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Extreme rainfall events are frequent, particularly in economically
underdeveloped hilly areas, where conventional hydrological models struggle to
accurately simulate the formation of flash floods. Therefore, this study focuses
on the Daxi River Basin in Guangdong Province. First, CMIP6 precipitation data is
utilized to analyze the future precipitation variations on interannual andmonthly
scales. Compared to the baseline period, the annual precipitation increases
under all three scenarios. Next, design storms with a return period greater
than 2 years are allocated into rainfall patterns. By combining the accumulated
precipitation with the soil moisture content, different distributed hydrological
models are applied to calculate the corresponding flood discharges for different
rainfall events. The results indicate that: 1) Precipitation under the SSP5-8.5
scenario is generally higher than under the SSP1-2.6 and SSP2-4.5 scenarios,
with the SSP1-2.6 scenario showing the mildest increase. 2) The peak flood
simulated by the CREST model are relatively low, at 235.4 m³/s, with fewer
precipitation events covered, which is significantly lower than the simulation
accuracy of the CNFF model. 3) The Daxi River Basin has a low probability of
experiencing flash flood disasters exceeding the 10-year return period in the
period from 2026 to 2070. The above research results will provide important
references for flash flood disaster prevention in similar basins.
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1 Introduction

In recent years, climate change has triggered changes in the state of the hydrological
cycle. In particular, the frequency of extreme precipitation events has increased the
probability of flood risk (Fowler et al., 2021; Zhou et al., 2021). According to the
sixth Assessment of Intergovernmental Panel on Climate Change (IPCC), the increase
in temperature over the next 20 years will be 1.5°C or more,and precipitation has
increased, but with spatial and temporal variability (Zhu et al., 2024) (i.e., In 2021,
summer and fall precipitation led to severe flooding in many places in the north of China.
From July 29 to 1 August 2023, torrential to heavy rainfall occurred in most parts of
Beijing and the central southern region of Tianjin and Hebei, with extraordinarily heavy
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rainfall in some areas, and themaximum rainfall reached 1,003 mm)
The frequent occurrence of extreme precipitation induces severe
flooding (Ma et al., 2024). Flash floods belong to a kind of
flood disaster, which refers to stream and river floods, mudslides,
landslides and other disasters triggered by heavy rainfall in a small
area (usually within a few hundred km2) of a hilly area (Hong et al.,
2013), which is sudden, difficult to forecast and warn, and seriously
hazardous. Therefore, for the defense of flash floods, the prediction
of flash flood trends under future climate scenarios is an important
reference.

Future flash flood prediction is one of the research hotspots
in the field of climate change (Zhang et al., 2023), and
General Circulation Models (GCMs) can better simulate climate
characteristics at annual or seasonal scales, and they are the
main tools for studying future climate change. The Coupled
Model Intercomparison Projec (CMIP), initiated and organized
by World Climate Research Programme’s Working Group on
Coupled Modelling (WGCM) in 1995, has achieved a series of
research results in climate numerical simulation and shared data.
Many scholars at home and abroad use CMIP simulation results
to conduct climate change research for the next 5–10a, which
provides important data support for predictions in the directions
of climate extremes, food security, and sea level rise (Wu and Xin,
2019). Among them, CMIP6 corrects the long-standing problems
of model bias and poor quantification of radiative forcing in
CMIP5 (Song et al., 2021; You et al., 2021). Ridder et al. (2021)
found that the CMIP6 model simulated the combined events of
precipitation and strong winds, drought and heat waves and their
return periods over North America, Europe and Eurasia well.
Kim et al. found that the CMIP6 model was able to capture the
global and regional extreme temperature patterns compared to
the CMIP5 model (Kim et al., 2020). Additionally, precipitation
intensity simulations have been improved in terms of reducing
drought bias. Based on precipitation and temperature from 1985
to 2014, Wu et al. (2023) used 20 CMIP climate patterns to
conduct a comprehensive assessment of the water conservation
area of the Yellow River Basin and verify that its simulation effect
is the best. Dong and Dong. (2021) used CMIP6 and CMIP5 to
simulate and evaluate extreme precipitation in Asia, finding the
polarization of CMIP6’s simulation performance was severe, but
its simulation performance was good. Dai et al. combining the
CMIP6 multi-model averaged data, found that temperature and
precipitation of the Shiyang River Basin in the period of 2023–2,100
showed an increasing trend (Dai et al., 2023). Xu et al. used
CMIP6 to predict future extreme precipitation changes in China.
Under the SSP2-4.5 and SSP5-8.5 scenarios, total precipitation,
maximum 5-day precipitation, and the number of extremely
heavy precipitation days are expected to increase significantly.
However, the drought risk caused by precipitation anomalies is
expected to be alleviated (Xu et al., 2022). With the continuous
development of GCMs, CMIP6 improves the spatial resolution as
well as the simulation capability, and its temperature characteristics
are better than the precipitation characteristics.Meanwhile, different
models exhibit varying simulation capabilities, providing valuable
references for mitigating future disaster risks at local spatial and
temporal scales.

