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A comparative study of
intelligent prediction models for
landslide susceptibility: random
forest and support vector
machine

Yuwei Liu, Yuling Xu*, Jun Huang, Haiting Liu, Yu Fang and
Yuping Yu

Natural Resources Policy Investigation and Evaluation Center of Jiangxi Province, Nanchang, Jiangxi,
China

Colluvial landslides widely developed in mountainous and hilly areas have the
characteristics of mass occurrence and sudden occurrence. How to reveal the
spatial distribution rules of potential landslides quickly and accurately is of great
significance for landslide warning and prevention in the study area. Landslide
susceptibility prediction (LSP) modeling provides an effective way to reveal the
spatial distribution of regional landslides, however, it is difficult to accurately
divide slope units and select predictionmodels in the processes of LSPmodeling.
To solve these problems, this paper takes the widely developed colluvial
landslides in Dingnan County, Jiangxi Province, China as the research object.
Firstly, the multi-scale segmentation (MSS) algorithm is used to divide Dingnan
County into 100,000 slope units, to improve the efficiency and accuracy of
slope unit division. Secondly, 18 environmental factors with abundant types and
clear meanings, including topography, lithology and hydrological environment
factors, were selected as input variables of LSP models. Then, a widely
representative Support Vector Machine (SVM) and Random Forest (RF) models
were selected to explore the difference characteristics of various machine
learning models in predicting landslide susceptibility. Finally, the comprehensive
evaluation method is proposed to compare the accuracy of various slope
unit-based machine learning methods for LSP. The results show that the MSS
algorithm can divide slope units in Dingnan County efficiently and accurately.
The RF model (AUC = 0.896) has a higher LSP accuracy than that of the SVM
model (AUC = 0.871), and the landslide susceptibility indexes (LSI) predicted by
the RF model have a smaller mean value and a larger standard deviation than
those of the SVM model. Conclusively, the overall performance of RF model in
predicting landslide susceptibility is higher than that of SVM model.
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1 Introduction

Landslide susceptibility prediction refers to the determination
of the spatial probability distribution pattern of landslide
occurrence at a specific location based on historical landslide
cataloguing data, taking into account the nonlinear coupling
effects of multiple disaster-causing environmental factors such
as topography, hydrological environment, lithology, and surface
coverage (Rohan et al., 2023). It is achieved through various
quantitativemethods including conventionalmathematical statistics
and machine learning. Landslide susceptibility prediction (LSP)
is to calculate the nonlinear coupling rules of various disaster
environmental factors such as topography, hydrology, stratigraphic
lithology and land cover on slope evolution on the basis of
historical landslide inventory data, using conventionalmathematical
statistics and machine learning quantitative methods, so as to
predict the spatial probability of a specific slope evolving into a
landslide. The crux of landslide susceptibility prediction modeling
lies in establishing the intricate nonlinear statistical correlations
between landslide inventory information and environmental factors
(Sameen et al., 2020; Huang et al., 2024a). As of now, landslide
susceptibility is among the most popular research topics worldwide.
Scholars at home and abroad have attained remarkable achievements
in the domain of regional landslide disaster monitoring and
prevention and control.

The evaluation of landslide susceptibility began to be
quantitatively analyzed after the 1990s. Pack (1985) draws the
landslide susceptibility map (LSM) by analyzing the relevant
environmental factors in the landslide area, and then using the
discrete discrimination of a simple polynomial classification model.
Al-Daghastani (1987); Gao (1992) initiated the introduction of
remote sensing (RS) and geographic information system (GIS)
platforms in the LSP, significantly improving the standardization,
accuracy, and efficiency of the LSP. With the in-depth study of
various prediction methods, numerous scholars have employed
diverse mathematical statistics and machine learning models,
such as the analytic hierarchy process (Kayastha et al., 2013;
Shahabi et al., 2014), logistic regression (Felicisimo et al., 2013;
Althuwaynee et al., 2014), and support vector machines (Kavzoglu
and Teke, 2022) in LSP, thereby further enhancing the LSP
performance. A Deep-Convolutional Neural Network was used
to study the susceptibility of Isfahan Province in Iran with
excellent results (Azarafza et al., 2021).

