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Introduction: Effective monitoring and evaluation of floodwaters are essential
for disaster prevention and mitigation. The flood inundation range can
be obtained by using traditional simulation methods, but these methods
still have shortcomings. This work proposes an optimization method for
traditional methods.

Methods: This study aims to introduce an effective solution for the rapid and
accurate extraction of flood inundation areas, emphasizing the enhancement
of extraction speed and dynamic monitoring throughout the flood event. The
solution uses a normalized difference water index (NDWI), a refined threshold
method, and a filtering process for microwave (radar) images. Sentinel-1 SAR
(Synthetic Aperture Radar) and Sentinel-2 MSI (Multi-spectral Image) images
served as the primary data sources. The Sentinel-2 images were preprocessed to
extract pre-flood water bodies, while the Sentinel-1 SAR images were processed
using the proposed filtering method to identify post-flood inundation areas.

Results: The application and validation of this framework are demonstrated
through the case of the 2020 flood event in Tongling, Anhui Province. The
framework’s performance was validated through comparison with ground truth
data, yielding high kappa accuracies of 98% for optical images and 89% for
Synthetic Aperture Radar. The findings highlight the framework’s ability to
capture high-accuracy changes in flood inundation areas and to characterize
the dynamic process of flood inundation area changes.

Discussion: This study contributes to the field by enhancing the extraction
speed and scope of water bodies from SAR images and improving the quality
of microwave remote sensing data processing. It offers valuable insights for
emergency rapid response and situational awareness in the context of extreme
weather events and associated flood disasters.
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flood, inundation extraction, remote sensing images, tongling, sentinel-1 SAR images,
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Highlights

1. Constructing an accurate and effective algorithm for flood
inundation.

2. Mapping flood extents by combining Sentinel-1 SAR and
Sentinel-2 MSI images.

3. Identifying the distribution of flood risks at different levels.
4. Analysis the flood extent area changes and its driving factors.

1 Introduction

With the advent of global warming and human interference,
extremely heavy rainfall has become a frequent occurrence, often
resulting in destructive and extensive flood disasters (Tellman et al.,
2021; Nkwunonwo et al., 2020; Czajkowski et al., 2018). According
to statistics from the Chinese Ministry of Water Resources
and the National Disaster Reduction Center, between 1991 and
2022, an average of approximately 2020 people perished or were
reported missing annually due to flood disasters, incurring an
average annual economic loss of 160.4 billion yuan. This has
had a significant impact on the country’s economic and social
development (Liang et al., 2023; Wu et al., 2021; Xia et al., 2017).
Therefore, scientifically addressing flood disasters, dynamically
monitoring floods in near real-time and at a high-frequency
and finely analyzing the spatiotemporal evolution patterns before
and after floods are crucial for flood prevention and disaster
reduction.

Remote sensing technology, leveraging the distinct spectral
characteristics of geographic features, excels in obtaining spatial
information about large water bodies and enables fully automatic
flood monitoring. Typically, the location and area of water bodies
are determined by constructing models in the near-infrared band.
Commonly utilized methods include the water body index method,
single-band threshold method, supervised classification method,
support vector machine method (Li et al., 2020; Nguyen et al.,
2023) and various algorithm-based approaches (Wang et al.,
2022; Lv et al., 2022). Characterized by its timeliness and cost-
effectiveness, routine detection often involves using satellite remote
sensing to extract water information for applications such as
water resource surveys, land use, river and lake monitoring,
reservoir monitoring, flood inundation analysis and emergency
monitoring. The evolution of remote sensing water body extraction
has transitioned from initial manual visual interpretation to the
integration of spectral and spatial information (Song and Xu, 2019).
The focus has shifted from objectively interpreting water bodies to
enhancing the efficiency of extracting flood disaster information,
with automated high-precision extraction primarily based on
automatic classification according to the spectral characteristics
of land features, thereby improving the accuracy of water body
extraction (Zhu et al., 2024a). It focuses on addressing challenges
like slow extraction speed and poor quality of optical images caused
by thick cloud (Nanehkaran et al., 2022; Nanehkaran et al., 2023a;
Nanehkaran et al., 2023b).

