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modelling with arbitrary
electrical anisotropy
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This paper presents an enhanced framework for three-dimensional (3D)
magnetotelluric (MT) forward modeling that incorporates a current density
divergence correction procedure for arbitrary anisotropic conditions. The
method accelerates the convergence of iterative solvers in solving forward
equations in anisotropic media. The divergence correction is adapted from
techniques initially developed for isotropic MT modeling. Through four
numerical examples—a 1D anisotropic model, a 2D anisotropic model with
an infinite lateral fault overlying perfect conductor, a 2D anisotropic model
with upper and lower structure and a challenging 3D anisotropic model with
random parameters—the validity and efficiency of the proposed approach are
demonstrated. The results show that the incorporation of divergence correction
significantly reduces the number of iterations required for convergence,
improving computational performance and stability. The framework proves
robust even in demanding scenarios involving long periods and complex
anisotropic structures.
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1 Introduction

The magnetotelluric (MT) method is a passive geophysical exploration technique that
measures natural electromagnetic (EM) fields at the Earth’s surface.Thesemeasurements are
employed to infer subsurface resistivity distributions, enabling the mapping of geological
structures at depths ranging from tens of meters to several hundred kilometers. In
recent years, MT has been widely adopted across various resource exploration areas,
including mineral, hydrocarbon, and geothermal exploration (Farquharson and Craven,
2009; Smith, 2014; Patro, 2017), as well as in tectonic studies (Xiao et al., 2017;
2018). Increasing attention has been directed towards electric anisotropy, with numerous
three-dimensional (3D) EM forward modeling algorithms now incorporating anisotropic
conditions (e.g., Jaysaval et al., 2016; Löwer and Junge, 2017; Wang et al., 2017; Han et al.,
2018; Liu et al., 2018; Yu et al., 2018; Cao et al., 2018; Kong et al., 2021; Rivera-
Rios et al., 2019; Xiao et al., 2019; Guo et al., 2020; Ye et al., 2021; Bai et al., 2022).
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Initially, Smith (1996) observed that in the staggered-grid
finite-difference (FD) solution of the magnetotelluric (MT)
method, the convergence rate of the iterative solver considerably
slowed at low frequencies. Smith attributed this to the reduced
significance of the conductivity term in the electric-field equation as
frequency decreased, which consequently lessened the necessity
for the finite-difference approximation of the electric field
corresponding to a divergence-free current density. To address
this, Smith introduced a divergence correction technique that
significantly improved the convergence rate of the FD solution.This
correction procedure was subsequently adopted in other studies
(e.g., Sasaki, 2001; Siripunvaraporn et al., 2002; Uyeshima and
Schultz, 2000). Farquharson and Miensopust (2011) also applied
this divergence correction approach to tackle a similar convergence
issue in finite-element (FE) solutions for MT modeling. Notably,
these methods were developed for use in isotropic media.

For anisotropic scenarios, several approaches have been
proposed to avoid the current density divergence issue mentioned
earlier. One such approach involves decomposing the electric field
into discrete magnetic vector potential and electric scalar potential
components. This transforms the forward equation system of the
electric field into the form of vector and scalar potentials, commonly
referred to as the A-φ system, which inherently includes the charge
conservation equation (Han et al., 2018; Ye et al., 2021; Bai et al.,
2022). The A-φ system has also been employed in isotropic cases
(Everett and Schultz, 1996; Badea et al., 2001; Stalnaker et al.,
2006; Yoshimura and Oshiman, 2002; Mitsuhata and Uchida, 2004;
Mukherjee and Everett, 2011; Long, 2024). However, the primary
focus here is on the electric-field method.

