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The paper presents a detailed statistical analysis of data from 41 hydrometric
stations along the Danube (section in the Carpathian Basin) and its longest
tributary, the Tisza River. Most records cover 2–3 decades with an automated
high temporal sampling frequency (15 min), and a few span 120 years with daily
or half-daily records. The temporal sampling is not even and exhibits strong
irregularities. The paper demonstrates that cubic spline fits and down-sampling
(where necessary) produce reliable, evenly sampled time series that smoothly
reconstruct water level and river discharge data. Almost all the water level and
discharge records indicate a decadal decreasing trend for annual maximum
values. The timing (day of the year) for annual maxima and minima is evaluated.
While minimum values do not show coherent tendencies, annual maxima
exhibit increasing trends for the Tisza but decreasing trends for the Danube
(earlier onset). Various possibilities for the explanations of these observations
are listed. The empirical histograms for half-daily water level changes can be
well-fitted by piecewise-exponential functions containing four or three sections,
consistent with the understanding that level changes are deterministic rather
than stochastic processes, as is well known in hydrology. Such statistical tests
can serve as benchmarks for modeling water levels and discharges. Extracted
periods by the Lomb-Scargle algorithm (suitable for unevenly sampled time
series) and the long-time means indicate the expected annual seasonality.
Resampled time series (1-hour frequency) were evaluated by standard Fourier
andWelch procedures, revealing some secondary peaks in the spectra indicating
quasi-periodic components in the signals. Further significance tests are in
progress, along with attempts at explanations. Secondary peaks may indicate
environmental changes, the future investigation of which could reveal important
correlations.
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1 Introduction

Water level and discharge are crucial hydrological variables that
provide insights into the state of a river system and its response to
various factors (Rhoads, 2020a; Fekete et al., 2021; Bárdossy and
El Hachem, 2021). Water levels and discharge are mainly influenced
by meteorological, landscape, and climatic forcing, but changes
in landscape management in the catchment area also significantly
impact floods (Clark, 1987).1 Time series analysis of these variables
is essential to understand their behavior and identify potential
patterns and trends (Ghil et al., 2002; Bogárdi and Fekete, 2021;
Fekete et al., 2021). One commonly employed method in this
regard is the examination of climatic means, which helps establish
a baseline for comparison and assess deviations from typical
conditions. Power spectrum analysis is another valuable tool used
to identify periodicities and dominant frequencies in the time series
data, shedding light on potential natural cycles or recurring patterns.
Additionally, trends in annual maxima and minima of river water
level and discharge are of particular interest as they reveal changes
in extreme events, such as floods and droughts, which can have
significant impacts on both the environment and human activities.
Understanding the timing of these annual maxima and minima is
equally essential, as it may indicate shifts in seasonal patterns and
potential alterations in precipitation patterns or snowmelt regimes
(Bertola et al., 2020; Kemter et al., 2020). Such information is
valuable for water resource management, flood forecasting, and
ecosystem preservation.

The further structure of this section is as follows. The
background to the present research will be briefly presented,
highlighting in what sense and in what respects the key findings of
this study can be considered as results that have not been previously
presented or not in sufficient detail. Additionally, the contribution
of these results to the understanding of river properties, both in
absolute terms and in relation to other disciplines such as climate
change, will be discussed. Then, the environmental factors that
significantly impact water level and water discharge are briefly
described, followed by an introduction to the research methods,
tools, and directions that have been developed in the field of river
discharge and water level research.

Flood events primarily originate from meteorological
conditions, especially precipitation or snow melt. As global changes
progress, alterations in precipitation patterns can significantly
impact the types of floods that occur (Blöschl et al., 2017;
Blöschl et al., 2019; Kemter et al., 2023; Tarasova et al., 2023).
Clausius-Clapeyron scaling suggests that extreme precipitation
intensities increase in hourly or shorter durations by approximately
6.5% per 1°C atmospheric warming as the water holding capacity
increases (Guerreiro et al., 2018; Vergara-Temprado et al.,
2021). Observations reveal very high regional variability, albeit
with an apparent increasing tendency in most continents
(Guerreiro et al., 2018; Vergara-Temprado et al., 2021; Ayat et al.,
2022; Li et al., 2022; Kendon and Short, 2023).

Landscapes play a vital role in the water cycle and the intricate
journey of water. They receive water through precipitation and

1 The color of the original text is black, all changes due to the review

process are blue

subsequently engage in a dynamic process of transporting, storing,
mixing, and releasing it. This movement occurs in two directions:
downward, feeding streams, and upward, nourishing vegetation.
How landscapes manage these processes significantly impacts
various natural phenomena, including floods and droughts,
biogeochemical cycles, the transportation of contaminants,
and the overall health of terrestrial and aquatic ecosystems.
Understanding these complex interactions can be challenging as
many crucial processes occur out of sight, deepwithin the subsurface
(Beven, 2011; Kirchner et al., 2023).

Among the long-term consequences of climate change, the
impact on water yields and flows in rivers is very important, as most
of the population lives near rivers and very often rivers are used
as drinking water sources, but also for agriculture, either for water
cycling as natural or for irrigation as artificial water supply. As has
already been shown by comparing several climate models, adverse
impacts are expected in several of the Earth’s major river basins
based on climate change models (van Vliet et al., 2013). The study
found that both theDanube and the Tisza river basins are affected by
changes in the direction of the change, especially in case of low flows,
(see their Figure 3). In the following, the paper briefly describes
some of the research methods widely applied to long term studies
of water yields and water levels. These are hydrological models,
statistical methods and most recently the use of AI for analysis.

