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Currently, the accurate prediction of tunnel boring machine (TBM) performance
remains a considerable challenge due to the complex interactions between
the TBM and rock mass. In this study, the research work is based on part of
a metro tunnel project that covers 2,083.94 m. The Gaussian mixture model
(GMM) and K-nearest neighbor algorithm (KNN) are used to classify and predict
the rock mass drillability in the TBM excavation process. Drillability indexes are
introduced to cluster and classify the rock mass, including the penetration (P),
field penetration index (FPI), torque penetration index (TPI), and specific energy
(SE). Statistical characteristics of the drillability indexes were analyzed, and it
was found that their distributions did not conform to the normal distribution,
with large variation coefficients. Clustering analysis was then conducted on the
TPI and FPI within the training group using the Gaussian mixture model, and six
drillability categories of rock mass were classified. Subsequently, the mapping
relationship between the cutterhead speed, advance speed, total advance force,
and cutterhead torque in the training group and the drillability of rock mass was
established based on the KNN classification model. It was revealed that when
the K-value is set to 4, the model has high macro-F1, macro-P, and macro-R.
Validated by the testing group data, this method has been proven to be feasible
and effective. The research results indicate that this method can effectively
classify and predict the drillability of tunneling surrounding rock mass in shield
construction, particularly when the rock mass at the shield face is uniform and
homogeneous. This provides a theoretical basis and technical support for safe
and efficient shield tunneling.

KEYWORDS

tunnel boring machine, rock mass classification, operational data mining, Gaussian
mixture model, K-nearest neighbor

1 Introduction

The tunnel boring machine (TBM) has become one of the primary methods of
underground engineering construction. However, owing to the complicated geological
conditions and the complexity of the TBM composition system, traditional methods

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2024.1518844
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2024.1518844&domain=pdf&date_stamp=2024-12-19
mailto:chennsongg@163.com
mailto:chennsongg@163.com
mailto:sun_ytu@163.com
mailto:sun_ytu@163.com
https://doi.org/10.3389/feart.2024.1518844
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2024.1518844/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1518844/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1518844/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1518844/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Sun et al. 10.3389/feart.2024.1518844

such as theoretical analysis (Sanio, 1985; Rostami and Ozdemir,
1993) and numerical simulations (Guo-hui et al., 2018; Ya-
dong et al., 2021) cannotmeet the safety and efficiency requirements
for TBM construction. So, the combined use of big operational TBM
data with machine learning has become a focus of research (Hao-
han et al., 2022; Jian-bin et al., 2023a; Zong-bao et al., 2024) in
recent years. A large amount of data are collected during the TBM
excavation process, and these data need to be preprocessed. The
machine learning technique could be effective based on high-quality
databases. This method mainly includes some learning algorithms
such as the artificial neural network (ANN) (Armaghani et al.,
2017), support vector machine (SVM) (Fattahi and Babanouri,
2017), deep neural network (DNN) (Koopialipoor et al., 2019),
and random forest (RF) (Nadi and Moradi, 2019; Zhang, 2019).
Certainly, these algorithms are still in continuous development (Mu-
yuan et al., 2024).