Liu and Yin (2013) applied a correction scheme similar
to Smith’s (1996) to helicopter-borne EM finite-difference (FD)
responses under arbitrary electrical anisotropy. Wang et al. (2017)
employed this approach for a 3D tensor controlled-source audio-
frequency magnetotelluric (CSAMT) FD solution with axial
electrical anisotropy. Similarly, Cao et al. (2018) applied divergence
correction to solve a 3D axial anisotropic MT forward problem,
while Zhou et al. (2021) integrated a divergence correction
technique in a 3D finite-element (FE) solver for axially anisotropic
MT forward modeling. Xiao (2019) implemented a current density
divergence correction method to enhance the convergence of the
iterative solution for the 3D FE equation system in arbitrary
anisotropic MT forward modeling. Building on this, Cheng et al.
(2024) extended the approach by incorporating the divergence
correction technique into a 3DMT algorithm that accounts for both
electrical and magnetic anisotropy.

From the preceding discussion, it is evident that only a limited
number of studies have addressed the issue of divergence correction
in electromagnetic (EM) methods under conditions of electric
anisotropy. In this paper, we focus on incorporating divergence
correction into the FD solution for three-dimensional 3D MT with
arbitrary anisotropy.The effectiveness and accuracy of the approach
are demonstrated through three numerical examples, and its stability
is validated through a highly challenging numerical computation,
highlighting the robustness of the forward modeling with the
divergence correction procedure.We also examine the impact of the
forward iteration interval between successive divergence corrections
on the overall computational time.

2 Methods

2.1 Basic theory

The frequency-domain Maxwell’s equations, in the MT quasi-
stationary approximation, are in the form of Equations 1, 2,

∇×E = iωμH, (1)

∇×H = σE (2)

where a time factor e-iωμ is considered. The magnetic permeability
μ is equal to the vacuum value, 4π × 10−7 H/m. The ω is the
angular frequency. E and H denote electric and magnetic fields.
In anisotropic medium, conductivity is a tensor expressed as 3 ×
3 matrix in Equation 3,

σ =(
σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

) (3)

This matrix is symmetric and positive definite and can be
rewritten with Equations 4, 5,

σ = Rz(γ)Rx(β)Rz(α)ΛRT
z (α)RT

x (β)RT
z (γ), (4)

Λ =(
σx

σy
σz

) (5)

where σx, σy, σz , α, β, γ are three principle conductivity and
three rotation angles (Pek and Verner, 1997; Martí, 2014). Rx and
Rz are the rotation matrix for rotation around the σx and σz
axis, respectively. In the following, the anisotropic parameters are
expressed as σx/σy/σz/α/β/γ.

After some straightforward algebraic operations, we obtain an
electric field governing equation,

∇×∇×E = iωμσE (6)

Based on a FD approximate, this equation can be written as a
large linear system,

Ax = b, (7)

where A, x and b respectively denotes coefficient matrix, unknown
vector and right side vector. Upon obtaining the solution to
Equation 7,H can be obtained via Equation 1.

We have developed a MT forward algorithm for calculating E
and H fields on a 3D FD grid. Detailed information on the method
can be found in Yu et al. (2018). In that earlier work, Equation 7
was solved using the direct solver PARDISO (Schenk and Gärtner,
2004; Kuzmin, Luisier, and Schenk, 2013). In this study, while the
forward modeling framework remains the same as in Yu et al.
(2018), the final linear system in Equation 7 is now solved using the
preconditioned quasi-minimal residual (QMR) iterative method.
The solver terminates when the normalized residual reaches 2 × 10−8

or the maximum number of iterations is reached. Additionally, we
incorporate a current density divergence correction into the forward
solution, which will be demonstrated in subsequent sections.

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2024.1511153
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yu and Han 10.3389/feart.2024.1511153

FIGURE 1
Discretization of electric fields and current density divergence points. (A) Boundary electric fields. (B) Inside electric fields and divergence points shown
by separating the model from top to bottom at the plane corresponding to the dashed purple rectangular box.

FIGURE 2
Nonzero element pattern of the coefficient matrix of the divergence correction linear equation. (A) Isotropy. (B) Anisotropy.