Hydrological models are recognized as essential tools for
managing water and environmental resources (Ponce and Hawkins,
1996; Beven, 2011; Devia et al., 2015; Jehanzaib et al., 2022;
Kirchner et al., 2023). Traditional runoff models can be classified
into three main categories: empirical, conceptual, and physically
based models. Empirical methods for estimating direct runoff
from rainfall are well established in hydrological engineering and
environmental impact analyses. The popularity is rooted in their
convenience, simplicity, and responsiveness to four easily grasped
catchment properties: soil type, land use, surface condition, and
antecedent condition (Ponce andHawkins, 1996; Laizé andHannah,
2010; Beven, 2011; Devia et al., 2015; Jehanzaib et al., 2022;
Kirchner et al., 2023). Conceptual (or parametric) models describe
several components of hydrological sub-processes. They consist of
numerous interconnected reservoirs which represent the physical
elements in a catchment. They are recharged by rainfall, and
infiltration, and are emptied by evaporation, runoff, drainage, etc.
Semi-empirical equations are used in such methods, and the model
parameters are assessed not only from field data but also through
calibration. A large number of meteorological and hydrological
records are required for calibration. For this reason, parametric
models cannot be applied everywhere (Hrachowitz et al., 2013;
Yang et al., 2019; Jehanzaib et al., 2022; Kirchner et al., 2023).
There are also parametric water level and runoff models however,
the results of which are already explanatory of the climate change
phenomena (Booij, 2005). A physical process-based runoff model
refers to a collection of differential equations (both in space
and time) utilized to estimate the amount of runoff based on
various parameters describing the characteristics of a watershed
(Devia et al., 2015; Jehanzaib et al., 2022). These models require two
crucial inputs: rainfall data anddrainage area. Additionally, they take
into account watershed features such as soil properties, vegetation
cover, watershed topography, soil moisture content, evaporation,
evapotranspiration, and groundwater aquifer characteristics.
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There are many statistical methods for time series analysis, most
of them available as pre-written routines in many programming
environments, including in the SciPy library in Python. In the
analysis of time series, where the temporal evolution and variation
of water flow and discharge is the issue, the problem of outlier data
arises, typically resulting from an extreme hydrological situation. In
such cases, a linear estimator is needed that eliminates the effect
of outliers in a more sophisticated way than the usual methods,
because the conventional ones might give a different result from the
real trend. The traditional least squares method can be replaced by,
for example the Theil-Sen regression, which fits the data robustly
and is one of the least sensitive method to outlier data, performs at
least as well as the simple least squares method in trend detection
and in the case of normal distribution of residuals. Hirsch et al.
(1982) have shown that for seasonally varying data series (such as
water time series), a much better fit can be achieved using the Theil-
Sen estimator. Climate change may not only lead to different trends
in the time series, but also to changes in the data series with new
periods in addition to the usual seasonal periodicity. Several tools
are available to perform frequency analysis, such as Fourier analysis,
Lomb-Scargle method, and Welch analysis.

Artificial intelligence (AI) has emerged as a transformative
technology with vast potential in various fields, including
hydrological applications (Volpi et al., 2023; Chang et al.,
2023). AI algorithms can process large data sets from multiple
sources, including remote sensing, weather stations, and river
gauges, enabling real-time monitoring and predictive modeling
of hydrological phenomena (Bai et al., 2021; Cho et al., 2022;
Peng et al., 2022; Ibrahim et al., 2022; Volpi et al., 2023). Machine
learning techniques can be employed to analyze historical data and
identify patterns, trends, and anomalies in river flow, precipitation,
and groundwater levels, aiding in accurately predicting floods,
droughts, and water availability. Artificial neural networks already
exist that can be used to make more accurate predictions of river
flows based on historical data with LSTM and GRU method as well
(Xu et al., 2023; Wang et al., 2024). The following will introduce the
subject and methods of our research.

The paper examines river water level and discharge data using
statistical tools, along with examinations of climatic means, power
spectra, trends in annual maxima and minima, and the timing of
these extremes, as well as statistical assessments of interpolated
water level and river discharge changes.

1. In the time series analysis, the previously mentioned Theil-Sen
estimator was used to examine trends in water levels and water
yields. The detailed analysis will explain why this method is
preferable to conventional regression (see 2).

2. The analysis of the power spectra is likely to reveal
secondary peaks, different from the annual periodicity, whose
understanding will help to explain the effects of environmental
changes on water level and discharge, both for the average
and for the outliers. Compared to (Jánosi et al., 2023), this
study contains additional new results in several aspects. In the
field of periodicity analysis, the use of Welch periodograms
and the bootstrap method to exclude false peaks using
the Lomb-Scargle method resulted in more reliable values
(see later).

Ourresultsmightserveasabenchmarkforcalibratinghydrological
models, which cannot be accurate enough without reproducing the
basic features of measured records. In addition frequency analysis
can be used to find patterns that, knowing the above-average climate
exposure of the Carpathian Basin (Simon et al., 2023), can help us
understand the previously unexplored links between climate change
and river flows. It should also be noted that no such comprehensive
statistical analysis has yet been carried out for the Carpathian
Basin for large rivers.

2 Data and methods

2.1 Data

We evaluated 23 years water level records of 22 hydrometric
stations along the Tisza River and 19 stations along the Hungarian
section of the Danube, where both water level and river discharge
data are available; most of them are 27 years long. This interval was
the same frequency for all 41 stations in terms of water depth and
discharge and long enough to be statistically significant. The records
are obtained from the General Directorate of Water Management,
Budapest,Hungary (https://www.ovf.hu/en/). Figure 1 illustrates the
locations of the stations (blue and yellow symbols for the Danube
and Tisza, respectively.)