The simulation accuracy of hydrological models is the core
technology for flash flood disaster prevention. Many research

on the mechanism of flash flood runoff mostly focuses on
the aspects of precipitation-infiltration-runoff (Liu and Huang,
2020; Liu et al., 2019). Due to the differentiated topography
and hydrometeorological conditions in different study areas,
coupled with frequent extreme weather and significant urbanization
effects, Hydrological mechanisms such as Underlay surface and
rainfall infiltration have changed, resulting in the complexity and
randomness of hydrological processes such as runoff generation
and confluence, which has caused problems such as calculation
bias in the two-dimensional numerical simulation of flash floods,
so the models targeting different spatiotemporal characteristics
in the same area have been developed and used successively
(Li et al., 2023).Model calculationmethodsmainly include statistical
quantification and hydrological and hydrodynamic methods. The
statistical quantification method is relatively simple, but requires
a large amount of data and is not suitable for small watersheds
in remote mountainous areas prone to flash floods. hydrodynamic
methods can consider the physical formation process of runoff and
require higher accuracy (Wang et al., 2022). It can predict flash
floods in watersheds without data (Chen et al., 2022; Li et al., 2024;
Hao et al., 2023). Hydrological and hydrodynamic models take into
account dynamic characteristics such as motion waves and diffusion
waves, and can better express the spatiotemporal characteristics
of slope runoff. Among them, distributed hydrological models
such as MIKE SHE and SWAT have strong physical foundations
and can be extended to small watersheds Region (Chen et al.,
2022). HEC-HMS and TOPMODEL models are commonly used
in semi-distributed hydrological models, and their parameter
determination is relatively simple. Distributed hydrological models
have been applied and verified in many mountainous watersheds
at home and abroad, showing certain effectiveness and superiority.
For example, Simulation of Spatiotemporal Variable Sources
Mixed Runoff Model and China Flash Flood Hydrological Model
(CNFF), the former is suitable for flash flood simulation in
small mountainous watersheds with diverse topography and
complex runoff mechanisms, and the latter uses modular modeling
technology to integrate various nonlinear runoff generation and
confluence models (He et al., 2024). The algorithm satisfies the
simulation of flood processes in small watersheds in different
mountainous areas.The Coupled Routing and Excess Storage model
(CREST) is a grid-based distributed hydrological model, mainly
used for real-time hydrological simulation, and is suitable for multi-
watershed or small- andmedium-scale watershed simulation at high
resolution (Kan et al., 2017). All in all, selecting appropriate models
for different watersheds is of great significance for improving the
simulation and prediction of hydrological processes.

Under the background of global warming, coupled with the
impact of human activities, extreme precipitation occurs frequently.
The responses of different underlying surfaces to changes in different
climate elements have regional differences, so using appropriate
hydrological models to accurately simulate flash flood processes
can minimize the risk of flash flood disasters. This paper analyzed
the temporal and spatial variation patterns of future precipitation
based on the CMIP6 precipitation data. Then selected different
distributed hydrological models, comprehensively considered the
previous influencing rainfall, conducted simulation comparisons,
and then predicted the changes in flash flood disaster risks under
different future climate scenarios. The aim is to obtain more
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accurate flash flood simulation results to provide a reference for
regional disaster prevention. In recent years, numerous studies have
explored the impacts of climate change on extreme precipitation and
associated flash floods, highlighting the increasing frequency and
intensity of these events. Research has shown that extreme rainfall is
closely linked to secondary disasters such as landslides, debris flows,
and slope failures, particularly inmountainous regionswith complex
topography (Wei et al., 2024; Qiu et al., 2024). The combination of
high-intensity rainfall and human-induced changes to the landscape
exacerbates flood risks. Advances in CMIP6 data and hydrological
models, such as MIKE SHE, SWAT, and CREST, have significantly
improved the simulation of these extreme events, yet challenges
remain in accurately predicting secondary hazards. Addressing
these gaps is critical for enhancing regional flood preparedness
and disaster risk management. The structure of this study is as
follows: following the introduction in Section 1, Section 2 presents
the data and methods employed in this research. It begins with a
description of the study area and proceeds to an overview of data
preprocessing, methodologies, and research framework. Section 3
provides a detailed explanation and discussion of the research
results. Finally, Section 4 concludes the article and offers prospects
for future work.

