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Constructions of multi-scale 3D
digital rocks by associated image
segmentation method

Haiyan Wang*, Xuefeng Yang, Cong Zhou, Jingxu Yan, Jiaqi Yu
and Kui Xie

PetroChina Daqing Oilfield Co., Ltd., Daqing, China

Digital rocks constructed from micro-CT image at a single-resolution face
limitations in accurately identifying the entire pore space and mineral
components of tight sandstones, due to their high content of nanoscale
pores and clay. Consequently, the porosity values derived from such digital
rocks are significantly lower compared to those obtained through laboratory
measurements, resulting in discrepancies between themeasured and calculated
petrophysical properties. This study introduces a multi-scale digital rock
modeling method by integrating three-dimensional micro-CT images acquired
at two distinct resolutions and two-dimensional SEM images. Plunger-shaped
core samples and their corresponding sub-samples were scanned at resolutions
of 13.99 μm/voxel and 2.99 μm/voxel, respectively. The scale-invariant feature
transform (SIFT) image registration technique was employed to accurately
align the two sets of grayscale CT images. Correlation curves between the
grayscale value in low-resolution CT images and various mineral contents
were established based on the aligned regions, and utilized to construct multi-
scale digital rock models. Intragranular pores, unresolvable by the micro-
CT images, were identified using SEM imaging, enabling the incorporation
of fine-scale features into the models. The resulting multi-scale digital rock
models exhibited bulk porosity values that closely matched laboratory helium
porosity measurements. Additionally, the elastic moduli calculated by the
differential effective medium (DEM) model and the finite element method (FEM)
demonstrated good correspondence with experimental results. These results
validate the proposed multi-scale digital rock modeling method as an effective
approach for accurately characterizing the porosity and mineral components of
tight sandstone reservoirs.

KEYWORDS

digital rock, image registration, multi-scale, correlation segmentation, porosity, elastic
modulus

1 Introduction

In modern society, the demand for fossil fuels continues to grow, while reserves
of conventional oil and gas are gradually depleting. Consequently, the exploration and
development of unconventional oil and gas resources have become increasingly important
within the petroleum industry. In recent years, the production of oil and gas from
unconventional resources has experienced significant growth (Tong et al., 2018;Wang et al.,
2016). Among unconventional reservoirs, tight sandstone reservoirs are one of the major
reservoirs for unconventional gas resources. Their pore structures and physical properties
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are crucial for effective reservoir development (Guo et al., 2022;
Li et al., 2017; Wang et al., 2017; Yin et al., 2017). However,
tight sandstones are typically characterized by complex pore
structures, a broad pore size distribution, and low porosity and
permeability. These characteristics present significant challenges
for conventional petrophysical experimental techniques when
attempting to accurately determine their pore structure features and
physical properties (Zhang et al., 2017).

Methods for measuring the porosity of low-permeability rock
cores can be broadly classified into two categories: laboratory-
based direct measurement techniques and indirect methods based
on various downhole testing techniques. Laboratory techniques
primarily include mercury intrusion porosimetry (MIP) and
nitrogen gas adsorption (N2GA). MIP functions on the principle
that mercury, as a non-wetting liquid, infiltrates pores under applied
pressure (Abell et al., 1999). However, this method risks damaging
the pore structure, particularly in smaller pores, as mercury
infiltration requires higher pressures (Clarkson and Marc Bustin,
1996). In contrast, N2GA offers greater accuracy but is limited in its
capacity to detect pores larger than 200 nm due to the experimental
mechanism and sample size constraints. Indirect methods mainly
predict core porosity from logging data, such as electrical imaging
and sonic logging data (Alizadeh et al., 2015; Close et al., 2009;
Newberry et al., 1996; Tixier et al., 1959; Yamada et al., 2013).
Laboratory porosity measurements are not only time-consuming
and costly but may also cause irreversible damage to the samples.
Indirect methods are heavily dependent on the accuracy of the
logging data and require a multitude of parameters. Variability
in geological environments across different regions may further
introduce uncertainties into these methods, affecting the reliability
of these methods. Moreover, these traditional methods provide only
average characteristics of the pore structure, lacking the capability to
accurately delineate the microscopic features of the core pores. This
limitation hampers their ability to comprehensively characterize the
complexity of low-permeability rocks.

