needed for identifying subtle anomalies

associated with deeply buried mineral deposits may not be
available from the regional-scale geophysical data used in this
study. Smaller-scale geological features that are critical for deposit-
scale targeting may be overlooked by gravity and magnetic
datasets at 2.5 M or 5 M scales. To address this limitation, future
work should include high-resolution geophysical surveys. Non-
mineralized geological structures, such as large mafic intrusions,
fault zones, or sedimentary basins, can produce gravity and
magnetic anomalies that resemble the signatures of mineralized
intrusions. These interferences can be minimised by incorporating
additional datasets, such as lithological maps, geochemical surveys,
or alteration patterns, to differentiate betweenmineralized and non-
mineralized anomalies.

The GC was applied as an input to generate a composite
prospectivity map (Figure 10). The map highlights areas that
meet multiple criteria. Multiple criteria include biased (geological
data) and unbiased data (geophysical data). Three key GC-
gravity anomalies, magnetic anomalies and Fault Density
were integrated into the GIS framework to generate the
prospective area map (Figure 10). A Venn diagram technique
was employed to overlay the categorised datasets. Zones that
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FIGURE 4
Creation of Geospatial Criteria methodology.

FIGURE 5
Geospatial Criteria for Porphyry Cu deposits in Kazakhstan.

met all three criteria were recognized as high-potential areas, while
those that do not meet the criteria were not highlighted. The
derived map was compared against the locations of nine known
porphyry Cu deposits in Kazakhstan. All deposits were found
either within or near the high-potential zones, which validates
the map’s accuracy qualitatively.

5 Discussion

Predicting high-potential areas for mineral deposits through
mineral prospectivity mapping uses various algorithms and
methods. These algorithms analyse various geospatial datasets
to delineate the zones of high-potential mineralisation. The
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FIGURE 6
Geological map of 9 Porphyry Cu deposits (5 km Buffer Zone) of Kazakhstan. (A) = Borly, (B) = Sayak, (C) = Aktogai, (D) = Kounrad, (E) = Bozshakol, (F)
= Benqala, (G) = Yubileinoe, (H) = Koksai, (I) = Nurkazgan.
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FIGURE 7
Showing Fault Density for each deposit.

FIGURE 8
Thematic Gravimetric map of Kazakhstan with porphyry Cu deposit’s location points.

knowledge-driven algorithms include the weight of evidence (WoE)
and fuzzy logic. The former method uses a statistical approach
which combines the evidence layer and assigned weight based on
the absence and presence of mineral deposits in known areas, while
the latter method uses fuzzy set theory to handle uncertainty in the
data. In this method, different geological layers are assigned degrees

of membership (values between 0 and 1) indicating the favourability
for mineralisation (Yeh, 1999). Other data-driven algorithms
for mineral prospectivity mapping include Random Forest (RF)
and Support Vector Machine. However, despite the decades of
development of these algorithms, they have yet to be widely used
for targeting in mineral exploration. As explained by Hronsky
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FIGURE 9
Thematic Magnetic map of Kazakhstan with porphyry Cu deposit’s location points.

FIGURE 10
Prospective area map of Porphyry Cu Deposits in Kazakhstan.
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and Kreuzer (2019), these algorithms have two main criticisms.
Firstly, they are not valuable for generating new targets in unknown
areas; they only generate targets of known deposits. Secondly, they
produce a relatively large target area, but the exploration industry
requires a focused target area at the deposit scale. The training
of these algorithms is heavily reliant on large datasets, and the
data must be consistent, well-structured and high resolution which
is not always the case for unexplored remote regions and can be
biased by imbalanced data. Also, there has been no widely accepted
standards for applying these algorithms in mineral prospectivity
which reduces industry standards in their reliability. The lack
of interpretability of these algorithms is significant challenge to
geologists, who require explanation to guide exploration Hronsky
and Kreuzer (2019). However, these limitations can be mitigated
through simple Venn diagram analysis in GIS. In this process, GC
is first defined based on available geospatial data specific to the
deposit. Then, intersecting areas that satisfy the GC are visually
identified. The outcome is straightforward, understandable, and
transparent, enabling geologists to easily comprehend relationships
between spatial layers as contrast to advanced algorithms having
nonlinear hidden relationship in the data.