2 Data and methods

2.1 Study area

Lianping County is located in Heyuan City, Guangdong
Province, with mountains, hills and basins accounting for more
than 90% of the total area of the county, and is a typical
mountainous county (Figure 1). The climate belongs to the
subtropical monsoon climate, the precipitation season is obvious,
concentrated in April to September, the precipitation is more, the
average annual is more than 1,000 mm, and at the same time, it is
affected by the Pacific typhoon, and there are many heavy rains and
floods. The topography of Lianping County is inclined from north
to southeast and southwest, with an average altitude of 693.5 m. The
permanent population is 285,200, and the GDP of Lianping County
in 2023 will be 1062035 million yuan, a year-on-year increase of
4.6%. The Daxi Water Basin is located in Lianping County and
flows into the Xinfeng River, the largest tributary of the Dongjiang
River system. In this paper, the upper reaches of the Daxi River
are mainly selected, with latitude and longitude from 114°32′25″to
114°42′38″east longitude and 24°26′26″to 24°35′12″north latitude,
with a basin area of 175.95 km2. The topography of the basin is
high around the periphery, low in the middle and the drop is
large. The outlet of the basin is located in the southwest. The basin
belongs to the subtropical monsoon climate, and the precipitation
is concentrated from April to September, with an average annual
precipitation of more than 1,000 mm. From May 21 to 23, 1989,
the county suffered a flash flood caused by heavy rainfall, causing
86,800 people to be affected and eight people died; on 23 April 1992,
Lianping County was hit by a heavy rainstorm not seen in a century,
with a rainfall of 223.5 mm in just over 2 hours. On 10 June 2019, a
catastrophic flood occurred in Daxishui, affecting more than 50,000
people and killing 11 people.

2.2 Data preprocessing

The data in this paper mainly include the basic data (DEM, river
network and small watershed data) and monitoring station data of
the Daxi River Basin, the measured precipitation and flow data from
2019 to 2023, and the EC-Earth3 model data from CMIP6 that is
suitable for regional temperature and precipitation simulation in
China is selected (Liu and Huang, 2020; Liu et al., 2019; Li et al.,
2023;Wang et al., 2022). Including the future daily precipitation data
for 2026–2,100 include historical precipitation data from 1961 to
2014, low radiative forcing scenarios under moderate development
(SSP1-2.6), moderate radiative forcing scenarios under local or
inconsistent development (SSP2-4.5), and high radiation forcing
scenarios under high fossil fuel consumption development (SSP5-
8.5) (SSP1-2.6 scenarios for EC-Earth3model data lack precipitation
data for 2,100). Firstly, the CMIP6 data were evaluated and corrected
using the CN05.1 dataset (China Meteorological Forcing Dataset,
version 5.1) from the Climate Change Research Center of the
Chinese Academy of Sciences, along with the daily meteorological
data from the corresponding historical period (1950–2014) as
observation data (Hao et al., 2023; He et al., 2024). The data is a
grid dataset based on the interpolation of daily precipitation and
temperature data from 2,472 surface meteorological observation
stations of the National Meteorological Information Center, with
a resolution of 0.5°×0.5° (Kan et al., 2017). To ensure data
accuracy, outliers in historical datasets were removed, and spatial
interpolation methods were applied to fill missing values. Due to
the different resolutions of the two datasets, spatial downscaling
is required. Considering that the area of the Daxi water basin is
slightly small, the basin station was selected for data processing.
Furthermore, the validation of downscaled data was performed
by comparing it with observed station data within the study area
to ensure reliability and consistency. See Table 1 for details of the
study area data.

2.3 Methods

In this study, China Flash Flood hydrological model (CNFF)
and the Coupled Routing and Excess Storage model (CREST)
were selected. Based on the attributes of natural small watersheds,
CNFF adopts the concept of modularization and hierarchical
architecture, and takes the clusters considering the topological
relationship of the basin water system, high-precision topographic
and geomorphological data as the unit, and is compatible with
the production and confluence characteristics of different climate
types, and constructs a model library of multiple processes of
the water cycle. The model is mainly aimed at the research
of flash flood prevention in small watersheds, and solves the
problems of nonlinear production and confluence simulation
and calculation of high timeliness under the conditions of short
duration and heavy precipitation. In a certain sense, CNFF is
a generalized distributed hydrological model of river basins,
and its hydrological units mainly include seven categories: river
basins, river sections, nodes, water sources, water division,
reservoirs, and depressions. The calculation process mainly
includes five modules: meteorology, runoff, confluence, river
flood evolution, and water conservancy facility regulation,
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FIGURE 1
Location map of study area.