The Carpathian Basin makes up a significant part of the Danube
drainage basin, where the river changes its character to a lowland
section, while the entire drainage basin of the Tisza river is
located in the basin (Sommerwerk et al., 2022; Gâştescu, 1998).
Except for the study by Jánosi et al. (2023), which serves as a
precursor to this article, no such comprehensive statistical analysis
has been carried out for water stations in Hungary. The statistical
analyses of Konecsny and Nagy (2014) for the Danube and the
Tisza were limited to a single station, the former in Nagymaros
and the latter in Szeged. In the present study, Nagymaros is also
among the 19 Danube stations analysed, while among the 22
stations on the Tisza, the station in Csongrád is very close to the
station in Szeged.

The catchment basins in Hungary contribute to the hydrological
system of the two principal rivers, the Danube and its tributary, the
Tisza, except for a few smaller streams (Szlávik, 2005; Nike et al.,
2010; Borics et al., 2016). These twomajor streams, with a combined
length of 2,822 km, effectively drain the entire territory of Hungary,
which spans 93,000 km2. The rivers that reach the Hungarian
border carry water from an area of 290,000 km2, three times
larger than Hungary itself. Consequently, the flow patterns in these
rivers are primarily influenced by the hydrometeorological events
occurring in their upstream regions (Szlávik, 2005; Nike et al., 2010;
Hein et al., 2019; Szolgay et al., 2020; Jánosi et al., 2023). Lowland
river sections share the property of minor natural falls resulting
in slowing river flow speeds and complicated sediment transport.
Dams have a far-reaching back swelling effect in the upstream
direction.

Figure 2 shows two long time series (121 years of daily water
levels) recorded at two stations from the upper section of the
Tisza River. Albeit it seems appealing to analyze such long records
(where it is available), the plots illustrate significant problems
with the data series. Lack of observations for a couple of years is
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FIGURE 1
Hydrometric stations along the Danube (blue symbols) and Tisza (yellow symbols). The map illustrates the whole Carpathian Basin, political borders are
black, country codes are white, and major rivers are blue lines. Two large tributaries of the Tisza are labeled (Körös and Maros), the same is for the
Danube (Drava and Sava). The map was constructed by the Python (ver. 3.8.8) module Basemap (1.3.2) https://matplotlib.org/basemap.

common, not to mention the apparent jumps in low-water levels
in both series. Particularly in Figure 2B, the jump in the late fifties
coincides with the start of operation (1958) at the Tiszalök Dam
(518.225 river km), where the back swelling effect reaches over
80 km upstream (Bezdán, 2010). Tiszabercel (569.0 river km) is
some 50 river kmup fromTiszalök, where lowwater levels increased
by about 270 cm (Figure 2B). Note that homogenization cannot
help in similar situations, the upper envelope (high water levels)
did not really change. For these reasons, the research restricts
the further analysis to the last two-three decades (red coloring in
Figure 2), when high-frequency measurements are also available. In
the main text, only representative examples are shown, the whole
set of 22 stations for Tisza and 19 stations for Danube (water levels
and river discharges) are presented in (Supplementary Material
from now on).

Some further problems with the data are illustrated in
Figure 3. The paper intentionally shows Figure 3B (Tiszafüred,
430.5 river km), which represents a highly regulated section of
the Tisza. This hydrometric station is about 26.5 rkm up from
the Kisköre Dam (or Tisza Dam); therefore, the water level
is around 550 cm during the largest part of each year, apart
from extreme low-water and flood situations. The research did
not ignore such records from its analysis (for an even stronger
regulated example, see Supplementary Figure S1K, Kisköre-Felső),
because the whole river is rather distinct from a free-flow
stream with its 1800 structures (sluices, culverts), which cross
the levees (Szlávik, 2005).

Figures 3D–F illustrate another problematic aspect of
hydrological time series: the hectic sampling. Sampling time
steps change between 15 min and 30 h randomly. Longer breaks

are infrequent; therefore, essential events such as floods are not
probable to be missed (see also Supplementary Figures S2, S4, S6).
Some well-known standard statistical methods require even
sampling. To overcome uneven sampling, we implemented a
resampling procedure using interpolation and down-sampling
(in periods of too frequent sampling) to produce homogeneous
series. Cubic spline interpolation and resampling were performed
by routines in the SciPy library in Python (Virtanen et al.,
2020, Python Programming Language (RRID: SCR_008394)].
For the third-degree spline, the error due to the Runge
phenomenon is still relatively small. The results are illustrated
in Figure 4. Here a short part of an unevenly sampled record
(Tuzsér, 613.9 river km, see Supplementary Figure S1U) is
shown (black stars at the top) with resampled homogeneous
series are various time steps between 15 min and 1 day. Fine
details are also well represented even in the highest frequency
case of 15 min.

2.2 Data processing and methods

Most of the calculations in our statistical analyses were
performed in a Python environment (version 3.6, RRID: SCR_
008394) with the standard Numpy (Harris et al., 2020) and Scipy
(Virtanen et al., 2020, RRID: SCR_008058) packages. The map of
Figure 1 is drawn by the Basemap module (https://matplotlib.
org/basemap/, last accessed on 02/08/2023). There are a few
procedures specifically created to handle unevenly sampled time
series. For example, the paper performed frequency analyses using
the Lomb–Scargle periodogram method (Press and Rybicki, 1989;
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FIGURE 2
Two long time series (121 years) of water levels at the upper Tisza. (A) Záhony (627.8 river km), and (B) Tiszabercel (569 river km). Besides the lack of data
common in both records, low-water data in (B) exhibit a marked increase since the end of the fifties when the Tiszalök Dam (518.225 river km) started
operation. Since the natural fall of the river section between Záhony and Tokaj is the smallest (only a couple of cm/km), the back swelling limit is as far
as 80 km upstream from the Tiszalök Dam. The red sections in the past 25 years indicate the target of our statistical analysis based on high-resolution.