Machine learning techniques have recently been applied
to address various complicated and uncertain TBM excavation
problems due to their strong mapping capacity in the field of
underground engineering. For example, Suwansawat and Einstein
(2006) proposed an approach based on the artificial neural network
to predict the maximum surface settlement caused by EPB shield
tunneling. Mahmoodzadeh et al. (2020) used seven intelligent
methods to forecast the maximum surface settlement of an urban
tunnel. Based on theChinese code for rockmass classification,Qian-
li et al. (2019) proposed the SVM model to assess the drillability of
rock mass. Jun-hong et al. (2019) designed a feed-forward leave-
multiple-out artificial neural network with two hidden layers to
predict the geological stratum. In the field of unfavorable geological
prediction, Tian-zheng et al. (2017) proposed the rock burst model
using the genetic algorithms and extreme learning machine, with
maximum shear stress, uniaxial compressive strength, uniaxial
tensile strength, and rock elastic energy index as inputs and burst
pit depth as the output. Zu-yu et al. (2020) developed a time-
series forecasting method combined with a deep belief network
to predict the tunnel collapse sections of the Yinsong project. In
addition, Sun et al. (2018) constructed a dynamic load prediction
model by RF on the basis of the integrated heterogeneous in situ
data. Bo-yang et al. (2021) used a long short-term memory neural
network to predict theTBMpenetration rate, whichwas proved to be
better than the recurrent neural network (RNN)-based model. Jin-
hui et al. (2021) proposed and evaluated a long short-term memory
model to predict the TBM performance in a real-time manner.
In general, machine learning techniques have been widely used in
underground engineering for surface settlement prediction, rock
mass quality assessment, adverse geological forecasting, and the
optimization of TBM operation parameters (Wen-tao et al., 2024;
De-chun et al., 2024; Elbaz et al., 2024). There are many similar
research works, but further detailed research is needed.

Rock mass quality is related to the setting of TBM excavation
parameters and the safety of underground engineering construction.
Rock mass classification is traditionally characterized on the basis
of the geometric, mechanical, and physical properties of rock. Some
well-known classification systems are widely used, such as Barton’s Q-
system (Barton et al., 1974), Bieniawski’s rock mass rating (RMR)
(Bieniawski, 1973), and Hoek–Brown’s geological strength index
(GSI) (HOEK et al., 1995). However, due to the uncertainty of
underground engineering, traditional methods have their limitations.

With the development of machine learning, rock mass classification
relying on machine learning is proved to be reasonable and feasible
(Zhang, 2019; Zhi-jun et al., 2021). Various machine learning
models for rock mass classification have been developed with higher
prediction accuracy (Jian-bin et al., 2023a). Because different labels
proposed by different researchers are based on a standard specified by
an authoritywith subjective judgments, the researchfindings obtained
from the machine learning techniques remain semi-empirical. There
is still much research work to be done in the study of rock mass
classification and prediction.

In this paper, an approach of rock mass classification and
prediction is proposed based on the Gaussian mixture model
and K-nearest neighbor algorithm with TBM operational data.
The penetration rate (P), field penetration index (FPI), torque
penetration index (TPI), and excavation specific energy (SE) were
proposed as the evaluation indexes for the drillability difficulty
of rock mass excavation. Then, a Gaussian mixture clustering
model was established based on the FPI and TPI to analyze the
clustering characteristics of TBM-excavated rock mass, resulting in
the classification of rock mass drillability. Furthermore, a mapping
relationship model between TBM excavation parameters and rock
mass drillability indexes was established based on four basic
excavation parameters, namely cutterhead speed, advance speed,
total advance force, and cutterhead torque, enabling the prediction
and recognition of rock mass drillability. The main components of
this paper are shown as follows: Section 2 reviews the engineering
project, which is a metro tunnel excavated by the EPB shield
machine, and introduces the acquisition and preprocessing of big
operational data. Section 3 presents theoretical methodology for
rock mass classification, illustrating the GMM and KNN algorithm
processes. The rock mass is clustered and classified with defined
drillability indexes and is verified in Section 4. The final section
summarizes the main work and conclusions of this paper.

2 Project review

2.1 Description of the project

The operational data analyzed in this paper are collected from
a metro tunnel project located in Shandong province, China. The
tunnel links the North Lishan Road Station and East Second Ring
Road Station, which has a total length of 2083.94 m. To bore this
tunnel, an earth pressure balance (EPB) shield machine with an
excavation diameter of 6.68 m was used. The burial depth of this
tunnel ranges from10.50 m to 24.15 m, and a part of the longitudinal
geological profile of the tunnel is presented in Figure 1. Noticeably,
from the ground surface to the tunnel floor, various geological layers
are unevenly distributed, such as strongly and completely weathered
diorite, clay, residual soil, and gravels. Some in situ geological
samples are shown in Figure 2.