Optical and radar remote sensing are the primary data sources
for flash flood research. Optical remote sensing provides detailed
information and facilitates data acquisition through various high-
precision extraction techniques (Li et al., 2020). However, it

is susceptible to interference from adverse weather conditions,
particularly rain. Notably, combining the hybrid water body index
model (CIWI) and the single-channel thresholding method is also
an approach that can extract water bodies with high accuracy
and low interference of noise shadows in the extraction results
(Zheng et al., 2020). This method can generate high-resolution
images, discerning between different land features, including
the scattering information from building shadows and water
bodies, which is crucial for delineating flood inundation areas.
In addition, the automatic extraction method of water bodies
combined with GIS data integrated with visible remote sensing
and the method based on the change of upper limit have results
(Sui et al., 2016; Chen et al., 2019). Despite improvements in the
accuracy of flood inundation mapping from optical remote sensing,
weather conditions, particularly rain, continue to pose significant
challenges.

The advantage of radar remote sensing lies in its robust
penetration through clouds and fog, unaffected by weather
conditions, with the capability to operate continuously
under all weather conditions, directly extracting water body
ranges under adverse weather conditions (Zhu et al., 2024b;
Nanehkaran Y A et al., 2022). Its drawback is the lower extraction
accuracy and the relatively cumbersome processing involved. The
band thresholdmethod is a prevalent technique for processing radar
remote sensing images to delineate flood inundation areas. Cao
and Liu, (2006) applied this method to extract water body extents
from ASAR data. Furthermore, various approaches, including the
Otsu algorithm, object-oriented methods, U-Net, and the H-FCM
algorithm, have shown high accuracy in flood inundation mapping.
For instance, Rahman and Thakur, (2018) employed time-series
Synthetic Aperture Radar (SAR) images combined with density
slicing to precisely delineate flood inundation areas. Tiwari et al.
(2020) successfully extracted the flood-affected region in Kerala
using the Otsu algorithm on Sentinel-1 SAR data. Wang et al.
(2021) assessed the comparative accuracy of the object-oriented,
U-Net, and Otsu methods for water body extraction using Sentinel-
1 SAR images. Pan et al. (2022) introduced a method leveraging
the KECA algorithm for feature extraction, thereby enhancing
robustness. Wang et al. (2023) suggested the use of a multi-
branch dual-contrast learningmodel to enhance image classification
accuracy. These techniques have further improved the robustness
and accuracy of feature extraction and image classification in
flood mapping.

The SAR processing and analysis involve data input, multi-
view processing, filtering, geocoding or radiometric calibration,
water body extraction, and post-processing of results (Qiu et al.,
2022; Wei et al., 2024). The extraction of flood inundation from
SAR images is mainly based on the difference in the strength of
the backscattered microwave signals from the ground surface,
identifying the flood inundation range. However, the method
of extracting water bodies using SAR images has garnered
increased attention. For example, Wang et al. (2020) proposed
the H-FCM algorithm, integrating river positions extracted from
optical remote sensing images into post-flood SAR images,
thereby improving detection accuracy. Radar remote sensing,
which actively emits microwaves, is not hindered by weather
conditions and possesses strong penetration through obstacles,
thus enhancing the accuracy of water body extraction (Qingsheng
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et al., 2022). Consequently, the integration of radar remote
sensing and optical remote sensing images, along with the
combination of SAR data and intelligent water body extraction
algorithms to delineate flood inundation ranges, has progressively
become a focal point of research. In addition, the method of
integrating machine learning models with INSAR technology,
along with DEM data at the best resolution, is also of significant
importance for reducing risks such as landslides in various
locations (Ahangari Nanehkaran et al., 2022; Cemiloglu et al., 2023;
Mao et al., 2024)