2.2 Current density divergence correction

As described by Smith (1996), the influence of the conductivity
term in Equation 6 is weak even for what are considered high
frequencies in geophysical electromagnetic methods, and becomes
weaker as frequency decreases. Consider an approximate E
solution at one certain iterative solution of Equation 7, such
E would not satisfy the conservation of charge principle. As
noted by Smith (1996), the impact of the conductivity term
in Equation 6 is relatively weak, even at what are considered

high frequencies in geophysical electromagnetic methods, and
diminishes further as frequency decreases. In the case of an
approximate E solution at a given iteration of Equation 7, this E
would not fully satisfy the conservation of charge principle, which
states that,

∇ · J = 0, (8)

where J is the current density corresponding to the
approximate E,

J = σE (9)
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FIGURE 3
1D numerical example. (A) 1D anisotropic model with five layers. Six anisotropic parameters are expressed as σx/σy/σz/α/β/γ. (B) Iterative information.
Purple and cyan curves denote iterative information of Mode1 and Mode2 solutions, respectively, without applying divergence correction. Red and blue
curves denote iterative information of Mode1 and Mode2 mode solutions, respectively, with applying divergence correction. The dashed line show the
point when divergence correction is applied. The total computational time is 186.467 s without divergence correction and 136.000 s with divergence
correction. (C) Comparison of the apparent resistivity and phase between the 3D numerical and 1D analytical solutions. The scattered points and solid
lines indicate 1D analytical and 3D numerical results, respectively.

FIGURE 4
2D model. (A) 2D model with a lateral infinite fault overlying a perfect conductor (Qin and Yang, 2016). (B) 2D model with a lateral infinite fault
overlying a high conductor. A very low resistivity value of 10−5 Ωm is assigned to approximate the perfect conductor.

The current density divergence cannot vanish. The residual
divergence is computed,

ψ = ∇ · J (10)

We solve the following divergence equation,

∇ · (σ(∇φ)) = ∇ · J = ψ (11)

where φ is the static potential used to correct E. It takes too
much less computation than solving Equation 7 does. When the
static potential φ is determined, the corrected electric field Ec is
given by the Equation 12,

Ec = E−∇φ (12)

Then, Ec is used as the starting solution for the new
iterative loop of Equation 7, which significantly increase
convergence of the forward iteration.

2.3 Current density divergence equation
system

Figure 1 depicts the locations of the discretized electric
fields and current density divergence points. The boundary and
internal electric fields are represented by dashed and solid arrows,
respectively, as shown in Figures 1A, B. Additionally, Figure 1B
indicates that the static potential φ is defined at the grid cross nodes,
denoted by cyan circles.With the discretization scheme, Equation 11
is approximated as the following linear equation system,

Dφ = t, (13)

whereD denotes the coefficientmatrix and t is the right-hand vector
composing of each node’s current density divergence computed by
Equation 9 and Equation 10.

Figures 2A, B illustrate the distribution of nonzero elements in
the coefficient matrix D, discretized for isotropic and anisotropic
media, respectively. To clearly present the nonzero element patterns,
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FIGURE 5
Iterative information of the Mode2 mode solution
for 2D model (Figure 4) at a period of 1000 s. The blue and cyan
curves denote the case with and without the application of divergence
correction procedure, respectively. The total computational time is
157.681 s without divergence correction and 98.500 s with divergence
correction.

a simplified model subdivided into 5 (x-axis) × 5 ( y-axis) ×
9 (z-axis) cells is used. Both matrices exhibit a similar banded
diagonal structure of nonzero elements. Due to the presence of 4
air layers within the 9 z-axis cells, the upper-left portion of the
pattern in Figure 2B is identical to that in Figure 2A. However,
when anisotropy is introduced in the subsurface, the number of
nonzero elements increases slightly compared to the isotropic case,
as the conductivity is represented by a 3 × 3 tensor in Equation 11.
Equation 13 is solved using a preconditioned QMR iterative method
with an incomplete LU preconditioner. Compared to solving
Equation 7 for the electric field, the iterative solution of Equation 13
is more straightforward for this method.