2.2 Acquisition and preprocessing of
operational data

In order to study the relationship between surrounding rock
mass properties and tunnel excavation parameters, the EPB machine
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FIGURE 1
Longitudinal geological profile of the metro tunnel.

FIGURE 2
In situ geological samples: (A) miscellaneous fill, (B) clay, (C) strongly
weathered diorite, and (D) moderately weathered diorite.

operational datawere collected from rings 823 to 873.The operational
data were collected at a frequency of 1Hz, and 1,136,025 pieces of
datawere recorded. Four channels, namely, cutterhead speed, advance
speed, total advance force, and cutterhead torque, are used in this
paper to predict the rockmass classification.The raw operational data
normally contain outliers and missing values, so data preprocessing
is essential before machine learning work. According to the TBM
data cleaning method (Zhang, 2019), the start-up and shutdown
phases of the TBM operational data are removed with the outlier
and missing value together, and only stable phase data are reserved.
After the initial screening process, the data are divided into two parts
randomly.The first 70% of the data are assumed as the training group
to establish amachine learningmodel.The remaining 30% of the data
are considered as the testing group to verify the model feasibility.

The frequency distributions and statistical features of cutterhead
speed, advance speed, total advance force, and cutterhead torque
are shown in Figure 3. Taking cutterhead speed as an example, its
maximum and minimum values are 1.56 and 1.46, respectively. The
average, median, and coefficient of variation are represented by Ave,
Med, andCV, respectively. It canbeobserved that the cutterhead speed
basically remains constant at a value of 1.50. The numerical changes
in advance speed and total advance force are significant. In addition,
the cutterhead torque basically follows a Gaussian distribution.

3 Methodology for the rock mass
classification

A flowchart for the classification and prediction of rock mass
drillability proposed in this paper is shown in Figure 4, and the
details of each section are presented below.

3.1 Gaussian mixture model

A Gaussian mixture model (GMM), which can be regarded as an
optimization of the K-Means model, is one of the most widely used
clustering techniques. GMM is a new Gaussian mixture distribution
obtained by linear superposition of multiple Gaussian distributions
with different weights. The function is formulated in Equation 1:

p(x) =
K

∑
k=1

αkϕ(μk,Σk), (1)

where αk is the weight of the kth Gaussian distribution and
satisfies the condition of ∑Kk=1αk = 1. μk is the mean vector of the
kth Gaussian distribution. Σk is the covariance matrix of the kth
Gaussian distribution.

The expectation maximization (EM) algorithm is utilized to
estimate the parameters of GMM. Each iteration contains two steps:
the E-step and M-step. From this, Gaussian weight, mean vector,
and covariance matrix are obtained. It is assumed that the observed
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FIGURE 3
Frequency distributions and statistical features for the boring
parameters: (A) cutterhead speed (r-min−1), (B) advance speed
(mm-min−1), (C) total advance force (kN), and (D) cutterhead
torque (kN m).

FIGURE 4
Flowchart for the classification and prediction of rock mass drillability.

dataset of the samples is denoted as X = (x1, x2, …, xN), and the
estimated parameters in the GMM are denoted as θ = (α1, α2, …,
αK , µ1, µ2, …, µK , Σ1, Σ2, …, ΣK). The variable Zjk is defined to
represent that the observed data xj are drawn from the kth Gaussian
distribution in the GMM, which is formulated in Equation 2.

Zjk =,{
1 If the j− th sample data comes from the k− th Gaussian distribution.
0 Else

j = 1,2,⋯,N;k = 1,2,⋯,K.
(2)

The process can be simplified as follows:

Step 1: Initialize parameters.
Step 2: (E-step): Calculate the probability of the jth observation

data drawn from the kth Gaussian distribution based on the
current parameters, as given by Equation 3.