In summary, scholars both domestically and internationally
have achieved substantial success in extracting flood inundation
ranges using remote sensing technology. However, there is a
paucity of analysis regarding the extraction speed and dynamic
changes throughout the entire flood process. Additionally, the
extraction of water bodies from microwave (radar) remote sensing
images necessitates a vast amount of data. Utilizing the filtering
processing provided by the ENVI 5.3 platform is time-consuming
and demands high computer hardware specifications. The absence
of filtering processing can impair the accuracy of water body
extraction. Therefore, the objective of this study is to employ
optical remote sensing to extract the pre-flood water body range
as a reference. This study will concentrate on the dynamic
changes in the flood inundation area, propose a filtering processing
method based on microwave (radar) remote sensing images
and construct and validate a framework for extracting flood
inundation ranges based on a comprehensive water index method
and threshold method. In this study, the validity of the model
was verified using Tongling as the study area and using what
data for the 2020 flood. The research outcomes are expected to
enhance the speed and scope of water body extraction from SAR
images, improve the quality of filtering processing for microwave
(radar) remote sensing data and offer a reference for disaster
early warning and situational awareness prompted by extreme
weather events.

2 Study area and data

2.1 Study area

Tongling located in the south-central part of Anhui Province
and downstream of the Yangtze River, covering the latitude between
30°38′N and 31°09′N and the longitude of 117°04′E and 118°09′E
(Figure 1). It is characterized by a monsoon climate with hot
and rainy summers, high rainfall and increased runoff (Ye et al.,
2024). For the Yangtze River in Tongling, its flood season typically
occurred in July and August. The leading to significant variations
in annual river runoff and frequent flooding disasters. Furthermore,
Tongling’s flat terrain, small elevation differences and slow water
flow contribute to its susceptibility to flood retention and flooding
disasters (Qi, 2015). In July 2020, due to the inflow from the upper
reaches of the Yangtze and continuous heavy rainfall, the water level
in Tongling rose rapidly. The entire flood process started in July and
lasted for about 2 months until early September. By July 7, the water
level in the Tongling section of the Yangtze River had exceeded the
warning level, resulting in a continuous expansion of the flooded
area. On July 17, the second flood of 2020 formed in the upper

reaches of the Yangtze River. By the end of July and early August, the
water levels in the rivers, lakes and reservoirs in Tongling gradually
receded and the flood control level was reduced from level one to
level two, leading to a gradual decrease in the flooded area. By the
end of August, due to several consecutive sunny days, the flood in
Tongling gradually receded. Figure 1B illustrates some of the details
of the development-peak-recession scenarios for the Copperopolis
2020 flood, in relation to changes in the corresponding emergency
response measures.

2.2 Data sources

The study concentrated on a significant flood event that
took place in Tongling, Anhui Province in July 2020. To capture
flood extents, the Sentinel-2 MSI images before flood disaster
and Sentinel-1 SAR images after flood disaster were collected.
The SAR images recorded water inundation extents at eight
time points. The detailed information of each dataset was
outlined in Table 1. The Sentinel-1 data originated from the
European Space Agency (ESA) and consisted of Ground Range
Detected (GRD) Level-1 data, featuring VH polarization and
operating in Interferometric Wide Swath (IW) mode. These radar
data had been subjected to multi-view and geocoding corrections,
which rendered geographic registration unnecessary. The Sentinel-
2 data, also provided by ESA, existed in the form of unprocessed
Level-1C data products that had undergone systematic geometric
correction. Meanwhile, high resolution images from Google Earth
platform were utilized. These were obtained from the Resource
and Environment Science Data Platform of the Chinese Academy
of Sciences (https://www.resdc.cn/). Heavy rainfall process
data from Anhui Meteorological Bureau, Water Conservancy
Yearbook.