FIGURE 3
Water level time series and sampling time-step records for three representative stations along the Tisza River. (A, D): Dombrád (upper Tisza); (B, E):
Tiszafüred (an example of a strongly regulated section); (C, F): Mindszent (lower Tisza). The same results are shown for the full set of 22
stations in Supplementary Figures S1, S2. Annual maxima and minima of water levels are fitted by a Theil-Sen estimator. Slopes are the following. (A):
−9.937 cm/year (red), −0.38 cm/year (orange); (B): −4.14 cm/year (red), −0.04 cm/year (orange); (C): −18.07 cm/year (red), −1.13 cm/year (orange).

VanderPlas, 2018). A naive use of Fourier transform indeed fails for
such data. The algorithm provides harmonic fits to the input time
series in the form

s(ti) =
k

∑
i=1

ai sin(ωit−φ) + bi cos(ωit−φ) + ci (1)

where s(ti) represents the fitted coordinates of each time ti; ci
is the noise term, ai and bi denote the amplitudes of sine and
cosine functions of the ith harmonic, φ is the phase factor
needed to orthogonalize sin and cosine, and ωi represents the

corresponding angular frequency (the mean value of the signal
is removed prior the fitting). The quality of the fit according to
Equation 1 defines the Lomb-Scargle amplitudes. The Python

routine LombScargle() from the package Astropy was
installed (Astropy Collaboration et al., 2022).Note that the statistical
significance of peaks is difficult to determine, we used the time-
consuming procedure of determining “false alarm probabilities”
by the “bootstrap” method VanderPlas (2018). The “false alarm
probability” concept answers a particular question (VanderPlas,
2018): What is the probability that a time series with no periodic
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FIGURE 4
123 days long time series (black stars) and its resampled versions for
various time steps by cubic spline interpolation. Red: 15 min, blue: 1 h,
green: 12 h, and black squares: 1 d. The resampled series are shifted
down by 50–50 cm for better visualization; see legend. The station is
Tuzsér (613.9 river km, upper Tisza), Supplementary Figure S1U. Note
the irregular sampling with gaps of a couple of full days (black stars
at the top).

component (white noise) would lead to a peak of a givenmagnitude?
Since the records can be considered long oversampled series with
smooth and correlated increments and decrements, the false alarm
probabilities are so small (in the order of 10−3 or less) that they
cannot be distinguished from zero (If the probability level of a false
result is set at P, then the number of runs nb ≈ 10/P.)

Traditional Fourier and Welch periodograms were also
estimated after resampling the records with a time step of 1 h,
as described above (see Figure 4. In the Welch method, a sliding
window (width is an input parameter) moves along the signal
(usually with half overlaps), and the windowed spectrum is averaged
from these different samples. When the width of the window is
too small, lower frequency peaks are not resolved. In the opposite
case, too wide windows result in a result close to a discrete Fourier
transform. The use of the Welch method is justified in case the
window of choice (D) is set at D =M/2 relative to the natural time
interval (M) If the width of the window is decreased, it leads to a
limit transition to Bartlett’s method, if it is increased, to Fourier
analysis. Confidence intervals cannot be estimated easily again
because water level and discharge time series are not uncorrelated
stochastic processes.

Linear fits do not require even sampling. The Theil-Sen
robust linear estimator routine [Python, SciPy package,
scipy.stats.mstats.theilslopes() routine

(Virtanen et al., 2020)] was implemented because this
algorithm is known to ignore outliers very effectively
(Akritas et al., 1995; Eugster et al., 2022). The fitted line has the
median of the slopes of all lines through all pairs of points. The
Theil-Sen algorithm has a breakdown point of about 29.3% (the
ratio of arbitrary outliers) in the case of simple linear regression.

Water level and river discharge changes are estimated from
resampled time series with a step of 12 h. It is meaningless
to evaluate the original records because of the hectic sampling.
The semilogarithmic histograms of 12 h changes can be well
fitted by a piecewise linear function, which means a piecewise
exponential behavior for the original data:

ln [y (x)] =
{
{
{

k1x+ y0 − k1x0 if x < x0

k2x+ y0 − k2x0 if x ≥ x0

(2)

where k1 and k2 are slopes, and (x0,y0) is the location of the
breaking point. Since piecewise fits are nonlinear, required
input parameters are approximate guess values (actually, the
success depends strongly on the initial guess). Calculations
were performed by the curve_fit algorithm from the
SciPy.optimizemodule (Virtanen et al., 2020). Absolute values
of the negative steps were separately evaluated.

3 Results

In this Section, the results of statistical analysis will be presented
for the 22 stations along the Tisza (water levels) and the 19
stations along the Danube (water levels and river discharges). Most
of the data extends longer than the past two decades. During
this period, Europe suffered from faster warming than the global
average (Klein Tank et al., 2002; Menne et al., 2012; Lorenz et al.,
2019; Naumann et al., 2021; Rousi et al., 2022; Szöllősi-Nagy,
2022), which affects water temperatures as well (Zweimüller et al.,
2008; Bui et al., 2018). The Carpathian Basin is not an exception
clearly indicated by evaluations of hourly or daily temperatures
(Lakatos et al., 2021a; Lakatos et al., 2021b; Barna et al., 2022),
extreme values (Lakatos et al., 2014; Bartholy and Pongrácz, 2007)
or the frequency of warm spells (Lakatos et al., 2014; Bokros
and Lakatos, 2022). An immediate consequence of global climate
change is that time series lose stationarity, as it was shown in
several cases. Note that nonstationarities cannot be simply handled
by removing some linear or nonlinear trends or seasonalities in
several cases, e.g., water levels in the Tisza River exhibit a decreasing
tendency of high-water levels, while low-water levels do not
change (see below).