̂Zjk =
αkϕ(xj|μk,Σk )
K

∑
k=1

αkϕ(xj|μk,Σk )

,
{
{
{

j = 1,2, ...,N

k = 1,2, ...,K
. (3)
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FIGURE 5
Frequency distributions and statistical features for the FPI, TPI, P, and
SE. (A) FPI [kN/(mm r−1)]. (B) TPI [KN m/(mm r−1)]. (C) Penetration (mm
r−1). (D) Specific energy [kw h/(m3)].

TABLE 1 Spearman’s correlation coefficient matrix.

Coefficient P FPI TPI SE

P 1.00 −0.98 −0.93 −0.82

FPI −0.98 1.00 0.9 0.88

TPI −0.93 0.90 1.00 0.86

SE −0.82 0.88 0.86 1.00

Step 3: (M-step): Calculate model parameters for a new iteration
based on Equations 4–6.

̂μk =

N

∑
j=1

̂Zjkxj

N

∑
j=1

̂Zjk

,k = 1,2, ...,K, (4)

Σ̂k =

N

∑
j=1

̂Zjk(xj − μk)(xj − μk)
T

N

∑
j=1

̂Zjk

,k = 1,2, ...,K, (5)

̂αk =

N

∑
j=1

̂Zjk

N
,k = 1,2, ...,K, (6)

where ̂μk, Σ̂k,  and  ̂αk are the mean vector, covariance matrix, and
Gaussian weight after iteration and update, respectively.

Step 4: Repeat the calculation of the E-step and M-step until
convergence.

The parameter K is the number of Gaussian distributions
contained in the GMM, and it presents the categories that will
be clustered. The value of K can be determined by the Bayesian
information criterion (BIC) (Lorah andWomack, 2019; Yi-mei et al.,
2021), as shown in Equation 7.

BIC = ln (n)K− 2 ln (L), (7)

where n is the number of samples and L is the maximum value
of the likelihood function of the cluster model.

3.2 K-nearest neighbor algorithm

TheK-nearest neighbor (KNN) algorithmwas first developed by
Fix and Hodges (1989) and later expanded by Altman (1992). The
method provides a non-parametric supervised learning approach
for the classification and regression of the data being preprocessed.
An object is classified by a plurality vote based on the Euclidean
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FIGURE 6
Scatterplot of the TPI and FPI.

FIGURE 7
Scatterplot of the FPI- and TPI-standardized residual.

FIGURE 8
Relationship between the BIC value and the number of Gaussian
distributions.

distances to its neighbors. Therefore, this method contains three
basic key issues: the K-value, distance measurement, and voting
rules. The K-value can be determined by K-fold cross-validation,
in which the samples are divided into K groups and subjected
to K rounds of investigation. The K-fold cross-validation method
involves randomly dividing the training set into the K subsets of
similar size and non-overlapping data. For different values of tuning
parameters, K-1 subsets are selected to establish the model training
set, and the model performance is evaluated on the remaining

set. This process is repeated until all subsets have served as the
validation set to assess model performance. Finally, the average of
all model performances is obtained, and the optimal model under
the given conditions is selected. This method is applied to a binary
classifier that provides a positive or negative prediction, which can
be true positive (TP), false positive (FP), true negative (TN), and
false negative (FN). Precision, recall, and F1 are used to evaluate the
performance for the binary classification problem (Jian-bin et al.,
2023b). For multiple classification problems, the following indices
are defined to evaluate classification performance.

The precision of multiple classification is defined by Equation 8.

macro− P = 1
n

n

∑
i=1

Pi. (8)

The recall of multiple classification is defined by Equation 9.

macro−R = 1
n

n

∑
i=1

Ri. (9)

The F1 score of multiple classification is defined by Equation 10.

macro− F1 =
2∗macro− P∗macro−R
macro− P+macro−R

, (10)

where Pi is precision Pi = TP/(TP+ FP), Ri is recall Ri =
TP/(TP+ FN), and macro-F1 is taken as the harmonic mean of
precision and recall, which varies from 0 to 1 for evaluating the rock
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FIGURE 9
Rock mass clustered results of GMM.