TABLE 1 Data source.

Data type Source Remark

DEM

Chinese Academy of Sciences Resources and
Environmental Science Data Center (https://www.

resdc.cn/)

The resolution is 12.5m

River network data

Small watershed data

Station data It includes 1 hydrological station and 6 rainfall gauge
stations

Design storm grid data The resolution is 1km

Precipitation data

Slope data Extracted from DEM elevation data

Population density data

Land use type data The resolution is 12.5m

Soil type data Chinese Academy of Sciences Resources and
Environmental Science Data Center (https://www.

resdc.cn/)

The resolution is 12.5m

CN05.1 National Meteorological Information Center (http://
data.cma.cn/)

Daily precipitation data from 1961 to 2014

CMIP6 Earth System Grid Federation (https://esgfnode.llnl.
gov/projects/cmip6/)

Daily precipitation data from 1961 to 2014 and 2026 to
2100 under SSP1-2.6, SSP2-4.5 and SSP5-8.5 of
EC-Earth3 models
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and each module selects different algorithms according to the
characteristics of the river basin. Among them, the runoff generation
mainly includes vegetation interception, evapotranspiration, soil
moisture, etc.

The CREST (the Coupled Routing and Excess Storage) model,
jointly developed by the Remote Sensing Hydrometeorology
Laboratory of the United States Weather Service and the University
of Oklahoma, USA, is a grid-based distributed hydrological model,
which is mainly used for global and regional real-time hydrological
simulations, which can be used for multi-basin simulations while
maintaining relatively high computational efficiency, and is also
very suitable for small- and medium-scale watershed simulations
at high resolution. The CREST model divides the study area into
regular grids, and the resolution of the grid is defined by the
user, and on this basis, the temporal and spatial variability of
surface water and groundwater storage and energy is simulated,
which can be applied to multiple scales. The model uses the
variable permeability curve to calculate the runoff generation,
uses the multilinear reservoir to simulate the grid-by-grid surface
and groundwater confluence, and reproduces the surface and
groundwater flow process by coupling the runoff generation
elements and the grid-by-grid confluence structure. The model
can be used for both multi-basin simulation and small- and
medium-scale watershed simulation at high resolution, and has
relatively high computational efficiency. The input data of the
model mainly include hydrological data and basic data (such
as DEM, flow direction, flow pool, slope, etc.), in which the
gridded rainfall data and potential evapotranspiration (PET) are
used as the driving force of the model. Output data (e.g., soil
moisture, surface runoff, subsurface runoff, etc.) can be distributed
output with a grid as a unit or output separately for selected
study sites.

Compared to CNFF, which is designed specifically for small
watersheds and excels in simulating nonlinear hydrological
processes under short-duration and high-intensity precipitation
events, CREST focuses more on larger-scale or long-term
hydrological simulations with a higher degree of computational
efficiency. The modular parameter settings of CNFF allow
for detailed customization and higher accuracy in flash flood
simulations, but they come with higher data and computational
demands. CREST, with its grid-based structure, simplifies
parameterization and is better suited for real-time applications,
though it may sacrifice precision in small, topographically
diverse basins.

At the same time, the Nash-Sutcliffe efficiency coefficient
was selected to quantitatively evaluate the effect of hydrological
simulation. The NSE is particularly suitable for assessing flash
flood simulations due to its ability to compare the goodness of
fit between simulated and observed discharge values over time.
This metric is especially effective in identifying the degree of
error during peak discharge events, which are critical in flash
flood scenarios. By normalizing residual variance to observed
flow variance, NSE emphasizes the performance of models
in reproducing the variability of observed flows, making it a
widely accepted metric in hydrology. The NSCE values can be
divided into four intervals, representing four levels of hydrological
simulation utility: NSCE ≤ 0.5 is poor, 0.50 < NSCE ≤ 0.65
is applicable, 0.65 < NSCE ≤ 0.75 is good, and 0.75 <NSCE

≤ 1.00 is excellent; The formula for calculating this parameter
is given in Equation 1:

NSE = 1−

N

∑
i=1
(Qs,i−Q0,i)

2

N

∑
i=1
(Q0,i−̄Q0)

2

(1)

In the formula: Qs, i is the simulated flow rate at the time of t = i,
m³/s; Qo, i is the measured flow rate at time i, m³/s; Q0 is the average
measured flow rate, m³/s.