The preprocessing of optical images primarily relies on
the Sen2Cor plugin within the Sentinel Application Platform
(SNAP), developed by the European Space Agency. This process
includes radiometric correction, geometric terrain correction, noise
removal, and transformation of backscattering coefficient images.
The Sen2Cor module within SNAP is specifically invoked for
atmospheric correction, and the corrected data is then resampled
to a 10 m resolution using ArcMap. For SAR data, the SARscape
plugin of the ENVI5.3 platform is utilized for microwave image
preprocessing, which involves multi-view processing, single-image
filtering, data enhancement, and geo-correction. These steps are
essential for the extraction and analysis of flood inundation
areas. The analysis was further enhanced by the incorporation
of ground truth data, which included a diverse range of terrains
and urban settings. This inclusion was essential for ensuring the
representativeness and accuracy of the study. High-resolution
imagery and field survey data were also integrated to substantiate
the findings and provide a comprehensive basis for validation.These
additions are crucial for the robustness of the study’s conclusions
and for meeting the rigorous standards of academic research. The
determination of thresholds was carefully calibrated to clearly
distinguish water bodies from non-water bodies in the images,
utilizing a variety of data sources to ensure the precision and
reliability of the results.
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FIGURE 1
(A): Geographic location of Tongling; (B) the flooding process (Image from China Emergency Information Network (“https://cneb.gov.cn/” and https://
www.emerinfo.cn/).

TABLE 1 Information on satellite remote sensing images.

Satellite/Sensor Observation time Product level Spatial resolution Data source

Sentinel-1/SAR-C 2020-07-03, 2020-07-15, 2020-07-27,
2020-08-08, 2020-08-20, 2020-09-01,

2020-09-13, 2020-09-25

Level-1 GRD 10 m https://scihub
copernicus.eu/dhus

Sentinel-2/MSI 2020-04-26 Level-1C L1T 10 m https://scihub
copernicus.eu/dhus

3 Methodology

3.1 Building a framework for flood
extraction

This study processed radar images from multiple revisit cycles
post-disaster, including correcting the radar remote sensing water
body range and removing permanent water bodies, and then the
actual flooded areas were obtained. Utilizing GIS for visualization
operations, the flooded areas frommultiple periods and the initially
obtained optical remote sensing reference are composited to obtain
dynamic information on the changes in flooded areas. This paper
initiates the process by normalizing rivers, lakes, reservoirs and
other water bodies, amassing a dataset of 1,058 water body sample
points and 579 non-water body sample points for verification
purposes. Integrating these with pre-existing ground truth samples,
the classification accuracy was ascertained using the confusion

matrix method. Taking the major flood event in Tongling, Anhui in
2020 as an example, water bodies are first extracted from Sentinel-
2 satellite optical remote sensing images. After calibration and
correction using the Sen2Cor plugin, the permanent water body
range is obtained using SNAP resampling and the NDWI index.
Water bodies are then extracted based on Sentinel-1 SAR images.
For the Sentinel-1 SAR images, filtering and correction work was
conducted using the SARscape plugin.Thefiltering operation in IDL
environment is performed. The arithmetic mean smoothing filter
was used to derive a threshold from the differences between water
and land bands. In this way, a distributed water body extraction
model is developed to dynamically obtain the flooded area by
excluding permanent water bodies. This framework will extract
water bodies before and after flood disaster in Tongling, using
Sentinel-2 images and Sentinel-1 SAR images, respectively. Finally,
accuracy validation of kappa coefficient was calculated. The specific
methodology is described in Figure 2.
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FIGURE 2
Flood inundation extraction framework based on comprehensive water body index method and threshold method.

3.2 Key methods

The Normalized Difference Water Index (NDWI)
was employed to identify water bodies. The NDWI was
calculated using the Formula 1:

NDWI = Green−NIR
Green+NIR

(1)

where Green represents the green band of Sentinen-2 images; NIR
represents the near-infrared band of Sentinen-2 images.This process
allowed for the minimization of vegetation’s influence and the
enhancement of water features in the images.

