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Using ERA-5 LAND reanalysis
rainfall data to better evaluate
the performance of the regional
shallow landslide early warning
system of Piemonte
(north-western Italy) in the
context of climate change

Valentina Botto, Davide Tiranti*, Simona Barbarino and
Christian Ronchi

Department of Natural and Environmental Risks, Regional Agency of Environmental Protection of
Piemonte (ARPA Piemonte), Turin, Italy

To correctly understand how and whether climate change has influenced
the behavior of shallow landslide events over the last century, it is essential
to carefully identify the historical series of phenomena and their respective
triggering causes, as well as to accurately select the most appropriate analytical
tools to minimize the degree of uncertainty in statistical correlation of causes
and effects. Shallow landslide events occurring from 1960 to 2023 in Piemonte
(NW Italy) are considered here, for which the primary triggering cause is
represented by rainfall events, with a negligible contribution from antecedent
precipitations. This paper is an update of a previous study, adding to the analysis
recent widespread landslide events covering a wider time range with new
precipitation data (additional 4 years). The primary difference lies in the use
of a different method to analyze the rainfall responsible for the occurrence
of shallow landslides. In particular, the results obtained for 24 and 48 h
rainfall durations, when compared with the triggering thresholds of the R-
SLEWS (previously employed the Optimal Interpolation Method), are verified
using new and more flexible method for reconstructing triggering rainfall
based on ERA5-Land hourly precipitation data. The new approach moderately
improves the identification of actual triggering rainfall over 24 h but is less
performant when it comes to identifying triggering shallow landslides over
48 h. Where no significant improvements in the detection of rainfall-inducing
shallow landslide events are obtained, the method can still be effectively used
in areas with a sparser rain gauge network, which can rely less on observed
precipitation data.
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1 Introduction

Shallow landslides occurrence directly depends on rainfall
events and is not influenced by antecedent precipitations, including
water contribution by snowmelt, as demonstrated by Tiranti and
Rabuffetti (2010), Cremonini and Tiranti (2018) and Tiranti et al.
(2019). For this reason, shallow landslide events in Piemonte are
directly driven by rainfall regime characteristics at regional scale
and related variations in intensity and spatiotemporal distribution
(Stoffel et al., 2014; Tiranti and Ronchi, 2023).

When occurred, changes in shallow landslide events behavior
are strictly dependent on alterations in precipitation patterns
which, in some cases, can be attributed to climate changes
at local scale, as reported in many recent scientific papers
focused on shifting rainfall trends in Italy (Brunetti et al., 2004;
Picarelli et al., 2015; Libertino et al., 2018; Gentilucci et al., 2019;
Mazzoglio et al., 2020; Moccia et al., 2021).

However, the phenomena observed at national extension do not
fully represent the dynamics occurring at regional scales, where
substantial differences can be identified both in terms of changes in
precipitation trends and, consequently, in the occurrence (intensity,
seasonality and spatiotemporal distribution) of shallow landslide
events (Borgatti and Soldati, 2010; Gariano et al., 2015; Gariano and
Guzzetti, 2016; Gariano et al., 2018; Tonini et al., 2022; Tiranti and
Ronchi, 2023).

In order to minimize the uncertainty associated with the
attribution of triggering rainfall and to comprehensively understand
the actual relationships between precipitation trends and shallow
landslide events, as well as their interdependent variations over time,
it is essential to accurately identify the best approach characterized
by the least uncertainty to be employed in statistical analyses.

In a previous study, Tiranti and Ronchi (2023) examined
the effectiveness of the triggering thresholds employed in the
development of the Regional Shallow Landslide Early Warning
System (R-SLEWS) for different geological and geomorphological
environments (Alps, Apennines, Turin hill and Tertiary Piemonte
Basin - TPB) in the Piemonte region. The analysis, considering
the average landslide triggering threshold values for 24 and 48-h
duration with respective reference values of 120 mm and 170 mm
for the mountains (Alps), and 70 mm and 80 mm for the hills
(Turin Hill, TPB and Apennines foothill), is derived from the R-
SLEWS “Shallow LandslideOccurrence Prediction System” (SLOPS)
operating in Piemonte since 2018 (Tiranti et al., 2019). The analysis
compared 120 shallow landslide events recorded between 1960 and
2019 with daily precipitation data interpolated using the Optimal
Interpolation (OI) method (Kalnay, 2003) over the same timeframe.
The study reported a hit rate of 68%, indicating that the existing
triggering thresholds used in the R-SLEWS are reliable to both
mountainous and hilly areas throughout the entire study period.

