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In China, the Loess Plateau’s fragile geological structure leads to complex and
variable surface subsidence in old gob areas following coal mining activities.
Accurately predicting this residual subsidence remains a significant scientific
challenge. In this study, a method for residual subsidence prediction using an
Exponential Smoothing Long Short-Term Memory (EsLSTM) model is proposed.
The investigation centers on the 18,001# old goaf area of the Yangquan Coal
Mine in Shanxi Province. Using Sentinel-1A imagery, continuous SAR data from
98 periods were acquired and processed via Enhanced Distributed Scatter
InSAR technology. The EsLSTM model was then developed to capture the
subsidence time-series characteristics of all surface scatter points and predict
future ground subsidence. The analysis reveals that the EsLSTMmodel delivered
excellent accuracy, achieving an R2 value of 0.975. It also outperformed SVR and
traditional LSTMmodels, with a Mean Absolute Error of 2.2 mm and a Root Mean
Square Error of 7.9 mm. Predicted results indicate that by October 2023, the
maximum cumulative subsidence at the 18,001# working face of the Yangquan
Coal Mine will reach 204 mm. The subsidence trend is expected to become
more gradual and stable, suggesting a low likelihood of geological disasters
in the area.
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1 Introduction

Ground subsidence, a geological hazard caused by both anthropogenic activities and
natural factors, leads to irreversible damage to the environment and resources (Zhao et al.,
2016). As the world’s largest coal producer, China’s economic and social development has
been significantly supported by coal resources (Dai and Finkelman, 2018). However, large-
scale coal mining has caused severe ecological damage, leading to ground movement and
changes that damage mining structures, farmland, roads, railways, pipelines, and more. In
severe cases, it can result in collapse craters, ground fissures, landslides, and debris flows,
threatening the economic development and social stability ofmining areas (Yang et al., 2017;
Chen et al., 2020). As a result, monitoring and predicting mine subsidence in old goaf is
essential for early disaster warning and safeguarding lives and property (Zhang et al., 2024).
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Traditional methods such as GNSS or levelling have advantages
of high precision but are labor-intensive, costly, time-consuming,
and have low resolution and safety issues (Fuhrmann et al., 2015;
Fernandez Galarreta et al., 2015; Lyu et al., 2024). They are not ideal
for monitoring old goaf subsidence because of the challenges in
maintaining control points and their inability to provide large-area,
high-resolution monitoring (Liu et al., 2012).

Interferometric Synthetic Aperture Radar (InSAR) has emerged
as an advanced Earth observation technique that enables precise,
high-density, and cost-effective monitoring of ground subsidence
across large areas (Yang et al., 2014; He et al., 2021a). Differential
InSAR (DInSAR) was first proposed by Klees and Massonnet
(1998). This method requires two SAR images and external DEM
data. Interferometric processing is applied to the two SAR images,
captured before and after deformation in the same target area,
to generate an interferogram. The DEM is used to simulate
the topographic phase, while the flat ground phase is removed
using precise orbit information. High-pass (HP) and low-pass
(LP) filtering algorithms are then applied to minimize noise and
atmospheric effects. One advantage of this technique is the relative
ease of obtaining the necessary data, requiring only two SAR images
and corresponding DEM data. However, the initial application of
DInSAR for monitoring ground deformation in mining areas faced
considerable challenges due to spatial and temporal decorrelation,
alongwith atmospheric disturbances. To overcome these limitations,
Time Series InSAR (TSInSAR) techniques were developed, which
leverage time series analysis for more accurate monitoring.

TSInSAR techniques are categorized based on the characteristics
of scatterers at monitoring points into two types: Permanent
Scatterers (PS) and Distributed Scatterers (DS) (Xue et al.,
2020). PS points exhibit strong backscatter properties and
relatively stable phase information, commonly corresponding
to man-made structures like buildings, fences, and rocks, thus
being prevalent in urban areas (Parizzi and Brcic, 2011). In
contrast, DS points lack dominant scatterers within the resolution
cell and are composed of multiple sub-scatterers with similar
characteristics (Fornaro et al., 2015). This results in less stable
phase information for DS points, making them more susceptible to
temporal and spatial decorrelation. However, DS points typically
correspond to rooftops, bare land, and fallow fields, effectively
complementing the sparse monitoring density of PS points in
non-urban areas (Chen et al., 2023).

In 2002, Berardino et al. (2002) introduced the SBAS-InSAR
technique to extract deformation information from distributed
scatterers. The key principle of this method involves generating
interferometric pairs from all SAR images using carefully selected
spatial and temporal baseline thresholds to form small baseline
sets. This ensures that the baselines within each set are closely
aligned. For each small baseline set, surface deformation over time
is then calculated using the least squares (LS) method. Singular
value decomposition is used to solve for possible ill-conditioned
equation parameters between sub-baseline sets (Hu et al., 2023).
By combining multiple interferograms, A linear deformation model
is built using high-coherence points, allowing for the inversion to
determine linear deformation rates and elevation errors. Spatial
and temporal filtering then removes residual errors, wiping out
atmospheric delays, and unraveling nonlinear deformation patterns
hidden beneath the surface.