3 Numerical examples

In this section, three synthetic models in section 3.1, 3.2 and
3.4.1 are discretized on a 28 × 47 × 60 grid (along the x, y,
and z-axis). The model discussed in Section 3.3 is discretized
into a 28 × 88 × 120 grid, with the y- and z-axis dimensions
matching those of the 2D model presented by Pek (as detailed
in Section 3.3). The computational complexity of these models
increases progressively. Both 1D and 2D anisotropic models are
utilized to demonstrate the effectiveness of accelerating iterative
convergence. The accuracy of the forward results is verified
by comparison with analytical, quasi-analytical and numerical
solutions. The last numerical example illustrates the stability
of our forward framework, which incorporates the divergence
correction procedure, in a highly challenging scenario involving
a long-period computation and a random 3D fully anisotropic

model. Furthermore, the impact of the interval between divergence
corrections is analyzed in Section 3.4.2. All computations were
performed on a PC equipped with 32 GB of RAM and two Intel (R)
Xeon (R) Gold 5,218 CPUs (2.10 GHz).

In a 2D isotropic scenario, the polarizations in the north
and east directions are commonly referred to as TE and TM
modes, respectively. However, in a 3D anisotropic medium, these
modes are not decoupled. In this paper, the polarizations in
the north and east directions are designated as Mode1 and
Mode2, corresponding to the TE and TM modes in the 2D case,
respectively.

3.1 1D anisotropic model

Figure 3A illustrates a 1D model consisting of five anisotropic
layers with significant variations, which was previously utilized
in Yu et al. (2018). Figure 3B presents the iteration details
for the forward solution at a period of 1325 s, with the
divergence correction procedure applied every 100 iterations.
Without divergence correction, convergence is achieved after
281 and 266 iterations for the Mode1 and Mode2 modes,
respectively. In contrast, with divergence correction, the Mode1
and Mode2 residual curves reach their final levels after only 171
and 138 iterations. The iterative residuals exhibit significantly
improved convergence after applying divergence correction in
both Mode1 and Mode2 computations. Additionally, the total
computational time is reduced from 186.467 s to 136.000 s with
the incorporation of divergence correction. Figure 3C compares
our results with the analytical solutions of Pek and Santos
(2002), showing a high degree of agreement, consistent with the
results from Yu et al. (2018).

3.2 2D anisotropic model with infinite fault
overlying a perfect conductor

As shown in Figure 4A, the model represents an infinite lateral
fault with axially anisotropic conductivity structures overlying a
perfect conductor, for which quasi-analytical MT solutions are
available (Qin and Yang, 2016). Since a resistivity value of zero
cannot be used in our numerical computations, a very low resistivity
value of 10−5 Ωm is assigned to approximate the perfect conductor.
All other electrical and geometrical parameters are set according to
the model of Qin and Yang, 2016.

Figure 5 shows the iterative information of Mode2 mode
at period 1,000 s. The divergence correction procedure works
every 100 iterations. In the absence of divergence correction,
the normalized residual decreases slowly, reaching only 7 ×
10−7 by the 500th iteration (the maximum iteration number).
However, similar to the previous example, convergence (10−⁸) is
achieved rapidly with the application of the divergence correction
procedure, requiring only 253 iterations. After the 100th and
200th iterations, the residual drops by nearly an order of
magnitude following each application of divergence correction.
The computation time is significantly reduced from 157.681 s
to 98.500 s with the addition of divergence correction. This
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FIGURE 6
Comparison of the apparent resistivity (A) and phase (B) values perpendicularly across the fault between 3D numerical and quasi analytical (Qin and
Yang, 2016) solutions at a period of 10 s.