IDLwas employed for its user-friendly nature and its established
role in geographic remote sensing data processing. This study
primarily utilizes IDL (Interactive Data Language) for processing
SAR from radar remote sensing. Utilizing IDL’s built-in smooth
function to apply smoothing filtering algorithms to the radar
images. Recognizing that the brightness of objects in the images
corresponded to the echo intensity, which was determined by the
radar’s backscatter coefficient. Employing a threshold segmentation
method to differentiate water bodies, which typically exhibit lower
backscatter coefficients and thus appear darker, from non-water

bodies. Applying a specific formula to calculate the backscatter
coefficient using a threshold (M) that distinguishes water bodies
from non-water bodies in the image. Identifying the threshold M
by experimenting with different values and using the formula to
determine the backscatter coefficient for water bodies. Segmenting
colors based on established thresholds to clearly differentiate water
bodies from non-water bodies in the images.The specific Formula 2
is as follows:

Waterbody =
{
{
{

1,δ <M

0,δ >M
(2)

where δ represents the backscatter coefficient andM is the threshold
used to distinguish water bodies from non-water bodies in the
image. To swiftly differentiate between water bodies and non-water
bodies in the images, a threshold segmentation method is proposed.

3.3 Water body and flood inundation
extraction in the framework

In thestudy, integrationofSentinel-2 satellite imagerywasutilized,
focusing on bands B3 and B8 to process and extract water bodies.
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FIGURE 3
Flood inundation extraction technological process.

Themethodology incorporated filtering techniques to mitigate noise,
followed by normalization and reclassification in ArcGIS10.6. Pixels
with values below the threshold of 0.15 were classified as water
bodies,while those exceeding this valuewere categorizedasnon-water
areas. This approach facilitated the clear delineation of the extent of
permanent water bodies. Subsequently, processing of radar remote
sensing data was executed using the IDL programming language,
which included a smoothing function to refine the microwave
image data. As shown in Figure 3. A smoothing filter algorithm was
applied to reduce the impact of objects with strong edges, enhancing
the precision of water body extraction. The distribution data of
water bodies within the target area were obtained through band
thresholdingandIDLfiltering.Further refinementofflood inundation
area extraction was carried out in ArcGIS, following georeferencing
and projection correction. The presence of permanent water bodies,
such as the Yangtze River and Tianjing Lake, was accounted for
by utilizing Sentinel-2 satellite data as a base layer. This step was
essential for the accurate exclusion of these features from the Sentinel-
1 satellite SAR data. The area of inundation for each period was
determined by calculating pixel counts from the attribute table of the
flood inundation range, providing a comprehensive analysis of flood
dynamics within the study area.

4 Results

4.1 Water body extraction results

4.1.1 The water body extraction distribution
In this study, a methodology was developed to delineate water

bodies and gather their distribution data within the target area.

Band thresholding and IDL filtering methods were employed to
process the satellite imagery, enabling the extraction of water
body extents and the identification of flood inundation areas. The
spatial distribution of water bodies was mapped using Sentinel-
2 satellite optical data, which provided high-resolution green and
near-infrared bands essential for the Normalized Difference Water
Index (NDWI) calculation.

Figure 4D displays the outcome of processing with the IDL
language program. When compared to Figure 4C, which shows
the image before the application of the smoothing function, it
is evident that the post-filtering image exhibits a smoother and
more continuous visual effect. The disturbances and noise at the
edges are significantly reduced, resulting in a clearer image that is
more conducive to interpretation and analysis. The smoothing filter
algorithm implemented in IDL has proven effective in optimizing
microwave image data, thus laying a solid foundation for further
analysis and applications. Figure 5 presents the flood inundation
areas after geographic registration and projection correction. The
manuscript describes the variations in water body extents in
Tongling City across different dates, as shown in Figures 5A–H.
These figures provide a detailed account of the changes inwater body
distribution over time, highlighting the dynamic nature of flood
inundation and the factors influencing it.