3.1 Time series and long-time mean values

In Figure 3, water level time series and sampling time-
step records have already been plotted for three representative
stations along the Tisza River; all the 22 stations are
illustrated in Supplementary Figures S1–S2. Annual maxima
(red lines) and minima of water levels (orange lines) are fitted
by a Theil-Sen estimator. The mean slope for the maxima is
−9.94 ±3.75 cm/year, for the minima −0.91 ±1.00 cm/year. It is
emphasized here that the standard deviations represent the station-
to-station variability. Trends in annual extremes are determined
by complex processes such as climate change, precipitation
regime shifts, river management operations, river bed erosion,
infiltration properties, etc. Therefore, a homogeneous behavior is
not expected.

As for the Danube, Figures 5, 6 illustrate water level time
series and river discharge records for three selected stations,
the remaining 16 are shown in Supplementary Figures S3–S6.
Annual maxima exhibit less pronounced decreasing tendencies
(red lines) than at the Tisza; the mean value and standard
deviation are −3.20 ±3.31 cm/year, where only three stations have
slight positive tendencies (see Supplementary Figures S3A, D, E),
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FIGURE 5
Water level time series and sampling time-step records for three representative stations along the Danube River. (A, D): Nagybajcs (upper Danube); (B,
E): Vác (upper Danube, 123 river km away from Nagybajcs); (C, F): Baja (lower Danube). The same results are shown for the full set of 19
stations in Supplementary Figures S3, S4. Annual maxima and minima of water levels are fitted by a Theil-Sen estimator. Slopes are the following. (A):
−3.25 cm/year (red), −3.47 cm/year (orange); (B): −2.59 cm/year (red), −0.43 cm/year (orange); (C): −2.06 cm/year (red), −1.70 cm/year (orange).

FIGURE 6
River discharge time series and sampling time-step records for the same three representative stations as in Figure 5 along the Danube River. (A, D):
Nagybajcs (upper Danube); (B, E): Vác (upper Danube, 123 river km away from Nagybajcs); (C, F): Baja (lower Danube). The same results are shown for
the full set of 19 stations in Supplementary Figures S5, S6. Annual maxima and minima of water levels are fitted by a Theil-Sen estimator. Slopes are the
following. (A): −32.05 m3s−1/year (red), −7.78 m3s−1/year (orange); (B): −20.67 m3s−1year−1 (red), 1.64 m3s−1year−1 (orange); (C): −33.18 m3s−1/year (red),
−5.65 m3s−1/year (orange).

probably because the number of “outliers” is too large. The annual
minima obey weak negative mean tendency −1.07 ±1.52 cm/year,
nevertheless below Vác (1,679.5 river km) down to Mohács
(1,446.9 river km) in Supplementary Figure S3J–Q decrease is the
dominating trend. This river section is a part of the second largest
free-flowing section of the Danube, where 78 barriers along the
whole river are installed. Less than 15% of the Upper Danube
remains free-flowing (Nike et al., 2010). Again, trend standard
deviations indicate station-to-station variations.

The same procedures were applied for river discharge data
along the Danube, where it was possible; see Figure 6 and
Supplementary Figures S5–S6. The behavior along the Danube is
very similar to water levels; however, this is strongly expected.Water
levels and river discharges are in a functional relationship expressed
by the rating curve for a given station and primarily determined
by the streambed material and the shape of the river cross-
section at the hydrometric station (Zsuffa, 1999; Rhoads, 2020b).
This measured nonlinear function is used to estimate discharges
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TABLE 1 Slope of the annual maximum and minimum water level of the
Danube and the Tisza, and summary of the slope of the water yield.
Changes in water yield data for the Tisza are still missing.Standard
deviations represent the station-to-station variability.

Average water
level slope
[cm∗y−1]

Variance
[cm∗y−1]

Danube high level −3.2 ±3.31

Danube low level −1.07 ±1.52

Tisza high level −9.94 ±3.75

Tisza low level −0.91 ±1.00

Average
drainage slope
[m3y−1]

Variance
[m3y−1]

Danube maximum −26.36 ±38.14

Danube minimum −1.38 ±4.81

from water level data because it is way simpler to read a level
gauge than measure discharge in the whole cross-section. Annual
maxima and minima are fitted as before; the ensemble mean slopes
for 16 stations (see Supplementary Figure S5) are −26.36 ±38.14
m3s−1/year (red lines) and −1.38 ± 4.81 m3s−1/year (orange lines).
Two stations have an increasing tendency for annual maximum
discharge, while the annual maximum water levels are decreasing:
Dunakiliti (1842.0 river km) and Dunaalmás (1758.1 river km),
see Supplementary Figures S5B, G. The first location is a strongly
regulated section close to a dam and bottom sill, while the second
place is at a more or less free-flowing section. Here the annual
minimum discharges also have an anomalous increasing trend with
a slope of 9.66 m3s−1/year; an explanation requires further research.
The slopes of water level and flow are summarised in Table 1.

Supplementary Figures S7–S9 exhibit the normalized
histograms for sampling time frequencies in semilogarithmic plots.
Similarly to the temporal distributions, no real patterns are visible.
Some histograms have a near-exponential decay for larger gaps,
but others are pretty irregular. Note however, that in almost all
cases small sampling intervals are absolutely dominating in almost
all stations.

Climatic mean values with standard deviations are shown
in Figure 7 for 3-3 representative stations for each day of the
year; the whole sets of hydrometric stations are evaluated
in Supplementary Figures S10–S12. Highly regulated sections
can be recognized easily with wide plateaus and damped
fluctuations (narrow standard deviation bands). Long-time mean
water levels Supplementary Figures S10, S11 have a relatively
weak seasonality with significant fluctuations. Higher levels are
characteristic in late spring and summer, suggesting that the
hydrometeorological circumstances in the upstream sections
(outside Hungary) are the determining factors, indeed. Note the
substantial similarity between the water level and river discharge
mean values for a given station along the Danube; even the fine
structure of the fluctuations is very similar. This is expected; the two
variables are in a functional relationship, as explained above.