The downscaling methods of Global Climate Model (GCMs)
are divided into two categories, dynamic downscaling technique
and Statistical downscaling technique. The computation cost of
dynamic downscaling is large, and the information processing
results for some small changes are poor (Lu et al., 2022).
The statistical downscaling method is simple to calculate, and
the statistical characteristics at different scales often have good
invariance (Maria et al., 2024), and it has a wide range of
applications. Delta downscaling is a type of empirical downscaling
in statistical downscaling, whichmainly superimposes the historical
measured data and change characteristics (relative change or
absolute change) of GCMs data in the same period to the
future climate scenarios of the region, so as to obtain climate
data under future scenarios after downscaling and deviation
correction, which is relatively simple and computationally intensive,
and can reduce the simulated values to specific observation
stations (Keeble et al., 2021). The algorithms for temperature and
precipitation are different in the delta downscale. For precipitation,
the calculation method is to divide the precipitation in the
future forecast period of GCMs by the precipitation in the
historical period to obtain the absolute change rate of the two.
Then, the actual precipitation data of each meteorological station
in the historical period is multiplied by the absolute rate of
change to obtain the precipitation in the future period of the
meteorological station. The formula for calculating this parameter
is given in Equation 2:

P f =
PGf

PGo
Po (2)

In the formula, Pf is the precipitation in the future forecast
period of the downscaled climate model. PGf is the climate model
of future precipitation. PGo is the historical precipitation of the
climate model. Po is the historical measured precipitation of the
meteorological station.

2.4 Research framework

This study introduces, evaluates, and corrects CMIP6
precipitation data, using the daily meteorological data from the
CN05.1 dataset (1950–2014) as the baseline. Firstly, the study
analyzes the characteristics of future precipitation changes on
interannual and intramonthly scales, as well as the potential
impacts of climate change on precipitation patterns. Subsequently,
the CREST model was validated using observed flood data from
2019 to 2023, and a reasonable set of parameters suitable for
the study basin was determined. The Nash efficiency coefficient
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FIGURE 2
Research flow chart.

reached the “acceptable” range, meeting the accuracy requirements
of the hydrological model. Next, future daily precipitation events
exceeding the 2-year return period design storm were selected,
and rainfall pattern allocation was conducted to characterize
different types of precipitation patterns. On this basis, the CREST
model was used to calculate the corresponding flood discharge,
which was then compared with the results from the CNFF. This
comparison was used to predict flash flood risk changes under
the future climate scenarios. The specific technical approach
is shown in Figure 2. This process integrates the use of the CREST
model to compute flood discharges, followed by a comparison
with results from the CNFF Model. The final goal is to predict
the changes in flash flood disaster risk under future climate
scenarios.

3 Results and discussion

3.1 Analysis of future precipitation changes

The average annual precipitation from 1961 to 2014 was
1717.2 mm, showing a fluctuating downward trend, and the
trend rate was −12.4/10a. The annual average value of simulated
precipitation was 1,488.9 mm, which was 13.3% lower than the
observed value, and the trend rate was −20.6/10a. After Delta
downscaling and deviation correction, the annual mean of model
precipitation was 1717.1 mm, and the trend rate was −33.2/10a.
The correction effect is obvious, as shown in Figure 3. Obviously,
the bias-calibrated model simulations deviate from the observations
with little deviation and the trend is consistentwith the observations,
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FIGURE 3
Annual precipitation from observations and simulations from 1961 to 2014.

which can be used to describe precipitation characteristics on a
time scale.

In order to explore the variation characteristics of future
precipitation on the annual and monthly scales under the three
scenarios of climate models SSP1-2.6, SSP2-4.5 and SSP5-8.5,
the study period 2026–2,100 was divided into three stages: T1
(2026–2050), T2 (2051–2075) and T3 (2076–2,100), and the
changes of precipitation values in different stages under the
three scenarios compared with the base period (1961–2014) were
calculated.

