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Inverting magnetotelluric data
using a physics-guided
auto-encoder with scaling laws
extension

Lian Liu, Bo Yang* and Yi Zhang

School of Earth Sciences, Zhejiang University, Hangzhou, China

Artificial neural networks (ANN) have gained significant attention in
magnetotelluric (MT) inversions due to their ability to generate rapid inversion
results compared to traditional methods. While a well-trained ANN can deliver
near-instantaneous results, offering substantial computational advantages, its
practical application is often limited by difficulties in accurately fitting observed
data. To address this limitation, we introduce a novel approach that customizes
an auto-encoder (AE) whose decoder is replaced with the MT forward operator.
This integration accounts for the governing physical laws of MT and compels
the ANN to focus not only on learning the statistical relationships from data but
also on producing physically consistent results. Moreover, because ANN-based
inversions are sensitive to variations in observation systems, we employ scaling
laws to transform real-world observation systems into formats compatible with
the trained ANN. Synthetic and real-world examples show that our scheme can
recover comparable results with higher computational efficiency compared to
the classic Occam’s inversion. This study not only perfectly fits the observed
data but also enhances the adaptability and efficiency of ANN-based inversions
in complex real-world environments.
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1 Introduction

Magnetotelluric (MT) inverse problems are inherently nonlinear and fail to produce
a unique solution due to the limitations of observed data, the presence of noise, and
the model’s inherent null space (Backus and Gilbert, 1967; Parker, 1983). Researchers
typically employ deterministic methods (Tikhonov and Arsenin, 1977; Constable et al.,
1987;Newman andAlumbaugh, 2000; Rodi andMackie, 2001; Tarantola, 2004;Kelbert et al.,
2014; Key, 2016) or stochastic approaches (Jackson andMatsu’ura, 1985; Grandis et al., 1999;
Ray, 2021; Peng et al., 2022) to solve the inverse problems.

With the explosive development of deep learning, artificial neural network (ANN)
(Roth and Tarantola, 1994; Langer et al., 1996) has shown considerable promise in MT
inversion (Guo et al., 2020; Li R. et al., 2020; Guo et al., 2021; Liu W. et al., 2023; Liu et al.,
2024 W.; Xu et al., 2024). ANN is a computational model inspired by the structure and
function of the human brain. It consists of interconnected neurons that work together to
process complex information (Bishop, 1995; Goodfellow et al., 2014; 2016). Such inversions
have primarily relied on classic supervised learning (Liao et al., 2022; Xie et al., 2023;
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Liu X. et al., 2024), which is fundamentally underpinned by a
mechanism akin to prior sampling-based strategies (Valentine and
Sambridge, 2021). Generally, ANN learns a mapping from the
feature space to the label space based on provided feature-label
pairs. Then, we can apply this mapping to new features. Therefore,
we need to construct a large number of geoelectric models serving
as labels and estimate corresponding MT responses serving as
features before training an ANN. The estimation of MT responses,
typically generated through forward simulations, is straightforward.
However, the construction of geoelectric models is challenging due
to the complexity of Earth’s structures.

Considering the difficulty of model construction, there
are two primary research directions. The first is integrating
prior information from sources, such as logging, near-surface
geology, and geostatistical data (Wang et al., 2023; Pan et al.,
2024; Rahmani Jevinani et al., 2024). Alternatively, we can build
geoelectric models using simple mathematical constraints, such
as the assumption that the geoelectric model should be smooth
(Ling et al., 2023; Liu L. et al., 2023), which is consistent with
traditional linearized inversion results. The former is beneficial
in improving the inversion resolution, and the latter is more generic
for different structures of the Earth. Moreover, Pan et al. (2024)
developed a neural network based on deformable convolution
(Dai et al., 2017), which extracts hidden relationships and allows
flexible adjustments in the size and shape of the feature region.
Xu et al. (2024) utilized a self-attention mechanism (Levine et al.,
2022) to enhance feature extraction.The supervised ANNs promote
the development of MT inversions but have limitations in physical
constraints and generalization: the MT response of the model
recovered from the trained ANN may not fit the observed data,
and we cannot reuse the trained ANN to invert newMT data, which
are collected from a different observation system.