However, a significant limitation of this research was the coarse
temporal resolution of the precipitation dataset, which was limited
to 24-h intervals (from 00:00 to 23:59 UTC). Consequently, this
framework is inadequate for evaluating the validity of the triggering
thresholds over shorter timeframes (e.g., 6 or 12 h) and does not
facilitate the analysis of precipitation events occurring over two
consecutive days that do not exceed the 48-h threshold.

In this study, we used ERA5-Land hourly precipitation data,
applying daily quantile mapping to appropriately correct biases, and

TABLE 1 Shallow landslide event severity class adopted to quantify the
landslide events’ intensity based on landslides’ range numbers occurred
during a single rainfall event.

Landslide event severity
class

Landslides number range

1 - Extremely Low 1–50

2 - Very Low >50–100

3 - Low >100–200

4 - Moderate >200–500

5 - High >500–2,000

6 - Very High >2,000–5,000

7 - Exceptionally High >5,000–10,000 and upper

implement 24-h and 48-h moving windows to enhance temporal
resolution. The primary objectives of this research are double: (1)
to verify the effectiveness of the R-SLEWS triggering thresholds
by specifically focusing of rainfall events exceeding the 24 h/48 h
threshold but developing on two or more consecutive days, and
(2) to evaluate the feasibility of employing large-scale satellite data
for assessing and forecasting slope phenomena at regional and
local scale.

2 Materials and methods

2.1 Updated shallow landslide events
framework

To improve the results obtained by Tiranti and Ronchi (2023),
we considered an updated and extended analysis that encompasses
123 widespread landslide events from 1960 to 2023 (collected
from historical archive of national newspaper “La Stampa” - http://
www.archiviolastampa.it - and from the regional technical reports
archive - https://www.arpa.piemonte.it/ricerca/pubblicazioni?
field_tema_target_id=18), distinguishing shallow landslide events
through a classification into seven severity classes related to the
number of landslides that occurred during a rainfall event (Table 1).

A weak upward trend is highlighted from 1960 to 2023,
indicating that shallow landslide events are progressively becoming
more intense in terms of the number of landslides occurring during
a single rainfall event, considering landslide events having a severity
class ≥4 (moderate or higher) (Figure 1A).

On the contrary, the number of shallow landslide events shows
a decreasing trend in the same time interval divided into five-year
periods, as illustrated in Figure 1B.

2.2 ERA5-land precipitation data
preparation

We used ERA5-Land hourly precipitation data from 1 January
1960, to 31 December 2023, for Piemonte and neighboring areas
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FIGURE 1
(A) Shallow landslide events temporal distribution (from 1960 to 2023) grouped by 5-year periods having a severity class ≥4 showing a weak increasing
trend. (B) Shallow landslide events occurred from 1960 to 2023 grouped by 5-year periods showing a decreasing trend.

(longitude: 6.5°E to 9.5°E; latitude: 44°N to 46.5°N), sourced from
the Copernicus Climate Data Store. For a preliminary validation of
applied bias correction technique, the hourly data were aggregated

into daily cumulative precipitation to match the temporal resolution
of the regional dataset developed by the Regional Agency for
Environmental Protection of Piemonte (ARPA Piemonte), which
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uses OI techniques. The OI dataset contains daily cumulative
precipitation (along with maximum and minimum temperatures,
not used in this study) from 1959 onwards, on a 0.125° grid (∼15 km
resolution) covering the Piemonte region.TheERA5-Land datawere
interpolated onto the OI grid points using the “remapcon” function
provided by theClimateDataOperators toolset (Schulzweida, 2023).