There are two main types of data that can be fed into
prospectivitymapping;Hronsky andKreuzer (2019) classify the data
into two groups because of their inherent characteristics: biased
and unbiased. For instance, regional geophysical data, which is
uniformly sampled, is classified as bias-free data, whereas geological
data (biased) ismore likely to be influenced by an expert’s knowledge
of geology. Thus, the objectives of the research paper are to
identify the GC or geospatial input parameter from both types
of data that would improve the prospectivity mapping algorithm.
To reduce the influence of bias, unbiased datasets were utilized to
verify the outputs generated from biased datasets. As an example,
areas with gravity anomalies that coincide with potential geological
features were selected as the input parameter. The reliability of
the results was further ensured by comparing them with known
deposit locations. Despite these efforts, inherent biases in geological
mapping remain a limitation, highlighting the need for higher-
resolution datasets in future studies. The mineralisation associated
with porphyry Cu deposits is mainly associated with intrusive
igneous rocks like granodiorite or quartz monzonite (Mao et al.,
2021), and these rocks are primarily present within the buffer zone
of porphyry Cu deposits in Kazakhstan. Even though it is not
uniformly sampled data, it can provide substantial information for
efficientlymappingminerals’ prospectivity when integrated with the
regional gravity and magnetic data. Gravity data have been revealed
to be a valuable means to prospect porphyry Cu deposits since
they can outline the limits of mineralised intrusions and define
possible target zones (Marques et al., 2022). A positive anomaly
of +50 to +75 mGal and a strong negative anomaly of −25 to
−50 mGal indicate areas with dense and potentially mineralised
rocks and highly altered rocks, respectively. The study of the
magnetic characteristics of the buffer zone shows that most of the
porphyry Cu deposits occur in areas with both positive and negative
magnetic anomaly values. This suggests that there is magnetite-
rich mineralization and magnetite destruction due to hydrothermal
alterations in these zones.

The employed simple Venn diagram Analysis in GIS does not
account for uncertainty as this method is deterministic with results

fully dependent on predefined criteria.However, its simplicity allows
expert to manually refine criteria based on geological reasoning.

Furthermore, this study acknowledges the limitations of relying
solely on regional-scale data for prospectivity mapping, which, while
effective for identifying broad zones of interest, may lack the precision
required for targeting specific deposits. Despite these challenges,
the study provides a transparent and adaptable framework suitable
for regions with limited access to high-resolution data, delivering a
practical, cost-effective solution for sustainablemineral exploration in
similar geological settings worldwide.

6 Conclusion

This study focuses on determining geospatial criteria (GC)
as input parameters for mineral prospectivity mapping at the
regional scale, specifically targeting porphyry copper deposits in
Kazakhstan. By systematically compiling and integrating tectonic,
lithological, geochronological, gravity, and magnetic datasets into a
GIS environment, the study identifies spatial attributes associated
with highly prospective porphyry copper deposits. The integration
of knowledge-driven and data-driven approaches demonstrates the
effectiveness of GIS in developing geospatial criteria for regional-
scale prospectivity mapping. The resultant prospective area map
shows target areas for porphyry copper deposits, providing a valuable
tool to guide future exploration in Kazakhstan. A new framework
for identifying high-potential areas in a geographically significant
region that is still underexplored is provided by this research. The
findings are an important basis formineral exploration inKazakhstan,
allowing for better understanding of the spatial characteristics of
porphyry copper deposits.

This study also highlights several areas that require further
research. The limitations of regional-scale datasets, such as
uniformity of data scales, there is need for high-resolution,
deposit-scale data to refine geospatial criteria. In order to enhance
prospectivity mapping accuracy and reliability, it is crucial to
incorporate advanced exploration datasets, such as detailed
lithological, geochemical, and geophysical surveys, in future work.

Additionally, it is suggested to use an Exploration Information
System (EIS) to make dynamic updates to geospatial criteria as new
datasets become available. This would improve adaptability, allow
for continuous refinement of prospective area maps, and improve
the methodology for long-term exploration planning. Moreover,
sensitivity analysis can be conducted with high-resolution datasets
to assess the relative importance of input factors and decrease
uncertainties in the model.

The GIS-based approach employed in this study to map
prospects for porphyry copper deposits can be applied to other
mineral-rich regions around the globe, including the Andes, North
American Cordillera, and Southeast Asia. The extensive porphyry
copper deposits in these regions, like Kazakhstan, make it important
to integrate geological (e.g., lithology, tectonics) and geophysical
(e.g., gravity and magnetic anomalies) data for exploration. The
adaptability of this method lies in its ability to modify geospatial
criteria to the unique geological context of different regions.
The methodology enhances exploration efficiency by accurately
identifying high-potential zones through knowledge-driven and
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data-driven techniques, which reduces exploration costs and risks.
As high-grade ore deposits become scarcer, the mining industry
is shifting towards lower-grade but economically viable deposits,
making this increasingly important globally.
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