For mining areas predominantly situated in suburban
environments, DSInSAR technology provides more comprehensive
surface monitoring information, which has been effectively
demonstrated in extensive DSInSAR applications for mining
area monitoring (Zhao et al., 2019). While both PS and SBAS
methods are individually limited to measuring displacements
of PS points and DS pixels, respectively (Ng et al., 2017). Their
combined application in processing SAR data can yield more
extensive interferometric results, inspired by (Guzzetti et al., 2009),
enhanced-DSInSAR(EDS-InSAR) was proposed. This technique
combines SBAS and PS methods to obtain surface deformation
information. The combination functions analogously to LP and HP
filters, respectively, filtering out low spatial resolution components
associated with deformation and terrain-related signals, as well as
the remaining high spatial frequency components. SBAS plays a
dual role in this process: firstly, it generates LP deformation time
series and LP residual terrain corresponding to DS points; secondly,
SBAS estimates residual atmospheric phase delays that persist
after initial correction, using GACOS products and ionospheric
propagationmodels. Next, the PSmethod is applied to the calibrated
interferograms to eliminate the low-pass terrain, deformation, and
residual atmospheric effects estimated by the SBAS technique. This
process ultimately produces time-displacement data related to
the PS points. This approach effectively combines the SBAS and
PS methods. As a result, it surpasses the effectiveness of using
each method independently. This approach allows simultaneous
analysis of strong reflectors and distributed targets, generating
low-resolution DS results and high-resolution PS results even in
the presence of nonlinear trends. The EDS-InSAR method thus
demonstrates significant advantages in obtaining nonlinear surface
deformation values, absolute deformation accuracy, and coverage
area in mining regions.

Existing ground subsidence prediction methods can be
classified into three main categories: mathematical statistical
models (Ye et al., 2016), empirical models (Tang et al., 2008),
and artificial intelligence models (Fan and Zhang, 2019). Artificial
intelligence models are widely used due to their parallel computing
capabilities, strong fault tolerance, self learning functions, and high
prediction accuracy (Pan et al., 2019). The most classic artificial
intelligencemodel is the Back Propagation (BP)model. However, BP
models typically use sparse and discontinuousmonitoring data from
GPS and levelling, which affects the prediction accuracy of ground
subsidence. Furthermore, traditional BP models face challenges
in fitting the data due to the large number of weights that require
training and their high demand for extensive training datasets. This
often results in insufficient samples when applied to InSAR tasks.
This can result in low prediction accuracy or model failure in areas
with complex deformation patterns.

With the wide application of machine learning, utilizing
machine learning methods for time-series prediction based on
InSAR data has emerged as a prominent research focus. LSTM
(Santra and Lin, 2019) and Convolutional Neural Network (CNN)
models (Radman et al., 2021) have been particularly prominent in
this field. LSTM networks, designed for sequence data, can capture
the temporal characteristics of changes in InSAR data and have
achieved significant results in time-series InSAR data prediction.
However, LSTM networks focus solely on the temporal features
of time-series InSAR data, ignoring spatial information, which
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can affect the accuracy of time-series InSAR image prediction
(Nawaz et al., 2022). CNNs, which actively learn image features,
can capture spatial features in time-series images. The introduction
of the weight-sharing concept in CNNs reduces the number of
trainable parameters, making CNNs widely used in time-series
InSAR data prediction (Ma et al., 2020; Sun et al., 2020). However, as
a feedforward neural network structure, CNNs default to using the
last fully connected layer as the output, which makes it difficult to
consider different temporal depth features simultaneously, affecting
the prediction accuracy of time-series data (He et al., 2021b).
Recent studies have demonstrated the effectiveness of integrating
InSAR technology with LSTM networks in predicting ground
subsidence. For example, research on the Shigouyi Coalfield in
China highlighted the success of combining SBAS-InSAR with
LSTM, achieving high prediction accuracy by leveraging the
strengths of both technologies (Ma et al., 2023). Moreover, the
integration of an Attention LSTM (AT-LSTM) model has shown
to significantly enhance prediction accuracy by improving the
model’s ability to capture temporal dependencies in subsidence
data (Liu and Zhang, 2023). Dynamic models that integrate D-
InSAR with LSTM have also been developed to account for
time-varying subsidence patterns, further improving prediction
capabilities in active mining areas (Hou et al., 2022). Convolutional
LSTM (ConvLSTM) (Shi et al., 2015) extends the core ideas
of LSTM networks by converting the fully connected states in
LSTM into convolutional states. He et al. (2023) discussed the use
of ConvLSTM neural networks for spatiotemporal prediction of
ground subsidence using InSAR data. However, these studies also
reveal certain challenges and limitations. Paper (Ma et al., 2023) uses
fewer datasets, which may result in less accuracy of predictions in
complex environments. The complexity of models like AT-LSTM in
Liu and Zhang (2023) introduces computational demands that may
limit their practical application, particularly in real-timemonitoring
scenarios. Paper (He et al., 2023) does not pay attention to the
accuracy of the original data set.When constructing the ConvLSTM
prediction model, the incoherent region is interpolated, and the
sample error is introduced insubtly, data quality directly affects the
performance of the algorithm.Additionally, while thesemodels have
proven effective in specificmining areas, their generalizability across
different geological settings remains a subject of ongoing research.
EsLSTM is proposed by Smyl (2020),it aims to explore and propose
a enhanced LSTM prediction algorithm that leverages smoothing
models to improve prediction accuracy, has the advantage of
reducing noise and variability in data and potential applications
in various fields, such as finance forcasting, weather and geology
prediction.

Shanxi Province, one of China’s largest coal-producing
provinces, has made significant contributions to national economic
construction and social development but faces serious threats from
ground subsidence disasters. Previous studies on ground subsidence
in the Shanxi Coal Mine include research by Xia et al., 2023,
whos utilized optical images and the PS method to gather ground
subsidence information. Their objective was to detect suspected
illegal mining sites by analyzing building subsidence data across
a broader area. The study by Shi et al. (2020) analyzes unstable
areas in Xiangning County and its surrounding regions using
C-band Sentinel-1 datasets collected from March 2017 to 2019.
The research identifies several unstable sites exhibiting active slope

deformations.They all confirmed the feasibility of InSAR technology
in mining area monitoring. However, at present, there is a lack
of monitoring and prediction of residual subsidence in old goaf
based on the SAR images, especially in the Loess Plateau area of
Shanxi Province, which is not conducive to the early warning of
subsidence disasters.