TABLE 2 Sample numbers of each category of rock mass and their percentages in the training group.

Category 1 2 3 4 5 6 7 8 9 10

Number 97,010 2017 42,555 253 89,762 3431 428 9,215 490 19,073

Percentage/% 36.71 0.76 16.11 0.10 33.97 1.3 0.16 3.49 0.19 7.21

FIGURE 10
Percentage of each category of rock mass in the training group.

mass classification performance. The larger the score of macro-F1,
the better the classification performance is. In addition,macro-P and
macro-R are the same.Thismethod has beenwidely applied bymany
researchers (Jian-bin et al., 2023a).

4 Rock mass classification and
prediction model

4.1 Rock mass drillability index

Currently, many research studies of rock mass recognition,
drillability, and TBM excavation performance use penetration,

field penetration index, torque penetration index, and specific energy
as feature parameters (Jian-bin et al., 2023b). Taking them as
references, these four drillability parameters are used for the analysis
of the drillability and classification of rock mass in this paper. These
four feature parameters are described as follows:

4.1.1 Penetration

P = v
n
, (11)

where v is the cutterhead advance speed (mm·min-1) and n is the
cutterhead speed (r⋅min-1).

4.1.2 Field penetration index

FPI = F
P
, (12)

where F is the cutterhead total advance force (kN).

4.1.3 Torque penetration index

TPI = T
P
, (13)

where T is the cutterhead torque (kN·m).

4.1.4 Specific energy

SE = 2πTn+ Fv
0.25πD2v

, (14)

where D is the cutterhead diameter (m).
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FIGURE 11
TPI and FPI scatterplot after the rock mass reclassification.

TABLE 3 Statistical features of boring parameters of the rock mass classification.

Category Boring parameter Max Min Ave Med CV

I

Cutterhead speed 1.56 1.46 1.51 1.50 0.01

Advance speed 16.49 4.35 9.33 8.71 0.29

Total advance force 17,532.34 10,185.23 14,128.97 14,440.06 0.08

Cutterhead torque 4,103.09 1,112.66 2,605.31 2,603.87 0.18

II

Cutterhead speed 1.55 1.46 1.51 1.50 0.01

Advance speed 9.95 2.80 5.03 4.98 0.18

Total advance force 17,518.27 10,200.73 13,861.36 14,281.56 0.1

Cutterhead torque 4,102.49 1,107.25 2,577.04 2,589.68 0.21

III

Cutterhead speed 1.55 1.46 1.51 1.50 0.01

Advance speed 5.29 1.86 3.15 3.11 0.15

Total advance force 16,516.59 10,186.00 13,661.20 14,055.60 0.11

Cutterhead torque 4,102.49 1,109.75 2,548.50 2,570.48 0.21

IV

Cutterhead speed 1.55 1.47 1.51 1.51 0.01

Advance speed 3.42 1.24 2.09 2.18 0.15

Total advance force 16,525.60 10,224.26 13,431.49 13,813.26 0.12

Cutterhead torque 4,101.89 1,106.85 2,546.51 2,577.80 0.22

V

Cutterhead speed 1.55 1.46 1.51 1.51 0.01

Advance speed 2.18 0.93 1.41 1.25 0.14

Total advance force 16,533.41 10,259.56 13,366.73 13,820.52 0.13

Cutterhead torque 4,101.49 1,108.45 2,519.36 2,531.57 0.22

VI

Cutterhead speed 1.55 1.47 1.51 1.51 0.01

Advance speed 1.25 0.31 0.73 0.62 0.34

Total advance force 16,536.60 10,268.03 13,117.21 13,552.78 0.13

Cutterhead torque 4,099.08 1,107.05 2,446.77 2,441.52 0.24
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FIGURE 12
Curves of macro-F1, macro-P, and macro-R with different K-values.