To minimize biases in the ERA5-Land data, robust Quantile
Mapping (QM) was applied daily, based on the 1991–2020
climatological reference period, using the fitQmapRQUANT
function in the “qmap” package in R software (Gudmundsson et al.,
2012). To evaluate the performance of QMwe computed and plotted
(see Figure 2A of Section 3) the average monthly precipitation over
the entire study period. For further validation at a finer scale, we
applied a geographical mask for the Piemonte region to both the
ERA5-Land dataset and the adjusted dataset. For both, we calculated
the mean daily regional precipitation for each day from 1 January
1960, to 31 December 2023. In order to test the performance of
each dataset after QM bias correction in recognizing wet (≥1 mm
rain) vs. dry (<1 mm rain) days, contingency tables were calculated,
performance metrics were computed, and a performance diagram
was plotted (see Figure 2B of Section 3) using the “verification”
package in R software, with the OI dataset serving as the reference.

After checking the validity of daily QM for correcting biases
in ERA5-Land data, 24-h rolling cumulative precipitation totals
were calculated for all possible 24-h windows (e.g., 00:00–23:59;
01:00–00:59 D+1; 02:00–01:59 D+1, etc.), creating 24 distinct
datasets.This stepwas decisive for testing the R-SLEWSof Piemonte,
particularly for rainfall events that last for several days, where the
total precipitation over a 24-h window might exceed the threshold,
even if individual days do not. The rolling windows were essential
to capture events where the cumulative precipitation exceeds the
threshold outside of the standard 00:00–23:59 timeframe, ensuring
that no significant events were overlooked due to the fixed daily
boundary. These events, which might exceed landslide-triggering
thresholds but go undetected by standard daily 00:00–23:59 UTC
precipitation data, are now accounted for by this rolling approach.
The QM-corrected coefficients were applied to each of 24-h
datasets to align the ERA5-Land data with the observed OI
precipitation, ensuring consistency across all datasets used for
validation and modeling. The treatment of the climate datasets
described in this paragraph was performed using the Climate Data
Operators (Schulzweida, 2023).

2.3 Triggering threshold verification

Each of the 24 dataset was then analyzed to assess their
ability to predict shallow landslide events triggered by rainfall.
For each dataset, we identified the dates when the average 24-h
cumulative precipitation exceeded the trigger thresholds defined
by the R-SLEWS developed by Tiranti et al. (2019): 70 mm for
hilly areas and 120 mm for mountainous areas. These dates were
subsequently compared against a database of 120 shallow landslide
events, collected from technical reports and newspaper archives. It
is important to note that some of these landslide events were very
widespread and affected both mountainous and hilly areas. For the
purposes of this study, these widespread events were also divided
into 179 sub-events (fragmenting a single event into sub-events

based on the geographical environment involved) and analyzed
individually.

In the updated study here presented, the dataset was composed
of 185 sub-events derived from a total of 123 widespread events,
adding to the previous 120 events those that occurred between
2020 and 2023:

• 2–3 October 2020: the landslide event involved both Alps and
TPB environments with a range of shallow landslides between
500 and 1,000 (high severity class);

• 13 July 2021: the landslide event involved Alpine environment
with a range of shallow landslides between 50 and 100 (very low
severity class);

• 19–21 May 2023: the landslide event involved Alps, Turin Hill
and TPB areas with a range of shallow landslides between 200
and 500 (moderate severity class).

For each 24-h dataset, we applied an elevation mask to extract
precipitation data for areas at elevations between 400 and 700 m
asl (designated as “hills”) and higher than 700 m asl (designated
as “mountains”). For each dataset, we generated a list of dates
on which precipitation exceeded the triggering threshold (either
70 mm or 120 mm, depending on elevation and related geological
features) within moving 24-h windows. These lists were then
automatically cross-referenced with the dataset of shallow landslide
events compiled for Piemonte to identify all matches within
each 24-h window. We then refined the results by removing any
duplicated dates.