This study focuses on the 18,001# workface of the old goaf in
the Yangquan Coal Mine, Shanxi Province. High-quality ground
subsidence data were first obtained using the Sentinel-1 imagery,
processed through EDS-InSAR technology. An EsLSTMmodel was
then developed to effectively capture the temporal dynamics of
ground subsidence, revealing the spatiotemporal evolution patterns
in the mining areas. The EsLSTM model was subsequently applied
to predict future subsidence, offering valuable insights for informed
decision-making in the rational development and sustainable use of
mineral resources. Additionally, the model provides crucial support
for early warning systems, subsidence mitigation strategies, and
ecological protection efforts, promoting the long-term sustainability
of the mining region.

2 Materials and methods

2.1 Site selection

The 18,001# working face of the Yangquan Coal Mine, located
in Pingding County, Shanxi Province, is illustrated in Figure 1. The
working face lies 342 m below the surface, an area characterized by
farmland, walnut trees, cement roads, seasonal rivers, and power
supply lines, with surface elevations ranging from 1,053 to 1,301 m.
The site has an inclined width of 280 m, a strike length of 2000 m,
and covers a mining area of 560,000 square meters. The coal
seam presents a gentle monocline, with a dip angle of 2–10° and
a thickness of 4.25–4.8 m. Mining operations were carried out
between January 2018 andDecember 2019. Post-mining exploration
using radio wave transmission identified geological features such as
igneous intrusions, river scours, and collapse columns within the
working face.

Northeast of the 18,001# working face lies the medium-sized
Shangyi Reservoir, primarily used for flood control, with secondary
functions of irrigation and water supply. In recent years, the safety of
the dam has been compromised by the impact of surrounding goaf
areas. Located in the middle-upper part of the Yangquan mining
area, the reservoir is influenced by extensive underground mining
activities. These mining operations have created widespread goaf
regions, leading to surface cracking of varying severity around
the reservoir dam at different times. These cracks, caused by
underground mining from different periods, have resulted in
structural damage to houses and roads in the area. Since August
2019, an increase in damage has been observed in previously affected
houses, with new cracks emerging and existing ones widening in
the buildings and ground surrounding the reservoir management
station. This poses a significant threat to both the safety of the
reservoir and nearby property.

The focus of this study is onmonitoring deformation around the
Shangyi Reservoir, using the 18,001# working face of the Yangquan
Coal Mine as a case study to validate the accuracy and reliability of
the EsLSTM algorithm.
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FIGURE 1
Geographical location of Shangyi resercoir with Yangquan mine. The background is optical remote sensing imagery.

TABLE 1 Sentinel-1A data covering Shangyi reservoir used in this work.

Sensor Sentinel-1A

Wave C

Polarization Mode VV

Spatial Resolution 5 m∗20 m

Temporal Tesolution 12 days

Track Ascending

Number of Images 98

Time range 2020.1–2023.6

2.2 Data selection

This project utilized C-band data from the European Space
Agency’s Sentinel-1 satellites, which have a 12-day revisit cycle and
a spatial resolution of 20 m. As part of ESA’s Copernicus program,
the Sentinel-1 mission is designed for all-weather, day-and-night
radar imaging in a polar orbit, serving both terrestrial and marine
applications. Initially, themission comprised two Synthetic Aperture
Radar (SAR) satellites, Sentinel-1A and Sentinel-1B. However, due
to the malfunction of Sentinel-1B, only Sentinel-1A is currently
operational, extending the observation cycle from the original
6–12 days (see Table 1).

For this project, an account was registered on the Copernicus
Open Access Hub, and a Python program was developed for
automated data downloading. Sentinel-1 data from January 2020 to
June 2023 were downloaded for the study.

The European Space Agency (ESA) provided precise orbit
ephemerides (POD) data for all Sentinel-1 SAR data used in
the study. The authors also employed a three-arc-second Shuttle
Radar Topography Mission (SRTM) Digital Elevation Model
(DEM) obtained from the National Aeronautics and Space
Administration (NASA). Additionally, the research utilized data
from theGeneric Atmospheric CorrectionOnline Service for InSAR
(GACOS) covering the period from January 2020 to June 2023.
GACOS, supported by the Natural Environment Research Council
(NERC) through the Centre for the Observation and Modelling of
Earthquakes, Volcanoes, and Tectonics (COMET), as well as the
LICs and ESA-MOST Dragon-4 programs, employs the Iterative
Tropospheric Decomposition (ITD) model (Yu et al., 2018) to
separate stratified and turbulent signals from the total tropospheric
delay. This process generates high spatial resolution zenith total
delay maps, which are used to correct InSARmeasurements and for
various other applications.

2.3 EDS-InSAR

The main steps of the EDS-InSAR technology are divided into
three stages. First, identify and process the Permanent Scatterer
(PS) pixels. Then, identify and process the Distributed Scatterer
(DS) pixels. Finally, combine the PS andDS to obtain comprehensive
deformation products of the deformation area, including cumulative
deformation, deformation rate, and deformation time-series
information. As shown in Figure 2, this is the flowchart of the
technology.