Noticeably, the greater the P is, the easier it is to excavate the rock
mass. If the cutterhead total advance force and torque are small per
unit penetration, indicating a low FPI and TPI, then the rockmass is
more drillable. Similar to the FPI and TPI, the SE exhibits the same
characteristics.

4.2 Drillability index statistical features

In order to obtain the data characteristics of the FPI, TPI, P, and
SE, statistical analysis is conducted on the four drillability indexes
of the training group. The frequency distributions and statistical
features of these indexes are shown in Figure 5.

It can be observed that these four indexes do not meet the
normal distribution, and the coefficients of variations are large.This
indicates that the drillability of rock mass varies significantly and
could be classified into many types for TBM excavation. When
setting TBM excavation parameters, people tend to focus on the
main rock categories. The problem will arise that TBM excavation
parameters cannot be adjusted timely in the non-main rock mass.
Therefore, classifying rock mass types is particularly important.

4.3 Drillability index regression features

Spearman’s correlation coefficient is commonly used to evaluate
the correlation relationship between two variable quantities. To
illustrate the correlation between P, FPI, TPI, and SE, Spearman’s
correlation coefficients of these four drillability indexes were
calculated and are summarized in Table 1. Noticeably, the four
drillability indexes are highly correlated.

From the equations (Equations 11–13) of the P, FPI, and TPI, it
can be seen that these three parameters eliminate the influence of the
cutterhead speed. P can be seen as the normalized advance speed,
whereas FPI and TPI can be seen as the normalized cutterhead
total advance force and torque, respectively, with penetration as the
normalization coefficient. The scatter plot of the training group TPI
and FPI is shown in Figure 6, which indicates that there is a certain
linear relationship between the two parameters.

The classic ordinary least squares (OLS) method is commonly
used for the regression analysis of two variable quantities with
the obvious linear relationship. The FPI and TPI are taken as

the independent and dependent variables, respectively, and the
OLS regression equation is shown in Equation 15. The relationship
between the TPI standardized residual and independent variable
FPI is shown in Figure 7. It can be observed that the TPI
standardized residual increases regularly with the increase in the
FPI, approximating the shape of a funnel.

TPI = 0.173FPI+ 59.516. (15)

4.4 Rock mass clustering model

As mentioned earlier, TPI and FPI are considered rock mass
classification indexes. First, TPI and FPI are selected to mine
the clustering features of rock mass drillability in the current
construction environment by the GMM and realize the clustering
of rock mass drillability. Second, based on the KNN classification
model, the mapping relationship between the four parameters of
the cutterhead speed, advance speed, total advance force, cutterhead
torque, and the rock mass classification indexes is constructed.

The number of Gaussian distributions, which determines the
optimal categories, is identified using the Bayesian information
criterion (BIC) for clustering with the GMM. The TPI and FPI
of the training group are taken as input variable quantities for
the GMM, and the output variable quantity is the clustered
category. The range of clustering categories is 1–10. The variation
in Bayesian information criterion value with the number of
Gaussian distributions is shown in Figure 8. As the number of
Gaussian distributions increases, the BIC value decreases. When
the number of Gaussian distributions is 10, the BIC reaches its
minimum. So, the optimal categories of the GMM are determined
to be 10. The corresponding rock mass clustered results of GMM
are shown in Figure 9. The numbers 1 to 10 represent the clustered
categories, which are the drillable categories of the rock mass. It can
be observed that there are differences in the sample size of different
rock mass categories, indicating data imbalance for each category.
Whether based on the TPI or FPI, the boundaries between each
category are relatively clear.