Furthermore, the study examines the influence of permanent
water bodies, such as the Yangtze River and Tianjing Lake, on
the extent of flood inundation. To account for these factors, water
extraction data from Sentinel-2 satellite images were utilized as a
reference map. This map was instrumental in excluding permanent
water bodies from the Sentinel-1 satellite SAR data, which allowed
for the accurate mapping of flood inundation areas for each
respective period. Figure 5 illustrates the results of this process,
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FIGURE 4
IDL algorithm based remote sensing image smoothing filtering processing results (A): NDWI processing results; (B) Range of permanent water bodies;
(C) Image before filtering (D) Image after filtering).

showcasing the refined delineation of flood inundation areas, free
from the influence of permanent water bodies. This approach
ensures that the flood risk assessment is based on accurate and
up-to-date spatial data, providing valuable insights for flood risk
management and mitigation strategies.

It also examines the influence of permanent water bodies,
including the Yangtze River and Tianjing Lake, on the extent
of flood inundation. To this end, water extraction data from
Sentinel-2 satellite images is utilized as a reference map. This
map facilitates the exclusion of permanent water bodies from
the Sentinel-1 satellite SAR data, thereby enabling the accurate
mapping of flood inundation areas for each respective period, as
demonstrated in Figure 5.

4.2 Extraction accuracy for flood

This paper embarked on a meticulous process, beginning
with the normalization of rivers, lakes, reservoirs, and other
water bodies. A comprehensive dataset was compiled, comprising
1,058 water body sample points and 579 non-water body sample
points, all meticulously gathered for verification. These samples
were harmoniously integrated with existing ground truth data,
and the classification accuracy was meticulously determined using

the confusion matrix method. The outcomes of this analysis are
meticulously detailed in Table 2.

The results of this rigorous evaluation are compelling: the
method proposed in this study has achieved a water body extraction
accuracy that exceeds 80%, with a baseline extraction accuracy
that impressively surpasses 87%. Remarkably, the overall accuracy
not only meets but exceeds expectations, reaching 89%, and the
Kappa coefficient, a critical measure of precision and reliability,
impressively exceeds 0.75.

Upon a meticulous analysis of the classification accuracy
data presented, it becomes evident that the precision rates for
both water and non-water classifications are exceptionally high,
signifying a robust extraction process. The water body extraction
precision varies, with a low of 87.54% recorded on July 27 and
a peak of 98.69% on April 26. Similarly, the baseline precision
for water bodies follows a comparable trend, with the highest
value noted on the same date (April 26) at 99.54%. For non-
water body extraction, precision rates consistently remain above
90%, with the exception of the July 15 measurement, which
temporarily dips to 81.00%. The overall precision percentages,
reflecting the combined accuracy of both classifications, are equally
remarkable, ranging from a low of 89.12% on July 27 to a high
of 98.92% on April 26. These figures demonstrate the method’s
high accuracy and consistency over time. The slight decrease
in precision for both water and non-water classifications on
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FIGURE 5
The water body extraction distribution in Tongling from July to September 2020. (A) July 3, (B) July 15, (C) July 27, (D) August 8, (E) August 20
(F) September 1, (G) September 13, (H) September 25.

July 15 and July 27 is an anomaly that may warrant further
investigation.

The Kappa coefficients, which measure the agreement between
observed and expected classifications, are substantial across all
dates. The lowest value, 0.7511, was recorded on July 27, while

the highest, an impressive 0.9774, was noted on April 26. A
Kappa coefficient above 0.8 typically indicates strong agreement,
suggesting that the classification method employed is not only
reliable but also consistently effective for all the dates under
consideration.
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TABLE 2 Classification accuracy.