The first step involves selecting a master image from the
input SLC dataset based on a set baseline threshold, and forming
interferometric pairs with the master image and other images.
The other images are paired with this master image to form
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FIGURE 2
EDS-InSAR flowchart.

interferometric pairs. All images are co-registered and resampled
to the selected master image to ensure the successful generation
of interferometric pairs. Each interferometric pair undergoes
interferometric processing based on the connection relationship
of the pairs. All images need to be registered and resampled to the
reference file, which involves oversampling by four factors (at least
two) to avoid dense and confusing interference fringes in the case of
large baselines. Unlike standard InSAR processing, the PS method
does not involve spectral shifting and ordinary Doppler bandwidth
filtering because it targets point targets. Differential interferograms
are generated for each interferometric pair. The filtered differential
interferograms are produced using adaptive filters.The atmospheric
phase in the differential interferograms is estimated and
removed to generate deformation results, including rates and
elevation correction values. The sequences and deformation
rates for all PS points are geocoded and projected into the
mapping system.

The third step involves analyzing time series deformation jointly
with PS and DS. The residual atmospheric phase derived from the

SBAS method is utilized to calibrate the PS points. The residual
topographic phase obtained using the PSmethod is used to calibrate
the DS points. A comparative analysis is performed between the DS
and PS corresponding pixels. Points with significant residuals are
eliminated to ensure consistency in the deformation results obtained
from both DS and PS targets. Ultimately, deformation information
for strong reflectors and distributed targets in the deformation area
is obtained.

2.4 Description of the EsLSTM algorithm

This method was first proposed by Smyl in 2019. It integrates
the Exponential Smoothing (Es) with the LSTM network. This
hybrid approach, which combines statisticalmodelingwithmachine
learning algorithms, leverages the strengths and mitigates the
weaknesses of both. It is capable of effectively learning the
global parameters of long sequences and the local parameters of
subsequences, achieving cross-learning.
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The method starts with deseasonalizing the data using the ES
model, followed by predictions made with the LSTMmodel. Finally,
the forecast results are produced. Seasonality is one of the key
components of time series, referring to systematic movements that
have different average values in certain periods and repeat with
similar intensity over time. Seasonal variations can be caused by
various factors, such as weather, calendar, or economic conditions.
After preprocessing, InSAR mining subsidence sequences can be
provided as digital vectors with timestamps.

The sequences themselves exhibit seasonality, but the ground
displacement process caused by goaf in mining areas is a stochastic
process that does not have seasonal characteristics. To calculate
periodical components, it is first necessary to employ a state-
space exponential smoothing (ES) model. The initial periodical
components for each seriesand the smoothing coefficients are
fitted alongside the global neural network weights using stochastic
gradient descent (SGD). Once the corresponding series values
and parameters are determined, the periodic components can be
calculated and applied for deseasonalization. Secondly, for non-
seasonal data, the neural network must generate forecasted steps
ahead (e.g., 30 points for the annual series of Sentinel-1A), followed
by reseasonalization to produce the forecast output. This neural
network is not local, enabling it to learn from multiple time-series
simultaneously. When a dataset includes a significant number of
sequences from unknown sources, it is reasonable to assume that
these sequences can be grouped into subsets. In such cases, using
separate models for each subset rather than a single model for the
entire dataset can potentially improve overall prediction accuracy.
However, it is difficult to group these sequences, as those from
different sources may exhibit similar characteristics and behaviors.
Additionally, using generic metrics for clustering sequences may
not effectively improve prediction accuracy. To address this,
ensemble learning algorithms train multiple models (including
neural networks and persequence parameters) simultaneously and
force them to focus on different subsets of sequences, partially
solving this issue.

The model uses Holt’s method with multiplicative seasonality,
adjusting for trends and seasonal variations in the data. Parameters
are optimized using stochastic gradient descent.The LSTM operates
on the preprocessed data, generating predictions that are later
adjusted to reflect the original seasonal trends. Considering
that InSAR timing monitoring values are negative and usually
monotonically decreasing, we choose the Holt Gardner (2006)
and Holt-Winters Kang et al. (2017) models with multiplicative
periodicity. By removing its linear trend, its nonlinear trend can
be well learned using neural networks. The updating formula is as
follow:

lt = αyt/st + (1− α) lt−1 (1)

st+k = βyt/lt + (1− β) stω (2)

where lt is the level component, yt is the deformation value of the
series at time t; ,st is the periodical component; k is 30 for here;
It is important to note that st is always positive, while α, β and ω
range between zero and one. By applying the exponential function
exp() to the basic parameters of the periodic component and the
sigmoid() function to the parameters of the flatness coefficient,

the periodic components of all time sequences in the surface
settlement sequence can be calculated by Equations 1, 2, and
then counterperiodic processing can be performed using these
components during preprocessing.

As mentioned above, EsLSTM operates on aperiodic, non-
normalized. It involves three sets of parameters during the process of
predicting the data shown above: Local constants, Global constants,
and Local states. Parameters such as initial seasonal components
remain unchanged throughout the series. These are learned across
multiple series, like the weights in the neural network. These evolve
over time, adapting to the changes in the data as the series progresses.
Implemented in PyTorch, this approach is particularly suitable
for predicting surface deformation in mining areas, where data
characteristics require tailored modeling.

2.5 Training process combining EDS-InSAR
data with EsLSTM

Based on the principles of EDS-InSAR technology, this paper
utilizes continuous time-series radar data with a 12-day interval
for small baseline set differential interferometry. All selected SAR
images are freely combined to form interferometric pairs according
to the criteria of time baseline δT ⩽ 90 days and spatial baseline
δB ⩽ 90 meters, with one image chosen as the super master image.
This strategy results in multiple interferometric pairs. Coherence
estimation is performed for all interferometric pairs, and high-
coherence points are selected by setting time-series coherence
and amplitude deviation thresholds. Through iterative calculations,
time-series deformation values of surface deformation points
are obtained. The massive distributed time-series deformation
monitoring data includes the latitude and longitude coordinates of
each surface deformation point, cumulative subsidence time-series
values every 12 days, coherence coefficients of the deformation
points, and error estimates.