Under the three scenarios of SSP1-2.6, SSP2-4.5 and SSP5-
8.5, the average annual precipitation showed an increasing trend,
and its annual average values were 1828.89 mm, 1817.60 mm
and 2024.14 mm, respectively, which increased by 6.5%, 5.8%
and 17.9% compared with the base period. The increase rates
were 0.6 mm/10a, 19.8 mm/10a and 88.1 mm/10a, respectively. The
increase of interannual precipitation was the largest under the SSP5-
8.5 scenario. The increase trend of interannual precipitation was the
most moderate under the SSP1-2.6 scenario, that is, the probability
of future extreme precipitation under the SSP5-8.5 scenario was
higher than that under the SSP2-4.5 and SSP1-2.6 scenarios, which
also indicated that the high pollution concentration caused by high
fossil fuel consumption led to enlarge the growth in precipitation.
As shown in Figure 4, the probability of a minimum value of
precipitation in the SSP1-2.6 scenario is higher than that in the
SSP2-4.5 scenario. Therefore, in the next 75 years, although the
precipitation increases in the SSP1-2.6 scenario compared with that
in the base period is larger than that is in SSP2-4.5 scenario, the trend
rate in the SSP1-2.6 scenario is smaller than that of the SSP2-4.5
scenario. SSP1-2.6. In the SSP1-2.6 scenario, there are more peaks
and troughs of precipitation, while in the SSP2-4.5 scenario, the
upper and lower ranges of the precipitation threshold fluctuate less,
and its growth trend is relatively stable.

Figure 5 shows the monthly changes of precipitation in
each period under the future scenario, and the average annual
precipitation in the three stages of SSP1-2.6, SSP2-4.5 and SSP5-
8.5 all showed an increasing trend, ranging from 3.3% to 32.5%.
The smallest increase is in the period 2026–2050, when it is

56.4 mm under the SSP1-2.6 scenario. The SSP5-8.5 scenario had
the largest increase in the 2076–2,100 period, which was 558.7 mm.
In the future climate simulation data, the month with the most
precipitation occurred in June during the T3 period under the SSP5-
8.5 scenario, which was 519.7 mm. However, the largest monthly
growth was 231.3% in November in the T1 period under the SSP2-
4.5 scenario, and the precipitation in November in the other three
stages showed a downward trend. Under the SSP1-2.6 scenario,
the monthly precipitation in the T1 and T2 phases is mainly
increased compared with the base period, and the decrease months
are concentrated in November, December, January and February.
The precipitation in the T3 stage is mainly decreasing, and the
interannual precipitation in the T3 stage still shows an increasing
trend, but compared with other stages, the increase is the smallest.

Under the SSP2-4.5 scenario, the monthly precipitation
fluctuates most drastically, and the precipitation fluctuation in T1
is opposite to that in T2 and T3, and the T1 stage has the largest
decrease in June, which is only 30.1 mm. Under the SSP5-8.5
scenario, the precipitation fluctuation in the T1 stage is relatively
flat compared with the base period, the precipitation fluctuation
in the T2 and T3 stages is upward, and the increase in the T3
stage is the largest. The precipitation in the three stages is also
declining in February and November. Under the three scenarios,
the precipitation in September exceeded the base period, and
the increase rate was more than 17.2%. In the three scenarios,
the precipitation in January February in the future will decrease
compared with the base period.

Figure 6 shows the seasonal changes of precipitation in each
periodunder the future scenario. In June, July andAugust (summer),
the precipitation decreased only in T1 under the SSP2-4.5 scenario,
while the rest showed an increasing trend and the precipitation in
September, October and November (autumn) showed an increasing
trend. Under the SSP2-4.5 scenario, the precipitation fluctuation in
T1 was the largest, and the seasons with the largest increase and
decrease were in this stage, which were −60.8% in summer and
144.3% in autumn, and extreme precipitation is more likely to occur
during this period. The summer sum of the three phases of SSP1-2.6
and SSP5-8.5 increases the most.
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FIGURE 4
Future annual precipitation changes under three climate scenarios.

FIGURE 5
Monthly variation of precipitation in future periods.
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FIGURE 6
Seasonal changes in precipitation in future periods.

3.2 Flash flood prediction based on CNFF
model

Taking the daily precipitation as the research scale, the 24-h
precipitation of 2-year event (104.63 mm) or more was selected as
the research object, and the precipitation was calculated according
to the area of the Daxi water basin, and then the surface rainfall
of the basin was obtained. The schedule of the sessions is allocated
according to the maximum 1-day rainstorm pattern, and flood
prediction and early warning under future climate scenarios are
also carried out. According to statistics, there were 6, 7 and 35
events under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios where
the daily precipitation reached 2-year event. The 24-h rainfall
pattern was used to distribute the rainfall, and the cumulative
rainfall in the first 3 days of precipitation was calculated, and the
soil moisture in the previous period was determined according
to the accumulated rainfall in the previous period. In the SSP2-
4.5 scenario, the 20960623 session and the 20960624 sessions
will be calculated according to the same session due to the time
continuity, and two peak flows will be obtained. Similarly, under
the SSP5-8.5 scenario, 20710612–20710613, 20771029–20771030,
20820629–20820630-20820701 and 21000623–21000624-21000625
will be counted as the same session. Based on the design rainfall
and the distribution of the maximum daily rainfall process in the
region, the design flood discharges for six recurrence intervals were
calculated, thereby determining the flood recurrence characteristics
of the river reach. Specifically, the peak discharges for different
recurrence intervals range from 120 m³/s to 1,053.3 m³/s, with a
2-year recurrence interval design flood discharge of 120 m³/s, 5-
year recurrence interval at 302.2 m³/s, 10-year recurrence interval
at 498 m³/s, 50-year recurrence interval at 883.8 m³/s, and 100-
year recurrence interval at 1,053.3 m³/s. According to the design