3.2 Extracting periods

As described in Section 2, relevant periodicities were
examined by the Lomb-Scargle algorithm (Press and Rybicki,
1989; VanderPlas, 2018), and results are shown for 3-3
representative stations in Figure 8. The same is presented for all
stations in Supplementary Figures S13, S16, S17. The leading period
for all records is obviously 1 year. However, some secondary peaks
are visible in the spectra. Notably but not unexpectedly, the spectra
for Danube stations, both for water levels and river discharges are
practically the same, even in fine details (apart from the units,
of course). The problem of estimating the statistical significance
of candidate periodicities for a number of periodograms is far
from trivial.

We also implemented two Fourier based methods, the first
is the classical power spectrum estimate, the second is the
Welch periodogram. The later is essentially Fourier transforms
in sliding windows, where the estimate is based on averaging
the partial spectra. Figure 9 exhibits illustrative Fourier power
spectra for 3-3 stations. Discharge spectra are not shown
neither here nor in SuppMat, because they are identical with
Danube water levels. Full sets for Fourier and Welch spectra
are shown in Supplementary Figures S14, S15 for the Tisza
river, and in Supplementary Figures S18, S19 for Danube water
levels. All time series are resampled by 1 h steps before employing
the Fourier transforms. It is probably essential that resampling did
not change the total length of time series because of the domination
of high frequency measurements (15 min) with intermittent longer
breaks (up to 25–27 h, typically). The Fourier spectra indicate
weaker peaks in 15 out of the 22 cases with periods of around
2.3 and 4.6 years for the Tisza, and in 15 out of 19 cases with periods
of 1.3–1.5 years for the Danube. Secondary peaks were identified
when their amplitude was at least 1/6 of the main peak or larger.

Whether the observations reflect natural variabilities or there
are some algorithmic artefacts, requires further investigations. The
large widths suggest that such periods are not strict oscillatory
modes but they rather represent quasi-periodicities. Quasi-
periodic oscillations are common in the climate system (see, e.g.,
Kundzewicz et al., 2019; Börgel et al., 2020; Norel et al., 2021).
If it is established that these secondary peaks originate from any
cyclical changes in either land use or climate change that are not
annual in nature, we may get a better understanding of the impact
of these processes on the hydrological cycle. Recently, Briciu and
Mihăilă (2014) identified similar periods in a nearby region (Eastern
Carpathian) by a wavelet technique, 36 hydrographic signals from
the total of 45 exhibited quasi-periodic oscillations between 2.9
and 3.5 years. The authors selected climate oscillation modes with
similar characteristic periods: ArcticOscillation (AOI), EastAtlantic
Oscillation Index (EAOI), East Atlantic/West Russia Oscillation
(EAWROI), NINO3.4, North Atlantic Oscillation Index (NAOI),
Southern Oscillation Index (SOI), and West Pacific Oscillation
Index (WPOI). However, solid explanations with themechanisms of
teleconnections is a difficult task, again (Briciu and Mihăilă, 2014).
Szolgayova et al. (2014) also showed that there are periods other than
annual in the upper Danube (Austria and Slovakia), using a similar
method to the one presented here (wavelet analysis of frequencies),
although the time resolution is much higher: monthly, whereas in
our data it is 12 h. Mares et al. (2020) carried out a wavelet analysis
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FIGURE 7
Long-time (climatic) mean with error bar (orange) for 3-3 representative hydrographic stations along the Tisza and the Danube. (A): Dombrád water
levels (upper Tisza); (B): Tiszafüred water levels (an example of a strongly regulated section); (C): Mindszent water levels (lower Tisza). The same
climatic means are shown for the full set of 22 stations in Supplementary Figure S10. (D) Komárom water levels (upper Danube); (E): Vác water levels
(upper Danube, 88 river km away from Komárom); (F): Baja water levels (lower Danube); (G) Komárom river discharges; (H): Vác river discharges; (I):
Baja river discharges. The same climatic means are shown for the full set of 19 stations in Supplementary Figures S11, S12.

for the Romanian section of the Danube, also similar to our work,
looking for periods other than the annual periodicity. Their data
series had amonthly resolution and a length of 52 years. See Table 2.

3.3 Statistics of 12 h changes in water
levels and river discharges

Time derivatives of a data series have the appealing property
that they are close to be stationer (variability still might change
in time, known as volatility clustering in financial literature).
Water level and discharge change statistics cannot be reliable
at hectic sampling time intervals, therefore empirical histograms
were determined after resampling the original records with a
time step of 12 h. Representative examples are illustrated in
Figure 10, note the semi-logarithmic scales. Full sets are shown in
Supplementary Figures S21–S23. A visual inspection of the curves

suggested that piecewise-exponential fits should work, therefore
we used Equation 2. For the tests. Note that any piecewise
fit is nonlinear, therefore it does not work without providing
appropriate initial guess values for the parameters. Since Equation 2
describes fits with a common breakpoint for the parts (one
for the positive and one for the negative sides of histograms),
these (approximate) locations are also input parameters. Before
the fitting, the negative sides of the histograms were properly
transformed.

The result indicate that behavior is quiet universal for each
station. Usually a broken exponential fit works nicely for both
sides, however in many cases, the negative step sizes (water level
and river discharge drops) exhibit a simple exponential decay.
This behavior is expected. We mentioned that hydrographs do not
represent a stochastic process, actually they are changing smoothly
as described in all related textbook (Rhoads, 2020a; Rhoads, 2020b).
Rising and falling limbs (after a precipitation event or flood
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FIGURE 8
Lomb-Scargle periodograms for 3-3 representative hydrographic stations along the Tisza and the Danube. The horizontal axes are logarithmic. (A):
Dombrád water levels (upper Tisza); (B): Tiszafüred water levels (an example of a strongly regulated section); (C): Mindszent water levels (lower Tisza).
The same periodograms are shown for the full set of 22 stations in Supplementary Figure S13. (D) Komárom water levels (upper Danube); (E): Vác water
levels (upper Danube, 88 river km away from Komárom); (F): Baja water levels (lower Danube); (G) Komárom river discharges; (H): Vác river discharges;
(I): Baja river discharges. The same periodograms are shown for the full set of 19 stations in Supplementary Figures S16, S17.

wave) are steep with larger steps, close to the saturation steps are
much smaller.