Using the coherence coefficient and error estimate values, a filter
is set to remove all deformation points with a coherence coefficient
less than 0.3 and an error estimate value greater than 10, resulting
in N sets of high-precision distributed time-series deformation
monitoring data. ForN time series, the time granularity of each time-
series data is a 12-day interval. If the number of periods is 100, the
first 90 periods are used as the training set and the last 10 periods as
the test set. The model predicts the 91st period using periods 1–90,
the 92nd period using periods 2–91, and so on, up to predicting
the 100th period using periods 9–99, thereby validating the model’s
accuracy through rolling prediction.

In this study, four exponential smoothing models were
combined with the LSTM model to create a model pool consisting
of four distinct models. The training set of InSAR monitoring data
was used to individually train each model. The performance of
each model was evaluated using a validation set, and the model
combination was selected adaptively based on the training results.

Given that the trends of each sequence differ and that the model
combinations vary significantly, the two best models identified from
the training of each sequence were repeatedly trained in steps 2 and
3 until the average error in the validation region began to increase.
Themodel with the smallest error was then chosen as the best model
for that sequence.
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2.6 Evaluation and performance

In order to quantitatively evaluate the performance of Spatial
and Temporal Prediction model of Mining Ground Subsidence
Integrating EDS-InSAR with EsLSTM, the following evaluation
indexes were selected for accuracy evaluation. These include Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and the Wilmot Consistency
Index (WIA).

The RMSE and MAE are defined as follows:

RMSE = √ 1
N

N

∑
i=1
(mi − m̃i)

2 (3)

MAE = 1
N

N

∑
i=1
|mi − m̃i| (4)

wheremi represents the truth value and m̃i represents the predicted
value obtained by the EsLSTMmodel, and the absolute value is taken
to avoid negative errors.TheRMSE related to Equation 3 can be used
tomeasure the deviation between the predicted and the truth values,
while theMAE related to Equation 4 indicates the actual situation of
predicted error.

The MAPE and WIA are defined as follows:

MAPE =

N

∑
i=1
|mi − m̃i|/mi

N
× 100% (5)

WIA = 1−

N

∑
i=1
(mi − m̃i)

2

N

∑
i=1
(|mi −mi| + |m̃i −mi|)

2

(6)

In Equations 5, 6, wheremi represents the truth value, m̃i represents
the predicted value obtained by the EsLSTMmodel,N is the number
of samples, andmi is the average of m̃i.

3 Results and discussion

3.1 Analysis of EDS-InSAR results

To ensure the reliability of cumulative deformation values
derived from EDS-InSAR inversion, stable points were selected
based on the average coherence coefficient of the time series
deformation values. A comparative analysis of the temporal
coherencemaps over the study period was conducted.The closer the
coherence coefficient is to 1, the more reliable the interferometric
measurements. The coherence coefficient is calculated using the
following formula:

γ =

|
N

∑
i=1

M

∑
j=1

μ1 (i, j) ⊗ μ2 (i, j)|

√
N

∑
i=1

M

∑
j=1
|μ1 (i, j) |2

N

∑
i=1

M

∑
j=1
|μ2 (i, j) |2

(7)

In Equation 7, where μ1 and μ2 are the complex numerical,and ⊗
denotes μ1 complex conjugate multiplication with μ2 in the image

coordinates (i, j); i and j denote the row and column indices of the
data blocks, respectively; M and N represent the dimensions of the
data blocks used for the coherence calculation.

Figure 3 shows the average coherence map generated during
data processing. As illustrated, the coherence coefficients within the
deformation inversion area throughout the study period remained
above 0.3, with an average value of 0.61 and a maximum of 0.89.
In theory, a coherence coefficient above 0.3 ensures high-quality
interferometric results and accurate phase unwrapping, leading to
reliable deformation measurements. Regions with coherence values
below 0.3 were excluded from the deformation analysis, represented
as blank areas on the map.

This study employed 98 Sentinel-1A satellite images combined
with EDS-InSAR technology to map the temporal cumulative
spatial distribution of ground deformation in the Yangquan mining
area from January 2020 to June 2023 (Figure 4). The figure
clearly illustrates the spatial distribution of ground subsidence,
characterized by pronounced non-uniformity and a ring-shaped
boundary centered around the Shangyi Reservoir. Field surveys
confirmed that this boundary closely aligns with the underground
coalmining limits of the Yangquan coalmine, while the area beneath
the reservoir is designated as a restricted mining zone.

The study area is a reservoir, with the central region entirely
covered by water.This results in specular reflection, leading to radar
signal loss and, consequently, a lack of data coverage. Additionally,
the northern part of the study area includes underground mining
regions, which cause significant surface deformation and introduce
errors into the EDS-InSAR monitoring data. Therefore, this study
primarily focuses on the 18,001# old goaf region, which experiences
slower deformation and provides more reliable deformation
monitoring values.

Significant subsidence has been detected in the northern part
of the study area, attributed to ongoing coal mining activities.
Monitoring data reveals that the maximum cumulative subsidence
in this region has reached−253millimeters, with a subsidence rate of
−84 millimeters per year, leading to the formation of characteristic
subsidence funnel zones. In the northeastern section, coal mining
activities since 2020 have similarly caused ground subsidence,
with a maximum recorded value of −120 millimeters. Comparable
subsidence linked to underground mining has also been observed
along the southern edge of the study area.

Time-series monitoring data from January 2020 to June 2023
indicates no significant subsidence around the Shangyi Reservoir
dam, suggesting that undergroundmining activities at the Yangquan
coal mine have not substantially affected the dam’s safety. This
conclusion is supported by ground leveling measurements. A
comparative analysis of leveling data from the dam and InSAR data
collected over the same period validated the reliability of the EDS-
InSAR monitoring results, further confirming that mining-induced
subsidence near the Shangyi Reservoir has not compromised the
safety of the dam or reservoir.