Digital rock technology, which digitizes actual rock cores
using high-resolution imaging techniques such as X-ray computed
tomography (CT) and scanning electron microscopy (SEM),
offers an alternative approach. This technology provides detailed
microscopic structural information at the pore scale, enabling the
application of advanced numerical algorithms to simulate rock
physics experiments. These simulations can effectively analyze
the response of physical properties in rock samples. Digital rock
technology simplifies the research process, reduces costs and time,
enhances result repeatability, and avoids destructive testing of
physical samples. It addresses challenges associated with measuring
and quantitatively analyzing rock physical parameters, thereby
overcoming the inherent limitations of conventional experimental
techniques. In recent years, digital rock technology has become
a pivotal tool for pore structure analysis and investigation of
rock physical properties. Researchers have developed a variety
of methods for constructing three-dimensional (3D) digital rock
models, primarily focusing on direct modeling utilizing 3D CT
images and reconstructionmethods based on two-dimensional (2D)
images (Bin et al., 2013;Hazlett, 1997; Liu et al., 2023; Liu et al., 2014;
Quiblier, 1984; Wu et al., 2004; Yin et al., 2019; Zhao et al., 2007).

However, the unique characteristics of tight sandstones, such
as low porosity, low permeability, wide pore size distribution, and

high clay content, may lead to inaccuracies in structure modeling
whenutilizing digital rock technology based on single-resolutionCT
scanning. These limitations often lead to significant discrepancies
between numerical simulation results and experimental data. To
address this issue, this study presents a multi-scale digital rock
modeling method that integrates 3D micro-CT images acquired
at different resolutions with nanoscale 2D images obtained via
SEM. Using the constructed multi-scale digital rock, we calculated
the porosity and elastic moduli of tight sandstone samples. The
calculated results exhibit good agreement with the laboratory
measurements, suggesting that the multi-scale digital rock model
provides an accurate depiction of the porosity and mineral
components of actual tight sandstones.

2 Samples and experimental
measurements

To evaluate the performance of the multi-scale digital rock
modeling method proposed in this study, two tight sandstone
cores from Changqing Oilfield were selected for digital rock
construction and elastic moduli calculations. These core samples,
which are plunger-shaped and labeled as N1 and N2, have a
diameter of 24.5 mm and were initially subjected to low-resolution
CT scanning. To facilitate the construction of a multi-scale digital
rock, a cylindrical sub-sample with a diameter of 5 mm was
extracted from each original core sample for higher-resolution CT
scanning. Figure 1 presents a schematic diagram and photographs of
the test sample, illustrating the extraction of the smaller cylindrical
sub-sample from the larger core.

To assess the accuracy of the proposed multi-scale 3D digital
rock modeling method, laboratory measurements were performed
to characterize various properties of the core samples. Helium
porosity measurements yielded values of 11.75% for the N1 core
and 12.17% for the N2 core. Acoustic properties of the cores
were also measured. When saturated with water, the longitudinal
wave velocities were 4,217.6 m/s for the N1 core and 4,327.8 m/s
for the N2 core, and the corresponding shear wave velocities
were 2,551.8 m/s and 2,235.8 m/s, respectively. XRD experiments
were conducted to analyze mineral contents, with the results
presented in Table 1. These results indicate that the mineral
components and their content of the two cores are similar, with the
clay content in the N2 core being slightly higher than that in the N1
core, which is similar to the difference in porosities, demonstrating
that the clay pores play a significant role in contributing the
overall porosity.