FIGURE 7
Comparison of the apparent resistivity (A) and phase (B) values of two observation points located on the opposite sides of the infinite fault at an equal
distance of 50 m (y = −50 m and y = 50 m). The period varies from 10−3–104 s.

correction procedure notably accelerates the iterative solution of the
forward problem.

Fourteen observation points are selected perpendicular to the
infinite fault on both sides. As shown in Figure 6, the comparison
of apparent resistivity and phase at a period of 10 s with quasi-
analytical solutions (from Qin and Yang, 2016) indicates a strong
agreement between our results (red circles) and the analytical
solutions (blue squares). In Figure 7, two observation points, located
on opposite sides of the infinite fault at an equal distance of 50 m,
are selected to display the apparent resistivity and phase at different
periods.The periods, ranging evenly from 10−3–104 s, are referenced
from Qin and Yang, 2016. As demonstrated in Figure 7, our results
(red and blue circles) closely match the analytical solutions (red and
blue squares).The comparisons presented in Figures 6, 7 validate the
accuracy of our forward computations incorporating the divergence
correction procedure.

3.3 2D anisotropic model with upper and
lower structure

Figure 8A illustrates a classic 2D anisotropic model featuring
upper and lower structure. The background resistivity is defined
as 300 Ωm. The upper anisotropic body extends from 0.300 km
to 5.943 km in depth, with a width of 2.260 km. The lower layer,
which is in contact with the upper body, consists of a 9.600 km
thick anisotropic layer. This model, initially presented by Pek
and Verner (1997), was used to investigate the Phase Rolling
Out of Quadrant (PROQ) phenomenon (Heise and Pous, 2003;
Yu et al., 2019). Numerical solutions at the model’s center were
provided by Pek’s 2D program (personal communication, 2017).
As shown in Figures 8B, C, the comparison between Pek’s 2D results
and our 3Dnumerical solutions further validates the accuracy of our
algorithm, demonstrating high consistency.
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FIGURE 8
2D model. (A) 2D model with upper and lower structure. (B) and (C) Comparison of apparent resistivity and phase between the 2D numerical results
(Pek) and the 3D numerical results (this study) at the surface central point.

3.4 3D anisotropic model with random
parameters

3.4.1 Robustness
An exceptionally complex model is designed to simulate a

structure that is likely more challenging than what would typically
be encountered in real-world scenarios. Six anisotropic parameters
of each cell is defined randomly. As illustrated in Figure 9, a
horizontal (red dashed line) and a vertical (blue dashed line) profile

are selected to display the parameter distributions. Figures 10, 11
show that the three principal resistivity values range from 10−4

to 104 Ωm, while the three rotation angles vary from 0° to 180°,
respectively. The long period (10,000 s) and significant variations
in the principal resistivity values exacerbate the ill-condition of the
coefficient matrix A in Equation 7, thereby making convergence
in the computations more difficult. We assert that this challenging
numerical example serves as a rigorous test of the algorithm’s
stability under extreme conditions. In this case, the maximum
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FIGURE 9
3D model assigned with random anisotropic parameters. The red and
blue dashed line denotes a horizontal and a vertical profiles selected
to display the distribution of anisotropic parameters.

number of iterations is set to 10,000 to ensure that the forward
iteration without divergence correction achieves an acceptable level
of convergence.

Figure 12A shows the iterative information. Without the
application of divergence correction, the normalized residuals for
the Mode1 and Mode2 modes decrease to 2.70 × 10−8 and 3.71
× 10−8, respectively, after 10,000 iterations. Seen from Figure 12B,
following the 100th iteration, 900 additional iterations only result
in a reduction of about two orders of magnitude. The residuals
approach the termination criterion at the maximum of 10,000
iterations, with a total computation time of 4,417.662 s. The
convergence of the residuals for both the Mode1 and Mode2 modes
is exceedingly slow.