flood discharges in ascending order, warning levels from I to VI
were assigned to the six recurrence intervals. Subsequently, the
China Hydrological Model was used to simulate and predict typical
flood events.

In the previous stage, based on the measured precipitation
and flow data from 2019 to 2023, the parameters of the CNFF
were calibrated and verified, and the average Nash coefficients were
obtained at 0.79 and 0.89 in the process of model calibration and
validation, so as to verify the good applicability of CNFF. Figure 7
shows the early warning analysis of flood response under future
climate scenarios (SSP1-2.6 and SSP2-4.5), in which 4 of the
six precipitation events under the SSP1-2.6 scenario reached the
warning level, which were I., II., I., and III., respectively, and the
largest flood peak flow was 20820416, with a frequency of nearly
100-year event. Under the SSP2-4.5 scenario, three of the seven
precipitation events reached the warning level, which were II., II.,
III., respectively, and the peak flowof 20960624 session can reach 10-
year event. Under the SSP5-8.5 scenario, 19 of the 35 precipitation
events reached the warning level, and grades I., II., III., and IV
have 8, 9, 1, and 1 game, respectively, and the peak flood flow of
21000625 session reached 20–50-year event. Overall, the frequency
of precipitation in the 35 sessions ranged from 2 to 20-year event,
and the maximum precipitation was the 20940827 sessions of 20-
year event, about 220.6 mm.However, the peak flood flow generated
by it is only close to 5-year event; The maximum peak flow is
810.5 m3/s at 21000623–21000624-21000625. In addition, if the
continuous precipitation exceeds 2-year event, the frequency of the
peak floodflowcalculated by the samefield has increased.Obviously,
continuous precipitation increases the probability of flooding. The
26 flood peak flows reached the early warning level, and the floods
reaching levels I and II were higher than those of III and IV, and
the sensitivity of previous precipitation and early soil moisture
to peak flood flow was significant. Under the scenarios of SSP1-
2.6, SSP2-4.5 and SSP5-8.5, the number of sessions that reached
the warning level mostly occurred in June, with a probability of
56%. In addition, the floods of 10-year event or more occurred in
the T3 (1976–2,100) stage, which is consistent with the positive
trend of annual precipitation change under the three scenarios.
Therefore, from 2026 to 2070, there will be no 10-year flood disasters
in the Daxi Water Basin, but attention should be paid to debris
flows, landslides and other chain disasters caused by low-frequency
floods. Under the SSP1-2.6 and SSP2-4.5 scenarios, the probability
of flooding in April is higher, while in the SSP5-8.5 scenario,
the probability of extreme disasters will be increased due to high
pollution emissions, and the probability of flooding is much higher
than that of the other two scenarios. Under the SSP5-8.5 scenario,
flash flood flows triggered by extreme precipitation events can reach
as high as 1,053.3 m³/s. This not only leads to flooding disasters
within the watershed but may also trigger a series of secondary
disasters, such as landslides and mudslides. The combination of
soil saturation caused by extreme precipitation and the scouring
effect of flash floods reduces the stability of mountain slopes,
making landslides more likely. Meanwhile, the rapidly moving
mudslides further exacerbate the destruction risk in downstream
areas. These secondary disasters are often sudden and destructive,
posing significant threats to transportation, infrastructure, and the
safety of residents’ lives and property.
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FIGURE 7
Analysis of flood response and early warning under future climate scenarios (SSP1-2.6、SSP2-4.5、SSP5-8.5) based on CNFF.