3 Multi-scale 3D digital rock modeling
method

3.1 Multi-resolution images

Imaging techniques used in digital rock modeling commonly
include X-ray CT, SEM, focused ion beam scanning electron
microscopy (FIB-SEM), etc. In this study, X-ray CT imaging was
employed to construct 3D digital rock models. X-ray CT imaging is
a non-destructive testing technology widely utilized in medical and
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FIGURE 1
(A) Schematic diagram illustrating the extraction of a 5 mm diameter cylindrical subsample from a 24.5 mm diameter plunger core sample. (B)
Photographs of the N1 core sample and its sub-samples.

TABLE 1 The contents of minerals in the core samples obtained from XRD experiments.

Sample Quartz/% Albite/% Potash feldspar/% Calcite/% Dolomite/% Siderite/% Clay/%

N1 59 19 8 4 4 1 5

N2 59 20 9 1 3 1 7

industrial applications. The penetration of X-rays through an object
causes attenuation, the extent of which depends on the material’s
properties, such as thickness and density. CT scans of cores taken
from different angles generate attenuation maps (Dunsmuir et al.,
1991), which are processed using reconstruction algorithms to
produce 3D grayscale images. The grayscale values of pixels in these
images correspond to the degree of X-ray attenuation, accurately
reflecting the spatial distribution of different components.

Tight sandstone core samples and their sub-samples were
imaged using CT scans of different resolutions. Initially, CT imaging
with a resolution of 13.99 μm/voxel was performed on two original
tight sandstone core samples. After extracting sub-samples from
the original cores, high-resolution (2.99 μm/voxel) CT imaging was
conducted on the small sub-samples. The 3D CT images had a
resolution of 1,920 × 1,920 × 1,536 voxels. Figure 2 shows the CT
scan slice images for both N1 and N2 samples at the different
resolutions, highlighting the level of detail achieved at each scanning
resolution. To identify micropores beyond the resolution limit of
CT scanning, broad ion beam scanning electron microscopy (BIB-
SEM) with a resolution of 5 nm/pixel was employed. Furthermore,
to create a 2D image of the core surface with a large field of view,
the MAPS image stitching technique was utilized. This technique
involves combining multiple high-resolution SEM images to form
a single, expansive image (Lemmens and Richards, 2013). The
resultingMAPS imagewas of a considerable size,measuring 105,000
× 106,000 pixels, which provides a detailed and expansive view of the
core’s surface.

3.2 Image registration method

Image registration techniques aim to establish correspondence
between corresponding positions in two different images through
various operations such as rigid transformation, similarity
transformation, affine transformation, projection transformation,

and polynomial transformation. This technology is widely applied
in medical image processing, image analysis, remote sensing fusion,
and computer vision.

Image registration methods can be broadly categorized into
information-based registration and feature-based registration.
Grayscale-based registration methods, which rely on the grayscale
features of two images, have been extensively studied. The principle
of this approach involves using the grayscale value information
at each position for alignment. Because images typically contain
vast amounts of grayscale data, this method requires substantial
computational resources and often results in prolonged registration
times. Furthermore, because the two images may not be captured
simultaneously or with the same equipment, variations in grayscale
information can significantly reduce the success rate of registration.
In contrast, feature-based image registration methods offer lower
computational requirements and faster processing speeds, effectively
enhancing both the efficiency and accuracy of registration.
Algorithms such as the Harris corner detection, Moravec algorithm,
and scale-invariant feature transform (SIFT) have been developed
to support feature-based image registration.