Hua et al. (2021) utilized multi-source and multi-temporal
regional landslide monitoring data (such as geological, topographic,
hydrological, and remote sensing images, etc.) to disclose the
dynamic variation law of landslide susceptibility in the Badong-
Zigui section of the Three Gorges Reservoir area over time.
Huang et al. (2024a) employed diverse screening approaches
to combine environmental factors and chose multiple classical
machine learning models to train and test various types of
environmental factor combinations in order to investigate
the modeling rules of landslide susceptibility. Eventually, a
well-developed environmental factor combination system was
constructed. Ping et al. (2024) constructed a landslide susceptibility
assessment model on the basis of integrating slope units and
semantic segmentation methods, attaining the purpose of fully
considering the impact of the geometric shape information

of slope units on landslide susceptibility. Chang et al. (2023a)
innovatively uses MSS method to divide slope units, realizes
automatic divide of slope units and improves the prediction
accuracy of LSP.

At present, the methods for LSP are increasing day by day,
and the prediction accuracy of various machine learning and deep
learningmodels is constantly improving.The selection of prediction
units is of vital importance to the application of prediction results,
while the intrinsic relationship between environmental factors and
landslides remains unclear. Therefore, it is necessary to combine
more environmental factors, select appropriate prediction unit,
and adopt typical machine learning models to further deepen the
research on LSP.

2 Research methods

2.1 LSP modeling process

Landslide susceptibility modeling is to predict and assess the
probability and degree of landslide occurrence in a specific area by
comprehensively analyzing the landslide inventory data, topography
and geomorphology, and other related factors within the study
area, using statistical analysis methods and machine learning
models. The main modeling process is as follows (As illustrated
in Figure 1).

(1) Basic Data Collection: Gather data to obtain the landslide
inventory data of Dingnan County, and acquire the
necessary data for the study by analyzing attributes such
as topographic and geomorphic features, surface coverage,
meteorological and hydrological conditions, and stratigraphic
lithology.

(2) Extract environmental factors and divide slope units: Select
well-defined and diverse hazard-causing environmental
factors to construct a spatial data set, and employ the multi-
scale segmentation (MSS) method to extract slope units and
serve as the basic evaluation unit for the study.

(3) Landslide susceptibility modeling: Two machine learning
models, namely, SVM and RF, are chosen for the LSP, thereby
obtaining the LSM of the region.

(4) Susceptibility result analysis: An evaluation index system for
landslide disaster susceptibility is constructed by analyzing the
ROC curve and the distribution of susceptibility indices.

2.2 The principle of multi-scale
segmentation method

The MSS method is an image segmentation technique based
on the principle of minimizing regional integration heterogeneity.
The fundamental principle is to combine pixels or objects with
similar features, such as color, shape, and texture, into continuous,
uniform, and closed image objects. This approach aims to achieve
the minimum heterogeneity within image objects and maximize
the heterogeneity between them, in order to better reflect the actual
structure and characteristics of the ground features (Huang et al.,
2024e). Moreover, this approach enables the automatic division
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FIGURE 1
Modelling flow chart of this study.

of slope units on a large regional scale and with high-
precision data, significantly enhancing the efficiency of slope
unit division.