The sample number of each category of rock mass and their
percentages in the training group are counted, and the results are
shown in Table 2 and Figure 10. It can be observed that the data on
different rock masses are significantly imbalanced. The number of
samples contained in categories 2, 4, 6, 7, and 9 is much smaller than
that in other categories. The total number of samples included in
categories 1, 3, 5, 8, and 10 is 257,615, accounting for 97.49% of the
total training group. Noticeably, themain types of rockmass that can
be excavated are the above five categories.

Based on the abovementioned analysis, the 10 rock mass
categories automatically clustered by the GMM were reclassified
according to rock mass drillability from small to large. Considering
that categories 2, 4, 6, 7, and 9 contain relatively small sample
sizes, they are classified as one category and named VI. The
remaining categories are arranged in ascending order according to
their drillability and named I, II, III, IV, and V. The TPI and FPI
scatter plot of the training group after rock mass reclassification
is shown in Figure 11.
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FIGURE 13
TPI and FPI scatterplot of testing group data.

The statistical features of cutterhead speed, advance speed,
total advance force, and cutterhead torque for the six rock masses
are shown in Table 3. It can be observed that the cutterhead
speed remains basically unchanged in different types of rock
mass, but the advance speed varies significantly. Overall, the
total advance force and cutterhead torque decreases as the
rock mass drillability increases, which corresponds to better
classification.

4.5 Rock mass classification and prediction

On the basis of clustered rock mass by the GMM, in order to
realize the recognition of rock mass drillability based on cutterhead
speed, advance speed, total advance force, and cutterhead torque,
the KNN classification model is used. The mapping relationship
between the above four parameters and the rock mass drillability
indexes is established. A KNN model is established by the training
group, and then the model’s accuracy is verified by the testing
group data. According to the theoretical knowledge of the KNN
classification model, the distance metric of the KNN is set to
Euclidean distance, and the voting rule is set to a weighted voting
rule. The K-value is determined by K-fold cross-validation, and
the curves of macro-F1, macro-P, and macro-R with different
K-values are shown in Figure 12. It can be observed that the
overall tendency of the three curves is relatively similar, with a
characteristic of initially increasing and then gradually decreasing.
When the K-value is set to 6, the macro-P reaches its optimal
value of 0.966. Furthermore, when the K-value is set to 1 or 2,
the macro-R reaches its optimal value of 0.959. When the K-
value is set to 4, the optimal value of macro-F1 is 0.961, and
at this time, the macro-P and macro-R reach 0.965 and 0.958,
respectively. Since the K-value is determined by macro-F1, it
is set to 4.

The data on the testing group are taken into the KNN
classification model, and the TPI and FPI scatter plot
is shown in Figure 13. It can be observed that the classification
and recognition of the drillability of the rock mass in the
testing group are basically consistent with those in the training
group. This indicates that the feasibility of the training
model is fine.

To further explore the application effect of the KNN
classification model in predicting and identifying drillability of
the rock mass, the statistical characteristics of the FPI and TPI
for both the testing and training groups are compared. The results
are shown in Table 4. It can be observed that the drillability of the
rock mass of the testing group is classified by the KNN model,
and the statistical characteristics of the FPI and TPI slightly differ
from those of the training group. This further indicates that it
is feasible to explore the complex mapping relationship between
the cutterhead speed, advance speed, total advance force, and
cutterhead torque in the raw boring parameters and the rock mass
drillability by the KNN classification model, and the prediction
effect is quite good.