Leveling data from monitoring points on the dam were
collected between 2020 and 2023 to verify the accuracy of the
InSAR deformation measurements (see Figure 5). The leveling
data recorded relative cumulative vertical subsidence values at
these points. To ensure consistency, EDS-InSAR vertical subsidence
vector monitoring points within a 20-meters buffer zone around
the leveling points were extracted for the same period, and their
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FIGURE 3
Coherence coefficients of EDS-InSAR in different time periods.

relative subsidence values were calculated. The cumulative InSAR
deformation results over the 98 observation periods exhibited
an error margin of ±3 millimeters compared to the leveling
data, meeting the accuracy requirements for ground motion
measurement.

The observed difference is primarily attributed to the structure
of the reservoir dam. The leveling data represents deformation
measurements at a single, precise point, while the InSAR data
reflects the average deformation within a 20 m times 20 m area.This
difference in spatial resolution leads to the apparent fluctuations
in the InSAR data compared to the leveling data. Specifically, the
leveling data recorded relative cumulative vertical subsidence values
at discrete points. To ensure consistency with the leveling data, we
extracted EDS-InSAR vertical subsidence vector monitoring points
within a 20-meter buffer zone surrounding the leveling points for
the same observation period.The relative subsidence values for these
points were calculated accordingly.

Notably, on the southwest side of the Shangyi Reservoir, a
slow deformation zone was detected, corresponding to the 18,001#
workface. This region exhibited lower spatial decorrelation in the
InSAR time series images, with fewer void pixels. Field investigations
revealed thatmining activities in this area ceased in 2020, classifying
it as an old goaf. However, subsidence continued from January
2020 to June 2023, raising concerns due to its proximity to the
reservoir. Understanding the future subsidence trends in this region
is therefore critical to ensuring the safety of the Shangyi Reservoir.

Given this, the study selected this region as the test area and
utilized it as the training dataset for the EsLSTM model developed
in the research.Themodel is designed to predict deformation trends

in the area, providing early warning data to help protect the integrity
of the Shangyi Reservoir.

3.2 EsLSTM prediction results

In this study, we successfully obtained 98 periods of time-series
ground subsidence data for the surface above the 18,001# workface
of old goaf in the Yangquan coal mine, covering the period from
January 2020 to June 2023. A total of 700 Enhanced Distributed
Scatterer (EDS) points were extracted, providing detailed time-
series deformation values. Using these deformation data, we
generated a new time-series deformation dataset through a sliding
window approach.This dataset was then used to develop an EsLSTM
prediction model to forecast future deformation trends.

For the 700 EDS deformation time-series data points, we
conducted 700 independent model training processes. The specific
training procedure is illustrated in Figure 6. Here, The blue cuboids
on the left side of the diagram represent the time series data
at different temporal instances (T = 1,T = 2,…,T =N− 1,T =N).
These data points serve as the training set for the EsLSTM model.
During the training phase, the model employs a sliding window
approach to incrementally train. For instance, it initially uses data
from T = 1 to T =N− 1 to predict the value at T =N. Subsequently,
the window shifts forward, utilizing data from T = 2 to T =N to
forecast the value at T =N+ 1. This process is repeated iteratively
until the model is capable of predicting the value at T =N+ L.The
grey cuboids on the right side of the diagram denote the forecasted
outcomes of the model. Predictions commence at T =N, where the
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FIGURE 4
EDS-InSAR results in different time periods.

FIGURE 5
Comparison with EDS-InSAR and leveling results.

model first anticipates the value at T =N, followed by T =N+ 1, and
continues up to T =N+ L. These predictive results can be utilized
to assess the model’s performance or for practical applications in
time series forecasting. Solid arrows indicate the flow of data during
the training phase, demonstrating how data is fed into the model
for training purposes. Dashed arrows represent the flow of data
during the prediction phase, showing how the model leverages
its trained knowledge to forecast future values. In the forecasting
phase, the model can engage in recursive prediction. This means
that after predicting the value at T =N, the model can incorporate
this predicted value as part of the input data, along with the value
at T =N− 1, to predict the value at T =N+ 1. This method allows
the model to continue making predictions in the absence of new
actual data.

To determine the optimal sample length and prediction time
step, we designated the final 15 periods of time-series data in the
dataset as the validation set. By evaluating the model’s performance
under various parameter configurations on this validation set,
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FIGURE 6
The specific process of EsLSTM prediction.

we aimed to optimize the model’s prediction accuracy and
generalization capability.

In this study, to balance model computational efficiency,
prediction accuracy, and hardware resource constraints, we
systematically selected the training sample length N and
prediction time step L. Specifically, N was set to values in
the set {10,20,…,70,80}, while L was set to values in the set
{5,6,7,…,13,14,15}. Based on these parameters, we calculated the
RMSE for the 700 EDS-InSAR deformation time-series data and
generated a heatmap to visualize the results (see Figure 7).

Analysis of the heatmap indicates that shorter prediction
time steps (L) are generally associated with lower prediction
errors. As L increases, the errors tend to rise progressively.
Additionally, when the training sample length (N) is small and the
prediction step (L) is large, there is a marked increase in error.
Conversely, using a larger N with a smaller L improves prediction
accuracy, although this comes at the expense of computational
efficiency and limits the length of the time series that the model
can predict.

Based on this analysis and the trends observed in the heatmap,
settingN to 50 and L to 10 keeps the prediction error within 8, which
is sufficient for mining subsidence prediction needs. Therefore,
we selected these parameters (N = 50 and L = 10) to configure
the model for predicting subsidence above the 18,001# old goaf
of the Yangquan coal mine. The prediction results are visually
represented in Figure 8.