As for the fitted parameters, slopes and breaking points are
scattered in a wide range. This is the consequence of large
deviations in gauge zero levels, the shape of river cross sections,
erosional circumstances, etc., station to station.The parameters have
importance at local runoff modeling and prediction, which should
be tuned to local circumstances. Nevertheless such parameters can
be used for calibrations and validations at building models.

3.4 Timing of annual extremes

This point is related to a better understanding the dynamics
of various river basins and the effects of regional climate change.
Blöschl et al. (2017), Blöschl et al. (2019) extracted regional trends

of river “flood” timing and magnitudes in Europe (almost 4,000
records) for five decades from 1960. The data are available at
https://github.com/tuwhydro/ (last accessed on 8th of August,
2023). The term “flood” is consistently used in the paper as a proxy
for the annual maxima of discharges in each calendar year.Themain
result is openly available at https://www.eea.europa.eu/data-and-
maps/figures/observed-regional-trends-of-annual (last accessed on
8th of August, 2023). Different regions are affected by different
primary drivers. 1) Northwestern Europe: Increasing rainfall
and soil moisture. 2) Southern Europe: decreasing precipitation
and increasing evaporation. 3) Eastern–Northeastern Europe:
decreasing precipitation and earlier snowmelt. The area of the
Carpathian Basin belongs to subregion 2 with a decreasing annual
maximum discharge rate tendency of 5%–12% per decade. value.

Our data exhibit a somewhat controversial behavior. Figure 11
illustrates the day of the year where annual maxima are recorder
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FIGURE 9
Unnormalized Fourier power spectra for 3-3 representative hydrographic stations along the Tisza and the Danube. The horizontal axes are logarithmic.
Time series are resampled with a time-step of 1 h (cubic spline fit and downsampling) prior to feeding them to the FFT algorithm. Vertical orange lines
identify periods where the Fourier power is at least one sixth of the maximum value. (A): Dombrád (upper Tisza); (B): Tiszafüred (an example of a
strongly regulated section); (C): Mindszent (lower Tisza). The same power spectra are shown for the full set of 22 stations in Supplementary Figure S14.
(D) Rajka (upper Danube); (E): Nagymaros (upper Danube, 152 river km down from Rajka 152 river km down from Rajka); (F): Baja water levels (lower
Danube). The same periodograms are shown for the full set of 19 stations in Supplementary Figures S16, S17.

TABLE 2 Water yield and water level periodicity studies on the Danube.

Study Method Area Time interval Time step resolution

Szolgayova et al. (2014) Wavelet Austria and Slovakia 105 years Month

Briciu and Mihăilă (2014) Wavelet Romania Decades daily

Mares et al. (2020) Wavelet Romania 52 years Month

Jánosi et al. (2023) Welch and Fourier Hungary 21 years 12 h

bot for the Tisza and Danube, the full data sets are presented
in Supplementary Figures S21, S23. In order to check consistencies
and to avoid the effects of random errors, we determined both
single day and the middle date of non-overlapping 5-day maxima.
The coincidence is almost perfect, also with the Theil-Sen trends
fitted separately. Maxima for the Tisza has an increasing, while
for the Danube a decreasing tendency (with a few exceptions).
Nevertheless, the scatter around the trends is very large. We
evaluated the annual minima as well, examples are in Figure 12.
Particularly interesting is the comparison between the two rivers:
While annual minima happen regularly at the end of the year
along the Tisza, the Danube exhibits two disconnected sets, one
at the beginning and one for the end of the year. Minima have
no significant trends in timing. Further studies are needed to

understand what leads to different trends in the intra-annual
location of the day of maximum discharge for the two rivers,
although again it should be noted that statistically these fits have a
large scatter.

4 Results

The detailed statistical analyses was presented for 22 water level
records along the Tisza River, and for 19× 2 time series for the
Danube (where both water level and river discharge measurements
were available). We intentionally incorporated stations of strong
water management (e.g., close to dams); however, none of the
two lowland river sections in Hungary can be really considered
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FIGURE 10
Histograms of 12 h changes and piecewise-exponential fits for 3-3 representative hydrographic stations along the Tisza and the Danube. Time series
are resampled with a time-step of 12 h (cubic spline fit and downsampling) before backward differences are determined. Black/orange lines denote the
piecewiseexponential fits for the positive/negative sides of the histograms, breaking points are indicated by red/blue symbols (wherever they are
detected). (A): Záhony water level changes (upper Tisza); (B): Tiszafüred water level changes; (C): Szeged water level changes (lower Tisza). The same
histograms with fits are shown for the full set of 22 stations in Supplementary Figure S18. (D) Rajka water level changes (upper Danube); (E): Nagymaros
water level changes (upper Danube, 152 river km down from Rajka); (F): Baja water level changes (lower Danube); (G) Rajka river discharge changes;
(H): Nagymaros river discharge changes; (I): Baja river discharges. The same histograms are shown for the full set of 19 stations in Supplementary 
Figures S19, S20.

as free flow streams. Extensive use for agricultural, industrial and
domestic purposes impact strongly any hydrological parameters.
Furthermore, lowland rivers have very small natural falls which
has a consequence that most of the constructions have far
reaching impacts both upward and downward. The Danube has
a much larger basin, local hydrometeorological circumstances
have dampened effects. The basin of the Tisza is considered
as part of the Danube watershed, however the confluence is
in Serbia, therefore the Hungarian sections are separated for
the two rivers. Particular difficulty is that sampling has a very
hectic timing, but this is more or less common everywhere
in the world.