The procedures of generating slope units by the MSS method
mainly comprise basic data processing, acquisition of slope aspect
and hill-shade, image segmentation, division of slope units, and
post-processing (Yu and Xiong, 2020; Xie et al., 2024b). Firstly, the
slope aspect map and hill-shade map are extracted from the DEM
data, and the basic characteristics of the terrain are analyzed. Then,
the MSS method is employed for image segmentation, merging
pixels or objects with similar internal characteristics and significant
external differences to form the preliminary main segmentation
layer. Finally, in combination with the main segmentation layer,
fine division of the slope units is conducted, along with post-
processing operations such as smoothing and optimization to
enhance the quality and practicability of the units. When generating
slope units by applying the multi-scale segmentation algorithm,
the selection of parameters is of paramount importance. The
main parameters include the settings of scale, spectral factor,
shape factor and its weight, compactness and smoothness and
their weights (Chang et al., 2023b). These parameter settings
directly determine the quality and accuracy of the segmentation
results. When selecting parameters, an improved trial-and-error
method is employed, combined with the morphological and scale
characteristics of the landslide.The optimal parameter combination
is sought by calculating relevant quantitative indicators. Specifically,
the rationality of the segmentation is verified by comparing the
mean and standard deviation of the extracted object with the
corresponding values of the landslide area, and by evaluating
whether the shape index is within a reasonable range. Additionally,
the consistency between the position of the landslide and the
position of the image object needs to be evaluated. Eventually,
the reliable slope unit is confirmed by the image object that best
matches the landslide record. This comprehensive optimization
process not only enhances the accuracy and credibility of the
ground features, but also provides guidance for the optimization
of the multi-scale segmentation algorithm. The entire process
is conducted using the eCognition Developer 8.7 software. The
specific process is depicted in Figure 2.

2.3 Evaluation model for landslide
susceptibility

To avoid the uncertain impact of different machine learning
models on the evaluation results of landslide susceptibility, it is
proposed to adopt the random forest model based on the ensemble
algorithm and the support vector machine model based on the
kernel algorithm to carry out the research on landslide susceptibility
(Wu et al., 2021; Wang et al., 2024).

2.3.1 Random forest model
RF is a potent ensemble learning model. The core concept is

to construct multiple decision trees and integrate them to enhance
the performance and generalization capacity of the overall model
(Sun et al., 2021; Sahin, 2023). RF employs the bagging technique to
generate multiple distinct training subsets from the original dataset
through bootstrap sampling and constructs decision trees on each
subset. When constructing each decision tree, instead of selecting
the optimal splitting point from all features, RF randomly selects
a portion of features and selects the optimal feature among these
for tree splitting. Each decision tree is built based on different
features and sample subsets, thereby being discrepant. Each decision
tree in RF independently makes judgments and predictions on
the input samples. Finally, by integrating the prediction results of
all decision trees through methods such as voting or averaging,
the final prediction outcome is obtained. Due to the integration
of multiple decision trees, RF is typically capable of providing
more accurate and stable predictions. The random forest model
possesses several remarkable merits: (1) It can effectively mitigate
the risk of overfitting and enhance the generalization ability of
the model; (2) It demonstrates a considerable tolerance towards
outliers and noise and is not readily influenced by individual
trees; (3) Owing to the employment of Bagging technology and
random feature selection, the random forest does not require
feature selection when dealing with high-dimensional data and
exhibits a strong adaptability to data sets; (4) The training
speed of the model is relatively rapid, being applicable to
large-scale data sets.

2.3.2 SVM model
Support Vector Machine (SVM) is a classification algorithm

that is widely applied in the domain of machine learning. Its core
concept is to seek an optimal hyperplane that maximizes the total
distance of support vectors to the hyperplane, thereby separating
data points of different classes (Huang et al., 2017; Luo et al.,
2019; Huang et al., 2024c). During the training process, SVM
emphasizes maximizing the margin between the hyperplane and
the support vectors, among which the support vectors are the data
points nearest to the hyperplane. This optimization issue can be
addressed by means of convex optimization approaches. SVM
incorporates regularization parameters to control the complexity
of the model and prevent overfitting. SVM exhibits outstanding
performance in addressing classification issues in high-dimensional
spaces, particularly when the quantity of features far exceeds the
number of samples. Suitable kernel functions can be selected based
on the requirements of specific problems. Different kernel functions
correspond to distinct feature mapping approaches, thereby
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FIGURE 2
Flowchart of slope units division by MSS method.

FIGURE 3
Location map of Dingnan County.

facilitating the handling of various types of nonlinear problems
(Wang et al., 2022).