In this study, the SIFT algorithm was employed for image
registration, amethod based on feature points.Thismethodwas first
introduced by Lowe at the International Conference on Computer
Vision in 1999 (Lowe, 1999). SIFT algorithm is based on the scale
space and ensures invariance to image translation, rotation, scaling,
and even affine transformations. The algorithm represents image
information across various scales using a Difference of Gaussian
(DOG) pyramid and identifies key points by detecting extrema in
the DOG images. The precise locations and scales of these key
points are determined using an optimization algorithm, which also
eliminates points with poor responses or edge responses, thereby
yielding the image’s feature points. By calculating themagnitude and
orientation of gradients around the feature points, an orientation
is assigned, ensuring the feature points remain invariant to scale
and rotation. Local image information around each feature point
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FIGURE 2
High-resolution (2.99 μm/voxel) CT scan slice images of the (A) N1 and (C) N2 sub-samples. Low-resolution (13.99 μm/voxel) CT images of the (B) N1
and (D) N2 origin samples.

is then used to generate distinctive descriptors, further enhancing
the accuracy of feature matching. The positional information of
matching feature points allows the calculation of the matching
region between two images. Corresponding sections of images
with varying resolutions can be aligned through operations such
as rotation and cropping. These functions can be implemented
using the open-source program “siftdemoV4” developed by Lowe
(1999), Lowe (2004). Figure 3 illustrates the flowchart of the image
registration process, detailing each step in the procedure.

3.3 Microporosity of mineral component

Based on the geometry of pores in the core samples, pore
spaces can be categorized into intergranular pores, intragranular
pores, intercrystalline pores, and cracks. CT imaging is capable
of identifying large pores located between particles of various
components in the core. However, it cannot resolve micropores
due to its resolution limitation (Liu and Ostadhassan, 2017).
Therefore, incorporating microporosity associated with different
mineral components reflects the objective reality, thereby enabling
a more accurate estimation of core porosity.

Nano-resolution 2D MAPS imaging enables identifying pore
types and their spatial locations. Small pore clusters within the
feldspar, quartz or calcite grains are classified as dissolved pores,
while larger pore clusters located between quartz, albite, and

feldspar grains are categorized as intercrystalline pores. Clusters
of small pores surrounded by clay minerals are identified as
clay-dominated micropores. Statistical analysis of various pore
types observed in the MAPS image facilitates the calculation of
microporosity with each mineral component. The corresponding
data are presented in Table 2.

3.4 Associated image segmentation

Coarse-scale digital rocks feature lower resolution, with each
voxel potentially representing multiple mineral components. In
contrast, fine-scale digital rocks offer more precise information but
may lack broader representativeness due to their limited sample size.
Consequently, an effective strategy for rock physics research involves
integrating digital rocks at both scales and performing upscaling
operations to bridge the discrepancies between scales.

Based on the scale relationship between the two resolutions in
CT imaging, each voxel in the coarse-scale digital rock corresponds
to a 5 × 5 × 5 voxel grid in the fine-scale digital rock. Utilizing
this relationship, the proportions of mineral components within
each voxel can be extracted. By statistically analyzing all voxels
with the same grayscale value in the coarse-scale digital rock, the
average content of each mineral component can be determined,
enabling the calculation of the mineral component proportions
represented by that grayscale value. By using a program to perform
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FIGURE 3
Flowchart of the image registration procedure based on SIFT
algorithm.

traversal statistics, a correlation curve between grayscale values and
the mineral component proportions in the coarse-scale digital rock
was generated (Figure 4). This curve establishes a direct mapping
between image grayscale information and mineral component
proportions.

The porosity of each voxel in the coarse-scale digital rock is
calculated using the formula:

∅i =∑
k
fk(gi) ×φk (1)

where ∅i is the porosity of the ith voxel, gi is the grayscale value
of the ith voxel, fk(gi) is the proportion of the kth component
corresponding to the grayscale value gi which can be obtained from
the correlation curves (Figure 4), and φk is the microporosity of
the kth component (see Table 2). After calculating the porosity of
all voxels within the coarse-scale image using Equation 1, the total
porosity of the entire core sample is obtained by averaging all voxel
porosities.