The main findings are the following (see also Jánosi et al., 2023):

• Maximum water levels and discharges have a decreasing trend
during the past decades.This ismost probably the consequence
of an accelerated climate change during the same period.
Warming decreases winter snow in the mountains, triggers
earlier melting, and increases water holding capacity in the
atmosphere (increases evaporation rates).
• Minimum water levels and discharges obey less significant

trends. This might be related to the fact that almost all rivers
arrive from abroad, and both the Tisza and Danube, and most
of their tributaries origin from mountainous regions.
• Long time climatological means have a rather weak annual

periodicity with very large standard deviations in each
calendar day. Maximum water levels and discharges have
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FIGURE 11
Day of the year for annual maximum water levels for 3-3 representative hydrographic stations along the Tisza and the Danube. Red lines indicate
Theil-Sen linear fits. (A): Dombrád (upper Tisza); (B): Tiszafüred (an example of a strongly regulated section); (C): Mindszent (lower Tisza). The same
statistics are shown for the full set of 22 stations in Supplementary Figure S21. The mean slope for all stations is 2.32 ± 1.49 days/year (which means
almost 50 days of shift during two decades). (D) Rajka (upper Danube); (E): Nagymaros (upper Danube, 152 river km down from Rajka); (F): Baja (lower
Danube). The same statistics are shown for the full set of 19 stations in Supplementary Figure S23. The mean slope for all stations is −2.48 ±
1.07 days/year (which means almost −50 days of shift during two decades).

somewhat higher probability during the first half of a
given year.
• We implemented the Lomb-Scargle algorithm to extract

characteristic oscillations. Besides an annual periodicity, this
procedure cannot clearly resolve smaller amplitude and wide
sub-peaks.
• In order to overcome the problems of strongly uneven

sampling, we introduced a resampling procedure. This
contains two steps: downsampling where the time steps
are short, and cubic interpolation for longer gaps than the
required interval.
• Resampling permitted to test the standard Fourier and Welch

decompositions. The spectra revealed quasi-periodic sub-
components of the signals with peaks 2.3 and 4.6 years for the
Tisza, and about 1.3–1.5 years for theDanube. Further research
is required to check the statistical significances, and to find an
explanation of such smeared oscillations, when they exist.
• Resampling also made possible to evaluate the empirical

frequency distributions of step sizes of water level and
discharge changes. An almost universal behavioris obtanied
with a piecewise exponential distribution. Surprisingly, the
shape is the same for records of strongly regulated sections.
Nevertheless, the fitted parameters change very strongly
site to site.
• Finally, we evaluated possible trends of the timing of annual

extrema. Maximum values have positive tendencies for the

Tisza, while negative ones for the Danube. Annual minima do
not show temporal shifting. The later or earlier peak values
indicate some regional climate changes which are different for
the two basins.

Some limitations exist in this paper, which will impact its
analysis and interpretation for the trend of water level and
discharge. These processes irregularly sampled time series data
from these hydrometric stations, hence causing complications
in analyzing and interpreting trends. Another limitation is
that high-frequency data are only available for a limited time
period. Although this study gives central focus to periods of
the last two to 3 decades, the research summarized in Table 2
covered longer periods; time resolution, however, was also a
limiting factor in that study. At last, particular methodological
approaches are required for the different challenges that unevenly
sampled data.

5 Summary

Empirical studies similar to this research are believed to
contribute to the validation and calibration of local runoff models,
which are widely used in contemporary hydrology and can aid
in flood and inland water protection, agriculture and landscape
management. All the sectors in this list are affected by extreme
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FIGURE 12
Day of the year for annual minimum water levels for 3-3 representative hydrographic stations along the Tisza and the Danube. Red and blue lines
indicate Theil-Sen linear fits. (A): Záhony (upper Tisza); (B): Tiszafüred (an example of a strongly regulated section); (C): Csongrád (lower Tisza). The
same statistics are shown for the full set of 22 stations in Supplementary Figure S22. The mean slope for all stations is 0.29 ± 1.10 days/year (D) Rajka
(upper Danube); (E): Nagymaros (upper Danube, 152 river km down from Rajka); (F): Baja (lower Danube). The same statistics are shown for the full set
of 19 stations in Supplementary Figure S24. Theil-Sen linear fits are plotted separately for the apparent winter-spring (red lines) and late-autumn sets
(blue lines). The mean slopes for all stations are −0.45 ± 0.98 (red) and −0.72 ± 1.34 days/year (blue).

TABLE 3 Table of hydrological studies of some European rivers.

River Article Statistical method Purpose of study

Don Goncharov et al. (2023) Frequency analysis Fish reproduction and climate

Po Montanari (2012) ANOVA, graphical, analytical methods Hydrological regime analysis

Rhine Bosshard et al. (2014) Frequency analysis Climate change impact

Vistula Badora et al. (2023) Frequency analysis, SWAT model Hydrological balance and climate

Volga Schletterer et al. (2019) ANOVA, correlation analysis River management

weather events and climate change itself, so the importance of
this research is evident. The analysis of both water levels and
flow rates is important, as is the appearance of periods in the
data series that differ from the annual periodicity. The studies
summarised in Table 2 also show that the invesigation of the
time series of water yield and water level for the Danube and
the Tisza, but especially the research on recurrent phenomena
different from the annual period is timely and relevant. It helps to
understand the climatic cycles that influence the course of rivers
and are affected by climate change. Other large European rivers,
such as the Volga, the Rhine, the Vistula and the Don, have also
been studied, partly with similar content and purpose (Table 3).
These studies point to the importance of these hydrological studies

for fisheries, conservation of natural systems and mitigation of
climate change.
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