Data Classification Extraction precision
%

Baseline precision % Overall precision % Kappa coefficient

April 26
Water 98.69 99.54

98.9216 0.9774
Non-water 99.29 97.96

July 3
Water 97.84 93.80

95.2438 0.9034
Non-water 92.04 97.20

July 15
Water 90.21 95.84

90.5925 0.7888
Non-water 91.42 81.00

July 27
Water 87.54 96.98

89.1265 0.7511
Non-water 93.12 74.78

August 8
Water 90.69 96.69

91.4478 0.8078
Non-water 93.31 81.87

August 20
Water 91.61 96.98

92.3030 0.8275
Non-water 93.81 83.77

September 1
Water 91.59 95.75

91.5699 0.8121
Non-water 91.53 83.94

September 13
Water 95.70 96.79

95.1130 0.8926
Non-water 94.00 92.06

September 25
Water 93.39 97.45

93.8913 0.8639
Non-water 94.93 87.39

4.3 Spatiotemporal variation
characteristics of flood inundation areas

The spatial distribution of flood inundation is extracted using
multi-temporal data from Sentinel-1 and Sentinel-2, capturing
dynamic information on flood changes over time. Extent of
inundation is the extent of change in the area of a water
body before and after a flood event. As illustrated in Figure 6.
A detailed analysis of the flooded areas in Tongling
throughout 2020 revealed a distinct pattern in the flood event’s
progression.

During the flood, the period of rising water was comparatively
shorter than the period of receding water. The smallest observed
flooded area was approximately 15 km2on July 3, while the largest
extent of flooding, around 230 km2, was recorded around July
27. The area affected by flooding expanded prior to July 27 and
subsequently contracted. From late August through September, the
flooded area oscillated around 98 km2, indicating a stabilization
phase. The temporal characteristics of the affected area can be
summarized as follows:

On July 27, there was a significant increase in the flooded
area due to heavy rainfall and swift inflow from the upstream

Yangtze River, which overwhelmed the flood discharge capacity.The
inundation began in the Yangtze River section and progressively
spread to the northern and northeastern parts of the region, peaking
on July 27. Post-July 27, the flooded area started to diminish as the
rainfall subsided and water levels in rivers and lakes dropped. Soil
moisture saturation also resulted in reduced infiltration and a slower
recession of water bodies. Although the flooded area in the Yangtze
River section of Tongling began to recede, the overall reduction was
minimal. From September 1, there was a marked decrease in the
flooded area, which by September 25 had reduced to less than half of
its maximum extent. This reduction aligns with the implementation
of flood response measures and flood prevention efforts by Tongling
authorities.

4.4 Dynamic changes in flooded areas

The high-risk areas affected by the flood mainly include the
banks of the Yangtze River, Baitu Lake, Baidang Lake, Fengsha Lake
and Chenyao Lake in the northern and central parts of Tongling,
with the eastern region less affected and the rest of the areas basically
unaffected by the flood. Although the flood mainly concentrated

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2024.1511834
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Teng et al. 10.3389/feart.2024.1511834

FIGURE 6
Flood inundation range variation chart. (A) July 3, (B) July 15, (C) July 27, (D) August 8,(E) August 20, (F) September 1, (G) September 13,
(H) September 25.

along the banks of the major rivers and lakes, combined with the
statistical chart of the flooded areas at different time phases, this
heavy rainfall still caused a large area to be submerged. The flood
mainly occurred from early July to the end of August, lasting for
nearly 2 months, belonging to the critical period of flood prevention
known as the upstream in July, downstream inAugust. In September,

the numerical value of the flooded area began to fluctuate and some
seasonal water bodies may have become permanent water bodies. At
this time, the entire flood process has ended.Therefore, based on July
27, near the peak of the flooded area, dynamic maps of the flooded
areas during the rising and receding periods of the floodwere drawn,
as shown in Figures 7A, B.
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FIGURE 7
Dynamic process of flood inundation extent in Tongling (A): Flood rise period (B): Flood receding period.