2.4 Evaluation methods for the accuracy of
susceptibility models

2.4.1 ROC curve accuracy
TheROC curve constitutes an essential instrument for assessing

the performance of classification models, particularly in binary
classification issues (Sun et al., 2020; Xie et al., 2024a). The ROC

curve takes the True Positive Rate (TPR) as the ordinate and the
False Positive Rate (FPR) as the abscissa, and assesses the accuracy of
the model by comparing the performance indicators under different
threshold values (Frattini et al., 2010; Pham et al., 2018). The area
under the curve (AUC) characterizes the precision of the model,
with its numerical range between 0 and 1.The closer the AUC value
is to 1, the higher the precision of the model and the more superior
its performance. Through the comparison of the magnitudes
of AUC values, the performance of different machine learning
models can be objectively evaluated. As indicated in Equation 1,
where n0 denotes the number of negative samples, n1
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FIGURE 4
Part of the environmental factor diagram: (A) elevation; (B) Slope; (C) slope direction; (D) Slope length; (E) Plane curvature; (F) profile curvature; (G)
NDVI; (H) NDBI; (I) Average annual rainfall; (J) Road density; (K) fault density; (L) topographic humidity index.

indicates the number of positive samples, and ri represents the
position sequence of the ith negative sample within the entire
test sample.

AUC =

n0
∑
i=1

ri −
n0(n0+1)

2

n0 × n1
(1)

2.4.2 Distribution law of landslide susceptibility
index

The two statistical indicators, namely, the mean value and
the standard deviation (SD), can embody the average level and
dispersion degree of the LSI (Liu et al., 2022; Huang et al.,
2024b). The mean is the average of the LSI prediction set,
offering a measurement of the overall trend of the LSI and
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FIGURE 5
Division diagram of slope units.

reflecting the average prediction level of the model for the
overall landslide susceptibility. By comparing the magnitudes of
the means, the average prediction effect of the model on the
entire dataset can be preliminarily evaluated. The calculation
method is as shown in Equation 2, where xi is an individual
value of the LSI and n is the total number of the landslide
susceptibility indices.

Mean Value = 1
n

n

∑
i=1

xi =
x1 + x2 +…+ xn

n
(2)

The SD gauges the degree of dispersion of the LSI. The
higher the SD, the lower the uncertainty in LSP and the stronger
the ability to identify landslide samples. The calculation method
is shown in Equation 3, which xi is a single value of the LSI, and
n is the total number of LSI. If the mean of the susceptibility
index is relatively low while the standard deviation is relatively
high, the model exhibits a superior discrimination capacity for the
landslide susceptibility in the study area. Through the comparison
of the distribution regularities of the susceptibility index of different
models, a more detailed comprehension of the differences in
model performance can be achieved, providing targeted information
and thereby facilitating the improvement and optimization of the
landslide susceptibility prediction model.

SD = √ 1
n

n

∑
i=1
(xi −Mean)2 (3)

3 Brief introduction of the study area
and basic data

3.1 Brief introduction of the study area and
basic data sources

Dingnan County is subordinate to Ganzhou City and lies at the
southernmost end of Jiangxi Province, with its geographical location

ranging from 114°46′ to 115°23′ east longitude and 24°32′to 25°03′

north latitude, as depicted in Figure 3. Dingnan County has a length
of approximately 58.4 km in the east-west direction and about
56.2 km in the north-south direction. The landform within the
county is dominated by low mountains and hills, and the majority
of the altitude ranges from 300 m to 500 m. Dingnan County is
affiliated with the mid-subtropical monsoon humid climate region,
with an average annual rainfall reaching 1,593 mm. Based on
relevant data statistics, during the 30-year period from 1980 to 2010,
a total of 735 geological disaster points that occurred or hadpotential
hazards were recorded, among which landslides accounted for as
high as 89%, totaling 655. The landslides are mainly distributed in
the eastern part of Dingnan County andmountainous areas in other
regions. These landslides are mainly composed of accumulative soil
landslides. In terms of scale, approximately 85% of the landslides are
small shallow soil landslides, and large-scale landslides are relatively
rare. The thickness of the soil layer on the slope is approximately
between 2.0 m and 8.0 m. The basic data sources of the study area
are presented as shown in Table 1.