In contrast, each application of divergence correction results in
at least a one order ofmagnitude reduction (as indicated by the black
dashed lines with arrows), significantly accelerating the iterative
solution process with only 577.522 s. The residuals for the Mode1
and Mode2 modes finally reach 2.00 × 10−8 and 1.96 × 10−8 after
494 and 1,103 iterations, respectively, both basically satisfying the
accuracy requirements around the 500th iteration. This challenging
numerical example, characterized by the significant variation in
anisotropic parameters and long period, demonstrates the stability
of our MT forward modeling when integrated with the divergence
correction procedure.

3.4.2 Interval of divergence correction
In the previous synthetic examples, the interval between

successive divergence corrections, denoted as Nc, was
consistently set to 100 forward iterations. These examples,
particularly Figure 12A, demonstrate significant acceleration.
However, while solving for divergence correction is computationally
less demanding than forward computations, excessively frequent

corrections can substantially increase the overall computation
time in complex scenarios. Conversely, overly sparse divergence
corrections may fail to effectively enhance the convergence rate
of the forward iteration. Hence, an optimal interval Nc must be
determined to balance the trade-off between iterative acceleration
and the additional time required for divergence correction.

As illustrated in Figure 13A, a range of Nc values (50, 100, 150,
200, 300, 400) were tested. The dashed and solid lines represent
the Mode1 and Mode2 iterations, respectively. Most curves achieve
convergence within 1,000 iterations. Generally, more frequent
divergence corrections result in fewer forward iterations needed
for convergence, which is both reasonable and expected. However,
as shown in Figure 13B, the minimum total computation time
(444.355 s) occurs at Nc = 150, rather than at Nc = 50. This
finding highlights that selecting an optimal Nc value enhances the
efficiency of the forward framework with divergence correction,
even though all curves in Figure 13A already demonstrate much
faster convergence compared to the case without divergence
correction (Figure 12A).

4 Discussion

Smith (1996) conducted pioneering work that significantly
advanced iterative isotropic MT forward modeling, particularly
in the context of limited computational resources at the time.
This advancement proved especially valuable for MT forward
computations at long periods, which are crucial for investigating
deep earth’s structure. Since the divergence of a curl is identically
zero, applying the divergence operator to the governing Equation 6
imposes the constraint described by Equation 8, which ensures the
conservation of current density. However, Smith (1996) highlighted
a critical limitation: as the frequency ω approaches zero, the only
term in Equation 6 that carries information about the conductive
structure (the right-hand side) vanishes. Consequently, although
Equation 6 can be iteratively solved to a relatively low approximate
error, the divergence condition in Equation 8 is not inherently
satisfied at long periods. This failure undermines the accuracy
of the approximate solution, particularly in reconstructing the
correct charge distribution across interfaces with conductivity
contrasts, thereby impeding iterative convergence. This issue was
first addressed by introducing a static divergence correction (Smith,
1996), which enforces Equation 8 and significantly accelerates the
convergence of Equation 6.

With the rapid advancement of computational techniques,
various numerical methods have been employed to investigate
increasingly complex structures, as discussed in Section 1,
“Introduction”. In this study, the static divergence correction has
been effectively integrated into the iterative MT forward modeling
process to address fully anisotropic scenarios. Notably, we introduce,
for the first time, an exceptionally complex model with randomly
assigned anisotropic parameters. This novel approach is designed
to closely emulate the inherent complexity of real-world scenarios,
providing a rigorous test for the robustness and efficiency of our
algorithm under challenging computational conditions.

While direct solvers, such as PARDISO, have become
increasingly popular in recent years due to their convenience and
reliability in solving forward problems, iterative methods retain
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FIGURE 10
Distribution of six anisotropic parameters along the horizontal profile in 3D random model from Figure 9. (A) Distribution of ρx versus grid number in
y-axis. (B) Distribution of ρy versus grid number in y-axis. (C) Distribution of ρz versus grid number in y-axis. (D) Distribution of α versus grid number in
y-axis. (E) Distribution of β versus grid number in y-axis. (F) Distribution of γ versus grid number in y-axis.