3.5 Elastic modulus calculation

The complexity of multi-component tight sandstone digital
rocks, coupled with the inclusion of microporosity, makes the
conventional single-mineral-component method for calculating
the elastic modulus no longer applicable. To address this
limitation, we developed an integrated approach that combines the
differential effective medium (DEM) model with the finite element
method (FEM). Figure 5 illustrates the step-by-step flowchart of the
proposed calculation methodology.

In this study, CT imaging was utilized to segment the
core into five distinct components: pores, clay, quartz (albite),
potash feldspar, and dolomite. This segmentation is crucial for
accurately modeling the rock’s physical properties. The coarse-
scale digital rock is represented by an 8-bit grayscale image
consisting of 256 distinct grayscale values. The equivalent elastic
modulus for each of these grayscale values was obtained using
two-step DEM calculation process. In the first DEM step, each
mineral component, assumed to be in its pure solid state,
was designated as the matrix, with micropores incorporated to
compute the component’s equivalent elastic modulus (Berryman,
1980). The elastic moduli for pure mineral component were
determined using the data in Table 3. Additionally, since the sound
velocity measurements were conducted under water-saturated
conditions, the elastic properties of water were considered during
the addition of the pores. In the second DEM step, different
components were sequentially added based on the correlation
curve, enabling the calculation of the equivalent elastic modulus
corresponding to each grayscale value, which represents different
mineral mixtures. Following the DEM calculations, the FEM was
applied to compute the overall elastic moduli of the coarse-scale
digital rock. The employed FEM program is developed by Garboczi
(1998). This program uses a hexahedral mesh with voxels as
elements and has been validated for accuracy in multiple studies
(Arns et al., 2005; Arns et al., 2002).

4 Results and discussions

4.1 Image registration

Figure 6 displays the registration images for CT images at
varying resolutions, generated using the SIFT registration program.
The figure reveals both correctly matched points and instances
of mismatched points. These mismatched points can be corrected
through manual intervention.

Once accurate registration information is obtained, the 3D
images are adjusted through rotation, and corresponding cube
images at different resolutions are extracted. Figures 7A, B present
3D comparison images of the N1 and N2 cores, respectively. The
double arrows in these figures indicate corresponding feature points,
demonstrating the precise alignment of the images across different
resolutions.

4.2 Porosities

Core porosity is a crucial parameter for estimating reservoir oil
and gas reserves as well as productivity. It represents one of the
most important petrophysical characteristic in oilfield exploration
and development. Generally, higher porosity in the reservoir cores
correlates with greater oil and gas reserves and easier extraction.
Enhancing the precision of core porosity calculations provides
valuable guidance for the exploitation and development of oil and
gas fields.

Table 4 presents the calculated porosity for the different digital
rock models. For the single-scale N1 digital rock, porosities are
1.5% at 13.99 μm/voxel resolution and 5.7% at 2.99 μm/voxel
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TABLE 2 Microporosity of the mineral component in the tight sandstone samples.

Component Pore Clay Quartz Feldspar Siderite

Microporosity φ 1 0.3 0.03 0.1 0

FIGURE 4
The correlation curves between grayscale value and mineral component proportion in the coarse-scale digital rocks of (A) N1 and (B) N2 based on low
resolution CT grayscale images.

resolution, while for the N2 core, the corresponding values are 0.5%
and 2.3%, respectively. In the multi-scale and multi-component
models, incorporating microporosity results in porosities of
11.13% for N1 and 12.94% for N2, compared to 3.43% and
5.11% without considering microporosity. These results suggest
that porosities derived from single-scale resolutions deviate
significantly from experimental measurements, highlighting
the limitations of such calculations in fully characterizing the
pore structures of core samples.

Significantly, incorporating the microporosity of mineral
components produces porosity estimates that closely match
experimental gas porosities. The calculated porosity errors for
the N1 and N2 rock cores are 5.28% and 6.33%, respectively,
compared to experimental porosities. This highlights the
substantial contribution of micropores to total porosity in
tight sandstone cores. The use of multi-scale digital rocks for
porosity calculations demonstrates improved accuracy, thereby
enhancing the reliability of the results.
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FIGURE 5
Flowchart of elastic modulus calculation method for upscaled digital rock based on the combination of DEM and FEM.