3.2 Selection of environmental factors for
landslides

In this study, based on the geographical characteristics of the
study area and by referring to relevant literature (Dou et al.,
2019; Huang et al., 2024d), a total of 18 environmental factors in
four categories, namely, topography and geomorphology, stratum
lithology, hydrological environment, and surface cover factors,
were ultimately selected. They are as follows: (1) Topography
and geomorphology factors: elevation, slope, aspect, slope length,
plan curvature, profile curvature, surface roughness, topographic
relief, and valley depth; (2) Surface cover factors: normalized
difference vegetation index, normalized difference built-up index,
road density, and total radiation; (3) Hydrological environment
factors: average annual rainfall, topographic wetness index, and
modified normalized difference water index; (4) Stratum lithology
factors: rock and soil types, and fault density. Partial environmental
factors are shown in Figure 4.

3.3 Results of slope unit division

In light of the topographic and geomorphological features aswell
as the landslide development characteristics of Dingnan County,
the conventional trial-and-error approachwas employed to establish
five different scale magnitudes (10, 15, 20, 25, 30), five distinct shape
parameters (0.5, 0.6, 0.7, 0.8, 0.9), and five compactness parameters
(0.5, 0.6, 0.7, 0.8, 0.9), altogether constituting 125 parameter
combinations. Under each set of parameter combinations, the MSS
method was respectively adopted to divide the slope units. Through
comparison with the statistical characteristics of the area and shape
index of the landslides within the study area, it was discovered that
when the parameters of scale, shape, and compactness were set at
20, 0.8, and 0.8 respectively, the division effect of the slope units was
the most optimal. Due to the fact that the areas of some initial slope
units were relatively small and their shapes were long and narrow,
not conforming to the actual circumstances, further processing was
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FIGURE 6
LSP divie diagram of SVM model and RF model.

FIGURE 7
ROC curves of SVM model and RF model.

conducted on these units. Ultimately, a total of 54,493 slope units in
the study area were extracted using theMSS, as depicted in Figure 5.

3.4 Construction of landslide susceptibility
model

In this research, the SPSS Modeler 18.0 software was utilized
for the modeling of the SVM, the widely employed Radial Basis
Function (RBF) was chosen, and two significant parameters were
determined: the penalty coefficient C and the kernel function
parameter γ (Dou et al., 2019; Pham et al., 2019). The C parameter
refers to the tolerance for errors. When the value of C is large,
the tolerance of the model for misclassifications reduces, the
classification margin narrows, and the generalization ability of the
modelmay decline.The γ parameter governs the nonlinearity degree
of the SVMmodel and the complexity of the model. When the value
of the γ parameter is relatively large, the fitting degree of the model

to the training samples increases and the complexity of the model
rises, which might result in overfitting, that is, the model performs
well on the training set but poorly on new data.

In order to determine the optimal C and γ parameters, the
cross-validation approach was adopted. The dataset was partitioned
into n subsets, followed by training the model and conducting
evaluations. Subsequently, the results were analyzed to determine
the final parameters. Eventually, the penalty coefficient C and
the kernel function parameter γ were fixed at 10 and 0.1,
respectively. Simultaneously, other parameters in this paper were
set to default values to guarantee that the SVM model possessed
both adaptability and generalization ability during the establishment
process. Meanwhile, an RF model was established by utilizing the
sklearn package in Python. Among them, the two parameters,
namely, the number of decision trees and the optimal number of
features, have a considerable influence on the performance of the
model (Merghadi et al., 2020; Xiao et al., 2020). Increasing the
number of decision trees in a random forest can improve themodel’s
accuracy, but it also increases the computing time. The optimal
number of features refers to themaximumnumber of environmental
factors considered by each tree during training. Increasing the value
of the optimal number of features will increase the variance of the
model, which may lead to overfitting; while the optimal number of
features being too small may result in an increase in bias, thereby
reducing the model’s accuracy. In the research presented herein,
the grid search method was employed to determine the optimal
parameters. Through defining the parameter range, splitting the
dataset, training the model and evaluating the performance of the
model, the number of decision trees in the random forest was
ultimately determined as 600, the optimal number of features was
set at 5, and the remaining parameters adopted the default values.