3.3 Flash flood prediction based on CREST
model

The river flow data and precipitation data from 2021 to 2022
were selected for simulation, and the model parameters were
calibrated from 9 April 2021 to 1 July 2022 according to the
time series. Figure 8 shows the continuous flow process used for
calibration, the Nash coefficient is in the “applicable” range, the
simulated flow is smaller than the measured flow, especially the
fitting of the peak is poor, the relative deviation between the
simulated flow and the measured flow is 199% at the maximum,
and the minimum is 0, and the peak time is advanced, but the
change trend is more consistent. Using the data from July 2 to 1
September 2022 for simulation verification, the Nash coefficient is

also in the “applicable” range, and the overall trend of simulated flow
is consistent with that of measured flow, but the relative error of
peak flow is large (Figure 9). Based on simulation and validation,
the CREST model simulates the flow trend well in the long-term
series simulation of small watersheds, while the error of the peak
simulation is larger.

Combined with the calibrated and validated CREST model,
the 24-hour precipitation of 2-year event (104.63 mm) or more
was selected as the research object, and then the flood prediction
and early warning under future climate scenarios were carried out.
As shown in Figure 10 below, under the three scenarios, there were
11 sessions with flow exceeding the 2-year event, but no session
with rainfall reaching the 5-year event. Under the SSP2-4.5 scenario,
the flow of precipitation exceeded 120 m3/s in two events, and the
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FIGURE 8
The continuous flow process of calibration period.

FIGURE 9
The continuous flow process of verification period.

peak flow of 20720403 was the largest. Under the SSP5-8.5 scenario,
nine of the 35 precipitation events reached the warning level, and
the maximum precipitation was 21000625, about 231 m3/s. Under
the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios, the probability of
reaching the warning level is 23%, and most of the floods occurred
in the T3 (1976–2,100) stage, which is consistent with the annual
precipitation trend.

Combined with the above analysis, it can be seen that in the
simulation of the two hydrological models, the relative error of
12 sessions is within 20%, and the overall gap is large, whilst
the flow simulation value of CNFF model is higher than that of
the CREST model, with the former reaching 810.5 m3/s and the

latter only 235.38 m3/s. This may be due to the fact that CNFF
model focuses on the simulation of flash floods in small watersheds,
which is more advantageous in the simulation of short time series.
In addition, the CREST model is primarily designed for long-
term series simulations, where it performs reliably in capturing the
overall flow trends over extended periods. However, its ability to
accurately simulate peak flow in short-term or extreme precipitation
events is limited, particularly when precipitation intensity and
runoff responses are more localized and rapid. The CREST model
fails to fully capture the complexity of hydrological dynamics in
small watersheds during extreme events, which helps explain why
it underestimates peak flows and shows significant differences
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FIGURE 10
Analysis of flood response and early warning under future climate scenarios (SSP1-2.6、SSP2-4.5、SSP5-8.5) based on the CREST model.

compared to the CNFF model, which is specifically designed
for flash flood simulations in small watersheds. Therefore, while
the CREST model provides reliable results in long-term trend
analysis, its performance in peak flood prediction is less accurate,
necessitating the use of other models or optimized calibration to
obtain more accurate short-term predictions.

4 Conclusion

Accurate simulation and risk prediction of flash flood cultural
processes in future scenarios are crucial for flash flood defense.
Based on CMIP6 precipitation data, this paper selects two
distributed hydrological models, namely, CNFF and CREST, to
predict the changes of flash flooddisaster risk under different climate
scenarios in the future. In the analysis of future precipitation trends,

the precipitation under the SSP5-8.5 scenario is higher than that
under the SSP1-2.6 and SSP2-4.5 scenarios. Compared with the
SSP1-2.6 scenario in the base period, the annual rainfall increase
is more than that in the SSP2-4.5 scenario, but the increase is the
most modest.

According to CNFF, a total of 26 flood peaks reached the early
warning level, amongst which the floods reaching levels I and II
were higher than those of III and IV, and the sensitivity of previous
precipitation and early soil moisture to the peak flood flow was
significant, and themaximumpeak flood flow occurred in 21000625
times, which was 810.5 m3/s (20–50-year event).

Based on the CREST model, a total of 13 precipitation peaks
reached the warning level, all of which were Level I. flood
warnings, and the maximum number of simulated peak floods was
235.38 m3/s. The simulation results of the two models are quite
different, and only 12 sessions have a relative error of less than 20%,
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which is mainly related to the model structure and data processing.
Based on the results of this study, it is recommended to establish a
dynamic flood early warning system in the basin, with a particular
focus on enhancing monitoring and prevention efforts in June. At
the same time, due to the limitations of time and data collection,
multiple climate models, different downscaling methods, and high-
resolution data can be used in follow-up research to further improve
simulation accuracy.
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