Further analysis of the trend of the flood is provided below.
Considering the weather conditions: from early July to the July 27,
rainfall continued, leading to the growth period of the flooded area.
During this time, the water levels of rivers and lakes rose rapidly and
the flooded area mainly concentrated on the northern and western
foothills. From the end of July to early August was the stable period
of the flooded area. Due to occasional light to moderate rain, the
flooded area remained large until August 8. The main reason for the
inundation in the northern and western regions was the diversion
of ridges to gentle terrain. From the end of August to September 1,
the weather was clear, marking the unstable period of the flooded
area, with water levels gradually decreasing around the northern and
western foothills. After September is the period of flood recession
and post-disaster reconstruction. During this time, except for the
northern and western foothills, where water accumulation may
become permanent due to topography, the other areas generally
returned to pre-disaster levels. The rate of decline in water level in
the Tongling section of the Yangtze River main stream was greater
than that in the northern and western regions. It can be seen that the
water level rose rapidly in the early stage and after measures such as
downstream flood discharge, it also decreased rapidly. The duration
of flooding was longer, mainly concentrated in the foothills of the
western and northern regions. Based on the above research, it is
suggested that the management strategy of Tongling in the future
should focus on strengthening embankments of rivers, lakes and
other water bodies before the summer flood season on July 27, after
July 27, attention should be paid to dredging work around the lakes
at the foothills of the northern and western sides and improving
the drainage system in the central urban area to ensure rapid flood
discharge and restoration of production and life.

5 Discussion

In this study, a method for identifying flood ranges using SAR,
enhanced through filter improvements via the IDL programming
language, is developed. This paper constructs a framework to
extracting flood inundation areas from Sentinel-2 images in
green and NIR bands and Sentinel-1 SAR images, employing
a comprehensive water index method and threshold method.

Focusing on Tongling in Anhui Province, which endured severe
flooding in 2020, this paper utilizes Sentinel-2 optical images pre-
flood and Sentinel-1 radar images post-flood to extract water
volumes for the area.

The specific results captured detailed spatiotemporal dynamics
of the flood inundation areas in Tongling, demonstrating the
method’s reliability to record changes over time with good accuracy.
Compared with actual data, the framework achieves an accuracy
rate of 98% for optical images and 89% for SAR, which well
meets the goal of accurately delineating flood inundation areas.
This highlights the method’s potential for timely and precise flood
monitoring across different regions and scenarios. However, some
limitations of this method are observed, such as a slight decrease
in the classification accuracy of water and non-water areas on July
15 and July 27. This issue may be attributed to environmental
uncertainties, such as variations in image quality, seasonal changes,
or difficulties in distinguishing water from similar features under
certain conditions.

In future studies, flood inundated areas mapping could
incorporate additional remote sensing data sources or integrate
machine learning algorithms to improve classification accuracy.
Testing the framework under diverse geographical and climatic
conditions will provide valuable insights into its universality and
robustness.The capture of dynamic change information in this paper
also represents an exploratory step towards flood management in
small watersheds under urbanization development. Future research
may concentrate on real-time data processing to expedite the
response of disaster management and warning systems.

6 Conclusion

This paper takes Tongling, severely affected by the major flood
disaster in Anhui Province in 2020, as the research area. This
study constructs a framework for extracting flood inundation
areas from optical image data in bands Green and NIR using a
comprehensive water index method and threshold method. This
study utilizes Sentinel-2 optical images obtained prior to the flood
in Tongling, Anhui Province and Sentinel-1 radar images post-flood
occurrence for water extraction. Finally, the flood inundation range
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and dynamic change information of Tongling, Anhui Province, are
obtained. The conclusions are as follows:

(1) The framework has achieved accuracy in water body
extraction, with rates exceeding 98% for optical images
and over 89% for SAR. The high precision rates and
Kappa coefficients are a testament to the classification
method’s reliability in differentiating between water and
non-water bodies.

(2) An accurate depiction of the affected area distribution in
Tongling was achieved. From July 3 to September 13, the
average affected area in Tongling was approximately 126 km2.
The central region was the most impacted, followed by the
northern region, whereas the eastern region incurred the
least damage.

(3) The spatial distribution analysis revealed that the western part
of Tongling was more severely affected by the floods than
the eastern part, with the Yangtze River section serving as
a dividing line. The higher-risk areas were predominantly
concentrated in the central and northeastern parts
of Tongling.
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