The well-trained SVM and RF models were applied to the
pre-demarcated slope units to obtain the LSI of the study area,
whose value range was between 0 and 1. Corresponding LSM were
generated, and the natural breaks method was employed to classify
the evaluation results of landslide susceptibility into five grades: very
high, high, medium, low, and very low.

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2024.1519771
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2024.1519771

FIGURE 8
Distribution of landslide susceptibility index: (A) SVM model; (B) RF model.

TABLE 1 Basic data sources.

Data type Spatial resolution Data purpose description

DEM 15 m Extract elevation, slope and other data

geologic map 1:100000 Extraction of stratigraphic lithology and other data

Landsat TM8 remote sensing image Multispectral 30m Factors such as land cover were extracted

4 Uncertainty analysis of the modeling
results of landslide susceptibility

4.1 The results of LSP based on SVM model
and RF model

The results of landslide susceptibility based on the SVM model
and the RF model are depicted in Figure 6. On the whole, the LSP
results of the SVM and RF models exhibit certain similarities. In
terms of the regional scope of susceptibility distribution, there are
differences in the delineation of very high and high susceptibility
areas between the RF model and the SVMmodel. Furthermore, the
high and very high susceptibility areas identified by the RF model
are relatively fewer.This implies that, under the prediction of the RF
model, more regions are assessed as areas with lower landslide risk.
Such a divisionmight bemore consistent with the actual situation, as
in reality, landslide incidents tend to be concentrated in a few high-
risk areas, while the risk in the majority of areas is relatively low.
Consequently, the RFmodel yields better results in the evaluation of
landslide susceptibility.

4.2 Analysis on the results of LSP

4.2.1 Comparative analysis of AUC precision
In this study, the AUC value was employed as an indicator

to assess the prediction accuracy of different models. As
depicted in Figure 7, the AUC value of the RF model is 0.896,
while that of the SVM model is 0.871. This suggests that in
landslide susceptibility modeling, both the SVM and RF models
have exhibited relatively good predictive capabilities. The RF model

demonstrates superior predictive ability overall compared to the
SVM model, which might be attributed to its stronger capacity
in handling complex nonlinear relationships and data feature
selection.

4.2.2 Comparison of the distribution of LSP index
In this research, by analyzing the mean and standard deviation

of the LSI under the two machine learning models of RF and
SVM, the uncertainty issues in the modeling process are explored.
The distribution pattern of the landslide susceptibility index
is shown in Figure 8. The mean value of the RF model is 0.258, and
the mean value of the SVM model is 0.330, indicating that the LSI
predicted by the RF model is relatively low. Meanwhile, the SD of
the RF model (0.269) is greater than that of the SVMmodel (0.210),
suggesting that the RF model has better discrimination and lower
uncertainty when LSP. To sum up, in the process of LSP modeling,
the RF model not only has higher prediction accuracy but also has
lower uncertainty in assessing the susceptibility among different
slope units.

5 Conclusion

In this paper, by selecting the MSS method to divide slope units
and using them as prediction units and choosing the SVM and RF
models for LSP modeling, the main conclusions are as follows: The
uncertainty laws of the LSP results are consistent. However, the LSP
accuracy of the RFmodel is significantly higher than that of the SVM
model, and the uncertainty is lower than that of the SVMmodel.The
LSP accuracy of the RF model is 0.896, and the mean and SD are
0.258 and 0.269, respectively. The LSP accuracy of the SVM model
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is 0.871, and the mean and SD are 0.330 and 0.210, respectively. It
can be seen that the RF model performs better in machine learning
and can conduct predictions more effectively. In this study, only
the RF and SVM models were utilized to investigate the landslide
susceptibility in Dingnan County. In the subsequent research, more
environmental factors and models will be employed to conduct a
further study on the landslide susceptibility, and different methods
will be adopted for its evaluation.
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