Leveraging the 98 cycles of EDS-InSAR monitoring data
and optimized hyperparameters, this study utilizes the InSAR
deformation image from 11 June 2023, as the final input for
time-series analysis. The EsLSTM prediction model developed
was employed to forecast the surface deformation of the 18,001#
old goaf at Yangquan Coal Mine for the next 120 days using a
recursive prediction method. As illustrated in Figure 8, the model
performed recursive predictions over 10 time steps, extending
the forecast to 9 October 2023. The figure demonstrates that,
despite the cessation of mining activities at the 18,001# old goaf,
the cumulative surface subsidence continued to increase over
the more than 4-month period following the monitoring. The
spatial pattern of the subsidence area remained stable, forming a
characteristic subsidence funnel. By 9 October 2023, the maximum
cumulative subsidence reached −204 millimeters. Furthermore,
the figure highlights that the combination of EDS-InSAR
technology and the EsLSTM model effectively predicts both the
subsidence area and its boundary, providing a detailed and accurate
representation.

4 Discussion

To assess the reliability of the EsLSTM model’s predictions,
we used the time-series InSAR deformation data from 11 June
2023, as a test sample within the validation dataset. This data
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FIGURE 7
Heatmap of grid search results.

was compared in detail with the model’s predictions, as shown
in Figure 9. Panel A of Figure 9 displays the InSAR-measured
deformation data for 11 June 2023, while Panel B presents the
EsLSTMmodel’s predicted deformation data for the same date.

Panel C is a scatter plot illustrating the correlation between
InSAR observations and EsLSTM predictions on 11 June 2023. The
red line represents the correlation fit, while the black line serves
as a reference for perfect prediction, denotes the ideal case where
Y = X. The proximity between the red and black lines indicates the
accuracy of the model’s predictions. In this study, the near overlap
of the red and black lines demonstrates a strong correlation between
the observed InSAR deformation data and the model’s predictions.

To assess the performance of the EsLSTM model, we utilized
several statistical metrics. The correlation coefficient (R2 = 0.97509)
demonstrates a robust correlation between observed and predicted
values. The MAE is 4.78 mm, and the RMSE is 6.76. These metrics
collectively indicate that the EsLSTM model accurately captured
the characteristics of the InSAR time-series data during training,
suggesting high reliability in the prediction outcomes.

To further validate the model’s accuracy, we collected elevation
benchmark data from five monitoring points on the surface above
the 18,001# old goaf of the Yangquan coal mine for the year
2020. Additionally, deformation observation data for these points
from 2023 were gathered. Using this data, we computed the
surface deformation for thesemonitoring points post-June 2023 and
employed it as a test set to evaluate the EsLSTMmodel’s predictions,
as depicted in Figure 8.

Figure 10 presents a comparison of the measured leveling data
and the EsLSTMmodel’s predictions for the five monitoring points.
The results reveal a strong fit between observed values and model
predictions, with residuals predominantly fluctuating near zero.
This indicates that the EsLSTM spatiotemporal prediction model is
not only theoretically robust but also demonstrates high predictive
accuracy in practical applications, affirming its efficacy as a reliable
tool for forecasting ground subsidence in mining areas.

The prediction results illustrated in Figure 8 indicate a
stabilization of the accumulated subsidence at the coal mine
workface. Furthermore, the deformation curves for the five leveling
points shown in Figure 10 tend to flatten, suggesting that surface
deformation in this region is stabilizing and the risk of geological
disasters is low.

The predicted curves at the S1, S2, and S5 locations, as shown
in the figure, exhibit certain discrepancies compared to the leveling
monitoring curves. Analysis of historical subsidence curves reveals
that during the rainy season each year, the loess layer on the surface
in this region absorbs water and swells, resulting in a brief uplift
period observed by radar. The EsLSTM model successfully learned
this characteristic from the sample data, leading to a slight uplift in
the predicted results for the S1 and S2 areas. However, the bedrock
layer monitored by leveling data does not exhibit this phenomenon,
causing the predicted values to exceed the leveling measurements.
In the S3 and S4 areas, this phenomenon is less evident due to
the terrain; these areas are located on slopes where rainwater can
drain away smoothly. At S5, which is situated near the mining
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FIGURE 8
Prediction results in different time periods.

boundary, underground collapses occurred after mining ceased.
These collapses partially filled the underground voids, leading to
stabilized surface subsidence. While the EsLSTM model captured
the subsidence characteristics, it failed to account for the geological
features, resulting in predicted values that are lower than the leveling
measurements.

The EsLSTM algorithm employed in this study predicts
deformation by learning historical subsidence patterns. However,

this approach inherently limits the interpretability of the predictions.
When historical deformation patterns involve events such as
fractures or collapses in unique geological structures, abrupt
changes in subsidence values can emerge. For example, the
observed pattern on 3 September 2023, where the predicted
curves initially show a slow decline followed by an accelerated
decrease, likely reflects the algorithm’s adaptation to the historical
subsidence patterns. This prediction does not necessarily imply
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FIGURE 9
Scatter plot of correlation between InSAR real value and predicted value. (A) EDS-InSAR value. (B) Prediction value. (C) Scatter plot.

FIGURE 10
Comparison of leveling real value with predicted value.

that the actual deformation trend in these areas will conform to
such behavior.