FIGURE 11
Distribution of six anisotropic parameters along the vertical profile in 3D random model from Figure 9. (A) Distribution of ρx versus grid number in
z-axis. (B) Distribution of ρy versus grid number in z-axis. (C) Distribution of ρz versus grid number in z-axis. (D) Distribution of α versus grid number in
z-axis. (E) Distribution of β versus grid number in z-axis. (F) Distribution of γ versus grid number in z-axis.
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FIGURE 12
(A) Iterative information of the Mode1 and Mode2 mode solutions for 3D random model (Figure 9) at a period of 10,000 s. Purple and cyan curves
denote iterative information of Mode1 and Mode2 solutions, respectively, without applying divergence correction. Red and blue curves denote iterative
information of Mode1 and Mode2 mode solutions, respectively, with applying divergence correction. The dashed line shows the point when
divergence correction is applied. The total computational time is 4,417.662 s without divergence correction and 577.522 s with divergence correction.
(B) Details for the initial 1,200 iterations of (A).

FIGURE 13
Interval Nc of forward iterations between successive divergence correction. (A) The total computational time is 672.713 s with Nc = 50 (red curves),
577.522 s with Nc = 100 (blue curves), 444.355 s with Nc = 150 (cyan curves), 491.816 s with Nc = 200 (green curves), 493.255 s with Nc = 300 (purple
curves), 588.478 s with Nc = 400 (orange curves). (B) Distribution of the computational time with respect to the interval number Nc.

a distinct advantage, particularly for large-scale computations
performed on standard PCs. Iterative methods require significantly
less memory compared to direct solvers. However, the primary
challenge of incorporating divergence correction into iterative
methods lies in the complexity of the implementation.This involves
carefully managing the spatial locations of electric fields and
divergence points, discretizing the divergence correction equation,
etc. Despite these challenges, successfully integrating divergence
correction into the iterative process enables substantial reductions
in computational costs, making it a highly efficient solution for
large-scale forward modeling.

5 Conclusion

The fundamental theory and technical aspects of the current
density divergence correction procedure arewell-established, having
been originally applied in isotropic MT modeling. In this paper, we

extend its application to 3D MT forward modeling under arbitrary
anisotropic conditions. Three numerical examples are presented to
demonstrate the performance of our framework, which integrates
the divergence correction procedure.

In the first example, we compute the 3D results for a 1D
model comprising five anisotropic layers. In the second and
third example, we calculate the 3D results for a 2D anisotropic
model with an infinite lateral fault overlying a perfect conductor
and with an upper and lower structure. In both cases, the 3D
forward results are comparedwith 1D analytical, 2D quasi-analytical
and 2D numerical solutions, confirming the accuracy of our
algorithm. For the first case, the corrected computation requires
approximately half the iterations compared to the uncorrected case.
In the second example, the case utilizing divergence correction
converges after 253 iterations, whereas the uncorrected case fails
to converge within the maximum of 500 iterations. The third
example further verifies the accuracy of our algorithm. These three
examples highlight the effectiveness of the divergence correction
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procedure, demonstrating a significant acceleration in iterative
convergence.

In the final example, we introduce a challenging numerical
problem involving a long period (10,000 s) and a fully anisotropic
model with randomly assigned parameters. The effectiveness of the
correction procedure is further validated in this scenario. The case
with divergence correction (Nc = 100) achieves the target residual
with 577.522 s, while the uncorrected case eventually reaches an
accepted residual close to 10−8 after 10,000 iterations (themaximum
allowed), with 4,417.662 s. Due to the divergence correction, the
total computational time consuming significantly drops by 86.9%.
This confirms that our 3D MT forward modeling framework,
coupled with the divergence correction procedure, exhibits robust
stability even in complex numerical computations. Furthermore,
the analysis of varying Nc intervals between successive forward
iterations reveals that selecting an optimal Nc value significantly
enhances the efficiency of the forward framework incorporating
divergence correction.
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