To further explore the detection capabilities of our approach,
we applied running sums to each of the 24 datasets. This allowed
us to obtain cumulative sums over two consecutive timesteps, for
each dataset. Such data were then used to compile 48 datasets, each
covering a time window of 48 h (00:00 D – 23:59 D+1; 01:00 D +
00:59 D+2, and so on). From each dataset we then extracted list
of dates on which precipitation exceeded the triggering threshold
(either 80 mm or 170 mm, depending on elevation and geological
features) withinmoving 48-h windows. After cross-referencing such
lists with the shallow landslide dataset to identify all matches, the
results were then refined by removing any duplicated dates.

The final output of our analyses, for both mountainous and hilly
regions, was a list of dates on which bias-corrected precipitation
surpassed the triggering thresholds, coinciding with an observed
shallow landslide event. In this study, if a shallow landslide event
was widespread and extended over multiple consecutive days, we
considered it as successfully identified if the triggering thresholdwas
exceeded on at least 1 day during the event duration.

3 Results

3.1 Quantile mapping evaluation

Mean monthly precipitation of the OI dataset, the ERA5-Land
dataset and the QM-corrected dataset are represented in Figure 2A.
Raw ERA5-Land data generally capture the observed precipitation
patterns from the OI dataset, correctly identifying May, October,
and November as the wettest months. However, ERA5-Land
systematically overestimates averagemonthly precipitation (Pearson
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FIGURE 2
(A) Comparison of average monthly precipitation for the period 1960–2023 for the OI dataset derived from observed rainfall (solid line), the ERA5-Land
dataset (dashed line) and the bias-corrected dataset used for shallow landslide detection (dotted line). (B) Performance diagram comparing the ability
of detecting wet and dry days between different dataset (black dot: OI data vs. ERA5-Land data; black square: OI data vs. bias corrected data).

correlation coefficient: 0.88; RMSE: 33.82), with this overestimation
being less pronounced in spring (MAM) and fall (SON) but
markedly higher in summer (JJA) and winter (DJF). The application
of QM to the ERA5-Land data noticeably reduces these biases and

alignswith the trends and values observed in theOI dataset (Pearson
correlation coefficient: 0.96, RMSE: 9.03).

The effectiveness of daily QM in reducing biases is confirmed
when the analyses are repeated for the mean daily regional
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precipitation, in order to evaluate the ability to distinguish wet
and dry days. The QM-corrected dataset, when compared to the
observed data, exhibits a high correlation (Pearson correlation
coefficient: 80%),with aRMSEof 4.43 mmand a SD of 6.98 mm.The
performance diagram of the bias-corrected dataset in identifying
wet vs. dry days is represented in Figure 2B. The statistical metrics
(POD: 0.76; SR: 0.73; CSI 0.60; bias: 1.04) confirm that the bias-
corrected dataset is reasonably accurate in detecting and forecasting
precipitation; notably, the bias value indicates that theQM-corrected
dataset does not significantly over-estimates or under-estimates the
number of wet days (Roebber, 2009).

Based on these results, daily QM emerges as an acceptable
approach for bias correction of ERA5-Land precipitation data over
Piemonte, showing good skills in capturing the natural variability
of rainfall events. Consequently, the QM indices calculated using
daily QM were applied to obtain the 24-h rolling cumulative
precipitation.

3.2 Triggering threshold identification and
comparison with shallow landslide events
database

Following the approach of Tiranti and Ronchi (2023), we
categorized the landslide events based on their geographical setting
into two groups: Alpine areas (mainly characterized by crystalline
bedrocks) and Apennines/hilly areas (mainly characterized by
sedimentary bedrocks). The latter group includes all shallow
landslide events that occurred in the TPB, the Turin hills, and the
Apennines foothill. Widespread shallow landslide events affecting
multiple environments were divided into sub-events, which were
then grouped based on the specific environment where each sub-
event took place and treated accordingly. Final shallow landslide
dataset included 123 events, that could further be subdivided in
87 sub-events in Alpine environments, and 84 sub-events in the
hilly/Apennines environments (of which: 8 in the Apennines, 13 in
the Turin hill, 77 in the TPB).