5 Conclusion

Currently, when geological parameters are not easily available,
rock mass classification and prediction are important and worth
studying. This paper explores the feasibility of using the Gaussian
mixture model and K-nearest neighbor algorithm to classify and
predict the rock mass drillability in the TBM excavation process
with its preprocessed operational data. The TPI and FPI are
taken as rock mass classification and prediction indicators in
conjunction with four raw boring parameters: cutterhead rotation
speed, advance speed, total advance force, and cutterhead torque.
The preprocessed operational data are divided into training
and testing groups for rock mass classification. The training
group data are used for rock mass clustering, whereas the
testing group data are used to verify and predict the rock mass
classification. The main conclusions obtained in this paper include
the following:

(1) The raw operational data on shield tunneling were
preprocessed, and the penetration degree P, the thrust
penetration index FPI, the torque penetration index TPI,
and the specific energy of tunneling SE were proposed
as the evaluation indexes for the drillability difficulty of
rock mass excavation. The statistical characteristics of
the raw operational data and the rock drillability indexes
were summarized and analyzed. Numerical changes in
advance speed and total advance force were significant,
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TABLE 4 Comparison of the FPI and TPI of the testing group and training group.

Category Drillability index Max Min Ave Med CV

I

FPI (training) 3748.53 964.17 2,459.63 2,465.69 0.26

FPI∗(testing) 4,428.51 970.16 2,462.38 2,468.72 0.26

TPI (training) 676.39 102.95 446.90 446.93 0.26

TPI∗(testing) 795.02 116.94 447.95 448.28 0.26

II

FPI 6,307.98 1,687.05 4,287.88 4,238.64 0.20

FPI∗ 6,876.34 1766.38 4,281.25 4,227.01 0.20

TPI 1,177.58 221.87 784.31 773.24 0.20

TPI∗ 1,262.44 209.42 785.36 773.37 0.20

III

FPI 9,819.75 3255.57 6,694.31 6,618.37 0.18

FPI∗ 11,330.85 3243.39 6,696.71 6,618.90 0.18

TPI 1857.20 469.28 1,227.85 1,219.27 0.19

TPI∗ 2,393.10 399.67 1,213.40 1,220.10 0.19

IV

FPI 14,577.06 5,139.00 9,862.12 9,835.49 0.18

FPI∗ 27,149.72 5,177.80 9,944.04 9,837.93 0.19

TPI 2,836.71 759.20 1842.57 1834.39 0.20

TPI∗ 3755.38 778.34 1858.14 1836.97 0.21

V

FPI 21,387.08 8,277.27 14,571.48 14,433.41 0.17

FPI∗ 61,769.81 7,267.65 14,715.71 14,408.33 0.21

TPI 4,472.85 1,096.67 2,721.25 2,716.23 0.21

TPI∗ 9,553.02 810.84 2,774.55 2,743.56 0.23

VI

FPI 79,753.43 12,347.95 31,904.02 25,426.15 0.50

FPI∗ 79,784.08 9,940.09 32,074.87 26,048.54 0.51

TPI 19,888.38 1788.27 5,895.43 4,826.39 0.53

TPI∗ 19,501.10 1,589.09 5,955.45 4,885.12 0.53

and the cutterhead torque essentially followed a Gaussian
distribution. The FPI and TPI did not follow the normal
distribution with large coefficients of variation. Additionally,
the TPI standardized residual increased regularly with
the increase in the FPI, approximating the shape of
a funnel.

(2) A Gaussianmixture clusteringmodel was established based on
the thrust penetration index FPI and torque penetration index
TPI to analyze the clustering characteristics of TBM-excavated
rock mass, and the classification of rock mass drillability was
achieved. Eventually, the surrounding rock was clustered into
six categories.

(3) A mapping relationship model between TBM excavation
parameters including cutterhead speed, advance speed, total
advance force and cutterhead torque, and rockmass drillability
indexes was established based on the KNN classification
model, enabling prediction and recognition of rock mass
drillability. When the K-value is set to 4, this method has been
proven to be feasible and effective.

(4) The research findings have identified the drillability of shield
strata, providing a theoretical basis and technical support for
safe and efficient tunneling with a shield. However, this model
method is more suitable when the distribution of rock around
the shield face is relatively uniform and single.When applied to
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composite strata, the predictive accuracy of this method may
be limited, and its applicability requires further in-depth study.
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