To thoroughly evaluate the performance of the EsLSTM model,
we carried out a comparative analysis against established methods.
Specifically, SVR and LSTM were selected as benchmark models.
These comparison models were trained on the same dataset, and
their predictions were evaluated. Detailed descriptions of the SVR
and LSTM models can be found in our Papers Sui et al. (2020)

and Ma et al. (2023), where their implementation and evaluation
methods are outlined comprehensively. Due to space constraints, we
did not reiterate those details in this paper. To facilitate a rigorous
evaluation, we employed four metrics: MAE, RMSE, MAPE, and
WIA. The detailed results of these metrics are presented in Table 2.

The data presented in Table 2 illustrates that the EsLSTMmodel
surpasses the other models across all four evaluation metrics.
Notably, the EsLSTM model achieved the lowest error values for
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TABLE 2 Comparison of prediction accuracy between differentmodels.

Prediction method MAE (mm) RMSE (mm) MAPE (%) WIA (0–1)

EsLSTM 2.270 7.988 2.22 0.998

LSTM 2.988 9.231 2.77 0.986

SVR 3.465 18.133 3.22 0.858

MAE, RMSE,MAPE, underscoring its superior prediction accuracy.
This comparative analysis highlights that, within the context of this
study, the EsLSTM model offers greater precision and reliability in
predictions compared to both SVR and LSTM.

Compared to the EsLSTM and LSTM models, the SVR model
exhibited lower accuracy, primarily due to its high sensitivity to
parameter selection. This sensitivity led to a decrease in prediction
precision in certain areas with smaller deformation, such as the
edges of mining regions. The LSTM model demonstrated lower
accuracy than the EsLSTM model, which can be attributed to the
absence of adaptive normalization. As a result, the LSTM model
struggled to accurately capture the features of time-series data,
particularly when dealing with training data exhibiting significant
fluctuations (e.g., at the center of mining-induced deformations,
geologically vulnerable zones, or collapse areas), leading to lower
prediction accuracy. The SVR model’s accuracy was lower than that
of the LSTM and EsLSTM models due to its heavy reliance on
hyperparameters and kernel functions for the prediction of large-
scale and high-dimensional data. During the prediction process
involving a vast amount of mining area data, the SVR model was
unable to achieve real-time updates of hyperparameters and kernel
functions, rendering it incapable of adapting to time-sequential
settlement data with varying characteristics. This led to significant
prediction accuracy discrepancies (for instance, at the central and
peripheral locations ofmining deformations, where the deformation
data characteristics are markedly different, the SVR was unable
to autonomously update the hyperparameter search range and
kernel functions). For readers interested in a more comprehensive
comparison and analysis, we refer to the relevant sections in Sui et al.
(2020) and Ma et al. (2023).

5 Conclusion

This study employed 98 Sentinel-1A satellite images spanning
2020 to 2023, in conjunction with EDS-InSAR technology, to
construct a comprehensive cumulative deformation map of the
Yangquan mining area. The analysis identified several subsidence
zones, notably centered around the Shanyi Reservoir, with the
maximum cumulative subsidence reaching −260) millimeters.
However, the area surrounding the reservoir’s dam exhibited
no significant subsidence, suggesting that underground mining
activities have not adversely affected the dam’s safety, a conclusion
corroborated by ground leveling measurements.

Focusing on the 18,001# old goaf, the closest old mining
void to the Shanyi Reservoir, this study developed an EsLSTM
prediction model utilizing time-series InSAR deformation data.
The comparison of the model’s predictions with actual InSAR

deformation data from 11 June 2023, revealed a high level of
accuracy, with a correlation coefficient (R2) of 0.97509.The EsLSTM
model demonstrated superior performance relative to SVR and
LSTM models, as indicated by lower MAE, RMSE, MAPE, and a
higher WIA.

Additionally, the EsLSTM model was employed to perform a
120-day prediction of surface deformation for the 18,001# old goaf
using a recursive prediction approach. The results suggest that, as
of October 2023, subsidence at the workface continues to escalate,
with a projected maximum cumulative subsidence of 204 mm. The
subsidence center is shifting southwest, indicating that voids are
predominantly situated on the southwestern side of the tunnel. As
the residual subsidence area increasingly distances itself from the
Shanyi Reservoir, its potential impact on reservoir safety diminishes.
Consequently, continued real-time monitoring and prediction of
subsidence at the 18,001# old goaf are recommended to ensure the
safety of the Shanyi Reservoir.

While the structure and training process of the model have
been designed to be adaptive, enabling predictions of residual
deformation in old mine subsidence areas in other regions, its
generalization ability still requires further evaluation. Specifically,
it is necessary to re-assess the number of training samples and
prediction steps to optimize the model for different geological
environments. Future research will focus on testing the model
under various geological conditions to evaluate its universality and
applicability. These efforts aim to enhance the model’s performance
in regional subsidencemonitoring and providemore comprehensive
insights into its practical use in different contexts.

The prediction model developed in this study relies solely
on time-series InSAR data, without considering environmental
factors such as rainfall, topography, and geological conditions.
While this approach has shown promising results, it may not
fully capture the variability introduced by these environmental
factors, which are known to influence surface deformation patterns.
To address this limitation, future research should focus on
transitioning from single-factor predictions based exclusively on
InSAR deformation values to multi-factor predictive methods. For
instance, real-time rainfall data and topography data could be
incorporated into themodel as additional input variables.Moreover,
integrating the mining probability integral method with geological
parameters as inputs into the EsLSTM framework could enhance
the model’s ability to account for complex geological conditions.
By doing so, the EsLSTM model’s generalization capabilities can be
significantly improved.

Ultimately, future efforts will aim to develop a comprehensive
multi-parameter modeling framework that includes environmental
variables to further enhance the accuracy and reliability of
subsidence predictions. This approach is expected to improve
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the model’s adaptability and robustness across diverse geological
environments, ensuring broader applicability in subsidence
monitoring and risk assessment.
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