New approach allowed to correctly identify 61 shallow landslide
events based on 24-h cumulated rainfall, out of the 123 collected
in the landslide database of Piemonte. We correctly identified 33
shallow landslide events taking place in Alpine areas, and 49 taking
place in the hills. Interestingly, the detection capability was only
marginally increased by the application of sliding windows: daily
cumulated rainfall between 00:00 and 23:59 UTC allowed to detect
59 events, while the analysis on different 24-h sliding windows
provided only two additional events. Remarkably, such additional
events were observed in the data regardingAlpine areas, triggered by
heavy precipitations (exceeding 120 mm/24 h). The sliding window
approach, on the other hand, had no appreciable effect on the
detection of events taking place in hilly areas, which can be triggered
by less intense rainfall (>70 mm/24 h).

When 48-h periods were considered, we successfully identified
68 events (of which 34 in the mountains and 54 in hilly areas).
Once again, the application of sliding 48-h windows did not
impact the detection of events in the hilly areas, while it sensibly
improved the performance in Alpine areas (6 additional events).
Only when 24-h periods and 48-h periods were pooled were we
able to correctly identify 73 events, representing nearly 60% of the

TABLE 2 Performance metrics of hits and misses for Hills and Mountain
subevents, as well as all events combined, analyzed over 24-h, 48-h, and
combined timeframes.

Duration Hits Misses

24-h

Hills subevents 49 (58.3%) 35 (41.7%)

Mountain subevents 33 (37.9%) 54 (62.1%)

All events 61 (49.6%) 62 (50.4%)

48-h

Hills subevents 54 (64.3%) 30 (35.7%)

Mountain subevents 34 (39.1%) 53 (60.9%)

All events 68 (55.3%) 55 (44.7%)

24 + 48-h COMBINED

Hills subevents 56 (63.7%) 28 (33.3%)

Mountain subevents 39 (44.8%) 48 (55.2%)

All events 73 (59.3%) 50 (40.7%)

shallow land slide events recorded in our dataset. Table 2 shows
in details the number of hits and misses alarms we obtained with
our procedure.

4 Discussion

Annual and seasonal cumulative rainfall in Piemonte has
remained relatively stable over recent decades. However, a slight
decrease in the number of rainy days has been observed,
suggesting that precipitation events have become less frequent
but more intense (ARPA Piemonte, 2020). This trend aligns with
the observed behavior of shallow landslides in the region, which
have decreased in frequency but increased in severity between
1960 and 2023.

Shallow landslides are among the most hazardous natural
phenomena, causing significant infrastructure damage and high
casualty rates. A reliable R-SLEWS is therefore critical to predict
such events and mitigate associated risks. Since 2019, ARPA
Piemonte has adopted the R-SLEWS SLOPS (Tiranti et al., 2019)
for this purpose. Recent back-analyses using optimally interpolated
precipitation data revealed that SLOPS achieves a detection rate
of 68% for 48-h rainfall thresholds but is less effective for 24-h
thresholds (hit rate: 47.5%) (Tiranti and Ronchi, 2023).

This study extends previous research by incorporating a
larger dataset of shallow landslides and utilizing modelled hourly
precipitation data from the ERA5-Land database. To reduce
biases and ensure comparability with observed precipitation
measurements, we applied daily QM. This research represents the
first use of bias-corrected ERA5-Land data for a regional back-
analysis of shallow landslides, providing novel insights into the
potential of reanalysis data for such applications.

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1536277
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Botto et al. 10.3389/feart.2024.1536277

The bias-corrected ERA5-Land dataset demonstrated hit
rates of approximately 50% for 24-h windows and 55% for 48-h
windows. Combining both timeframes improved the hit rate to
around 60%. However, these results reveal significant variability
based on the elevation of landslide detachment zones. For Alpine
events, hit rates ranged from 38% to 45%, while for hilly regions,
they were notably higher, between 58% and 64%. This disparity
underscores the spatial and temporal variability of precipitation
patterns and the challenges of accurately modeling such
processes.