TABLE 3 The elastic moduli for each component when it is in a pure
phase state.

Component Bulk
modulus/GPa

Shear
modulus/GPa

Water 2.18 0

Clay 37.9 14.8

Quartz 37.7 44.5

Albite 55.1 29.7

Potash feldspar 56.2 29.3

Dolomite 95.5 11.4

FIGURE 6
Registration images of and core samples (A) N1 and (B) N2 at different
resolutions, with high-resolution images on the left and
corresponding low-resolution images on the right. The blue line
indicates the matching points.

Jin et al. (2018) constructed a digital rock model using CT
images with a resolution of 0.7 μm/voxel and introduced component
microporosity to calculate core porosity, achieving an error margin

FIGURE 7
3D images of and core samples (A) N1 and (B) N2 at different
resolutions, with high-resolution images on the left and
corresponding low-resolution images on the right. The double arrows
indicate corresponding feature points.

within 5.20%. The accuracy of porosity calculations at a single-
resolution digital rock depends on image resolution, with higher-
resolution images yieldingmore precise results. In our study, despite
using a maximum CT image resolution of 2.99 μm/voxel, which
is significantly lower than the 0.7 μm/voxel used by Jin et al., the
maximum calculation error is 6.33%, comparable to the reported
5.20%. This result suggests that establishing an upscaled digital
rock model effectively reduces the resolution requirements while
maintaining high calculation accuracy.

4.3 Elastic moduli

Based on the constructed multi-scale digital rock, the
proportions of various mineral components in the low-resolution
images can be accurately quantified. Table 5 provides a comparative
analysis of the N2 core’s XRD experimental data and the
corresponding statistical results derived from the multi-scale digital
rock model. Since the differentiation of components in X-ray CT
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TABLE 4 Porosities from lab measurements and digital rock samples at different scales.

Sample Porosity calculated by digital rock/% Helium porosity/%

Single-scale digital
rock

Multi-scale digital rock Multi-scale digital rock
with microporosity

13.99 μm 2.99 μm

N1 1.5 5.7 3.43 11.13 11.75

N2 0.5 2.3 5.11 12.94 12.17

TABLE 5 Mineral components and contents of the N2 core sample from XRD measurements and the digital rock method.

Method Clay/% Quartz (plagioclase)/% Potash feldspar (calcite)/% Dolomite (siderite)/%

XRD 7.00 79.00 10.00 4.00

Digital rock 7.67 81.68 9.19 1.46

TABLE 6 Results of elastic moduli from the simulation based on the multi-scale digital rock method and the experimental measurements.

Sample Multi-scale digital rock Experimental measurements

Bulk modulus/Gpa Shear modulus/Gpa Bulk modulus/Gpa Shear modulus/Gpa

N1 21.67 18.29 22.5 16.1

N2 27.85 13.56 29.7 12.3

images relies on variations in voxel grayscale values, minerals that
exhibit minimal differences in grayscale value may be aggregated
into a single phase, even though they represent distinct components.

Table 5 demonstrates that the mineral component analysis
derived from correlation-based segmentation closely aligns
with the XRD experimental data, although a notable disparity
exists between the measurements for dolomite and siderite. This
disparity is primarily attributed to misalignment during the image
registration process, which disproportionately affects minerals with
low abundance that are primarily distributed as discrete points
within the core, rendering them more sensitive to registration
inaccuracies.

Table 6 presents the elastic moduli results from the simulations
based on the multi-scale digital rocks compared with the
experimental measurements. The calculated elastic moduli exhibit
good agreement with the experimental data, validating the accuracy
of the multi-scale digital rock model. These results confirm
that the constructed model effectively captures the distribution
characteristics of minerals and pores within the core, providing
a reliable modeling method for further digital rock physics
research.