Compared to interpolated observational data used in the
previous work, the ERA5-Land dataset, despite bias correction,
exhibited lower detection capabilities.This discrepancymight be due
to the fact that the regional rain gauge network is well developed
and collects continuous data series since 1958. With approximately
250 rain gauges distributed across various sloped environments
and altitudes, the rain gauge network provides detailed coverage of
most rainfall events (although some very localized convective event
may be missed), including interpolations for areas without direct
measurements. Conversely, ERA5-Land, derived from a reanalysis
of large-scale rainfall data, may incorporate uncertainties and biases,
particularly in complex terrains like the Alps. Hence, while ERA5-
Land provides hourly estimates of numerous variables at a 10 km
spatial resolution, its numerical model-based nature cannot fully
match the granularity of observational datasets in regionswith dense
station networks.

Validation studies of ERA5-Land precipitation data are still
limited. A recent study in mainland China (Jintao et al., 2022) found
that ERA5-Land accurately represents rainfall in temperate climates
but underperforms in high-mountain regions. Similarly, validation
over Spain (1951–2020) revealed that ERA5 and ERA5-Land data
detect moderate precipitation events (≤20 mm/day) effectively but
underestimate heavier precipitation (Gomis-Cebolla et al., 2023).
These findings are consistent with our results, where ERA5-Land
underrepresents landslides triggered by intense rainfall at higher
elevations.

To align modeled data with local observations, we employed
QM, which identifies quantile-dependent transformations to
minimize biases in modeled variables (Gudmundsson et al.,
2012). While QM is widely used to improve the representation
of precipitation extremes (Tani and Gobiet, 2019), it faces
limitations, especially for rare high-intensity events.These are poorly
represented in calibration datasets, leading to underrepresentation
in bias-corrected datasets (Feigenwinter et al., 2018). This limitation
likely explains the lower detection capability for shallow landslides
in Alpine regions.

Another limitation of QM lies in its spatial representativeness.
In areas with complex topography, such as the Alps, the coarse
resolution of climate models may fail to capture local-scale
variability accurately (Feigenwinter et al., 2018). Additionally,
adopted QM correction function was calibrated on data from the
1991–2020 period and applied to the 1960–2023 dataset, implicitly
assuming that biases and correction functions remain temporally
stationary, but in a changing climate this assumption might
introduces uncertainties. Despite these challenges, we validated
the QM implementation thoroughly and confirmed its overall
effectiveness, though some inherent limitationsmight not have been
entirely mitigated.

Finally, we adopted a sliding window approach to leverage
the high temporal resolution of ERA5-Land data. By calculating
cumulative 24-h and 48-h rainfall totals for each day, this
method improved landslide detection in Alpine regions by 6%
(24-h) and 17% (48-h) but had no impact on hilly areas. The
sliding window approach effectively captures precipitation events
spanning consecutive days, which is particularly advantageous in
mountainous regions where rainfall patterns are more variable,
and triggering thresholds are higher. By providing a more
comprehensive representation of cumulative rainfall, the sliding
window approach partially compensates for the limitations of QM
in mountainous areas, enhancing landslide detection driven by
aggregated precipitation events that might otherwise be missed by
rigid daily boundaries.

5 Conclusion

Despite the higher temporal and spatial resolution, ERA5-Land
rain data are less reliable than OI data derived from rain gauges
in identifying rainfall events that trigger shallow landslides in
Piemonte over the last 63 years. However, despite these limitations,
the correction of ERA5-Land hourly rainfall data with QM remains
a valuable tool, especially in regions with sparse instrumental
networks. In such areas, it can provide an alternative means of
evaluating precipitation fields, not only for identifying rainfall-
induced shallow landslides but also for other applications that
might benefit from the back-analysis of climatic data, including
model validation and insurance evaluations following extreme
weather events.

Furthermore, the potential of this approach could be enhanced
by leveraging satellite-derived precipitation data (such as IMERG)
or higher-resolution reanalysis datasets (e.g., the COSMO-CLM
model with 0.02° resolution). These advancements would improve
both the spatial and temporal accuracy of the input data, leading
to more robust identification of shallow landslide events and
offering significant opportunities for improving risk assessment and
management in data-scarce regions.
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