In unconventional oil and gas reservoirs, such as tight
sandstones and shales, the reservoir rocks often exhibit a high
degree of heterogeneity. Traditional digital rock technology, which
relies on single-resolution imaging, faces challenges in balancing
field of view and image resolution. In recent years, multi-scale

digital rock technology, which employs various resolutions and
imaging techniques, has made significant progress. Walls et al.
(2017) compared multi-scale digital rocks using SEM imaging at
different resolutions, demonstrating that multi-resolution imaging
significantly improves pore identification accuracy. Islam et al.
(2019) conducted multi-scale imaging and numerical simulations
on the permeability of heterogeneous carbonate rocks, establishing
porosity-permeability curves and analyzing resolution impacts
on porosity calculations. Liu et al. (2017) explored the pore
characteristics of rock samples through fractal theory, revealing
that pore complexity and fractal dimensions increase with
magnification.

In the multi-scale digital rock techniques, upscaling methods
have been developed to correlate data across scales effectively,
enabling comprehensive analysis of core properties. These methods
include the overlay method, representative elementary volume
(REV), and integration of multiple computational approaches.
The overlay method allows for the refinement of images and is
commonly used in the upscaling construction of pore models.
Yao et al. (2015) constructed multi-scale pore networkmodels using
different resolution SEM images and the Markov Chain-Monte
Carlo method. The REV method involves partitioning the core
to ensure that each section has similar properties, thus achieving
upscaling from high to low resolution. Sun et al. (2019) proposed an
upscaling porosity method using REV selection across CT-scanned
samples. Suhrer et al. (2020) obtained multiple REVs based on
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image complexity to achieve upscaling modeling. The integration
of multiple computational methods utilizes the differences in
scale between different computational methods. Ning et al. (2016)
combined molecular dynamics (MD) and lattice Boltzmann
methods to achieve nanoscale-to-microscale fluid transport
simulations.

In this study, a two-step upscaling process was used to calculate
the equivalent elastic moduli for the FEM simulations. Nano-
resolution SEM data provided micro-porosity insights, integrated
into mineral components. The precise registrations of high- and
low-resolution CT images provide the relationship between mineral
component proportions and grayscale value in the coarse-scale
digital rocks, thereby obtaining the equivalent elastic moduli of
each voxel. This approach maintains computational accuracy while
significantly improving efficiency. It is noteworthy that due to the
high sensitivity of the elastic modulus to porosity and mineral
components, this upscaling method is particularly suitable for
elastic modulus calculations. However, for flow characteristics and
electrical properties, which depend on pore connectivity, fine-scale
structural information loss during upscaling may impact the result
accuracy, warranting further investigation.

5 Conclusion

This study introduces a method for constructing multi-scale
digital rocks by integrating 3D micro-CT images at two different
resolutions and 2D SEM-MAPS images. SIFT image registrationwas
applied to align high- and low-resolution CT images, establishing a
correlation curve between grayscale values in low-resolution images
and mineral component proportions. To capture the microporosity
of mineral components not identified by micro-CT, nanoscale
SEM-MAPS scanning was employed. Using the correlation curve,
microporosity of mineral components and low-resolution CT
images, the multi-scale digital rocks were constructed. This multi-
scale modeling method successfully produced digital rock models
that accurately represent the porosity and minerals’ content of tight
sandstones. An upscaling method by calculating the equivalent
elastic moduli of voxels of different greyscale value based on
DEM theory was utilized and the FEM simulation was deployed
to calculate the elastic moduli of the cores. The porosities and
simulated elastic moduli of the multi-scale digital rocks exhibited
good agreement the experimental data. These results confirm
that the constructed model effectively captures the distribution
characteristics of minerals and pores within the core, which helps
to improve the efficiency and accuracy of subsequent rock physics
simulation researches.
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