The auto-encoder (AE) can be considered a variant of supervised
learning. It comprises two key components: an encoder that
transforms input features into a user-specified parameter space and
a decoder that reconstructs the input features from the specified
space. The AE can be trained without labels by minimizing the
difference between the reconstructed predictions and the original
input features. To fit MT data better, researchers replaced the
decoder with the MT forward operator to create a customized AE
(Liu et al., 2020; 2022; Ling et al., 2024). In this configuration, the
observed MT data serves as the input to the encoder, while the
encoder’s output becomes the input to the MT forward operator,
which generates the predicted data. Thus, the encoder’s output
represents the geoelectric model. Since the MT forward operator is
governed by established physical laws, the system is referred to as
a physics-guided AE (PGAE). The framework is utilized not only
in the MT method but also in other geophysical methods, such as
seismic (Calderón-Macas et al., 1998; Liu B. et al., 2023), geosteering
(Jin et al., 2019; Noh et al., 2022), and transient electromagnetic
methods (Colombo et al., 2021; Wu et al., 2024).

MT data typically cover a frequency range spanning more
than eight orders of magnitude (104 Hz ∼ 10−4 Hz). For real-
world applications, varying frequency ranges may be used, which
complicates the application of the trained ANN. Therefore, it is
crucial to enhance the reusability of well-trained ANNs so that
they can effectively handle diverse real-world data scenarios. In
AVO (amplitude versus offset) inversion of seismic data, Meng et al.

(2022) applied a transfer learning strategy (Zhuang et al., 2021)
to extend ANN reusability across different systems, while in MT
forward simulation, Wang et al. (2024) used transfer learning to
improve training efficiency. However, such applications have yet to
be reported for MT inversion.

In this study, we employ PGAE for the 1D inversion of
MT data, which enables the inverted model to give better data
fitting. At the same time, we incorporate scaling laws (Ward, 1967;
Nabighian, 1987; Wong et al., 2009) to enhance the reusability of
the trained ANN. Firstly, we introduce the fundamental theory for
theMTmethod, PGAE, and scaling laws in Section 2. Subsequently,
we demonstrate the efficacy of the proposed approach through
applications to both synthetic and real-world MT data in Section 3.
Finally, we provide a critical evaluation of the strengths and
limitations of the proposed method.

2 Methodology

2.1 MT method

TheMTmethod is a passive-source geophysical technique used
to investigate the resistivity distribution of the Earth’s subsurface
by analyzing the natural electromagnetic fields at the surface
(Tikhonov, 1950; Cagniard, 1953). These fields mainly originate
from regional and global thunderstorm activity, as well as the
interaction of solar wind with the Earth’s magnetosphere. As
electromagnetic waves propagate through the subsurface, their
penetration depth is affected by the diffusion of waves, which
varies with frequency. Specifically, waves with lower frequencies
demonstrate a greater capacity for deeper penetration into geological
structures. Since MT sources are sufficiently distant and the
Earth possesses a higher refractive index than air, electromagnetic
waves are assumed to propagate as planar waves perpendicular
to the Earth’s surface. However, the diffusion process through
various subsurface structures can exhibit arbitrary polarization.
The MT method typically measures the orthogonal components
of the natural electric and magnetic fields at the Earth’s surface,
and a complex impedance tensor Z is used to describe the
mathematical relationship (Equation 1) between the electric and
magnetic fields (Berdichevsky, 1976):

E = ZH, (1)

where E = [Ex,Ey]T andH = [Hx,Hy]T are the electric and magnetic
fields, respectively.

The apparent resistivity and phase are defined as Equations 2, 3,
respectively.

ρ = 1
ωμ0
|Z| , (2)

ϕ = arctan(
Im (Z)
Re (Z)
) , (3)

where Re and Im are real and imaginary components of Z, μ0 is the
magnetic permeability of free space, and ω = 2π f. f is the frequency.
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FIGURE 1
The proposed PGAE framework.

2.2 Physics-guided auto-encoder

Building on the AE framework, we replace the decoder with
the MT forward operator to create a customized ANN (Figure 1).
The loss function Φd (Equation 5) in PGAE, representing the
difference between input features dobs and output predictions dpre,
corresponds to the data misfit typically employed in traditional
inversions. Moreover, a regularization term Φm (Equation 6) is
employed to ensure the smoothness of the predicted geoelectric
modelm.

Φ =Φd + λΦm, (4)

Φd =
1
2N

N

∑
i=1
‖dobsi − d

pre
i ‖

2
2
, (5)

Φm =
1
2N

N

∑
i=1
‖∇mi‖

2
2, (6)

dprei = F[mi] = F[ANN(w,d
obs
i )] , (7)

where N is the batch size used in training, F is the forward
operator, λ is the regularization parameter, and w is a set of network
parameters.

Algorithm 1 outlines the workflow for implementing PGAE.
The process begins by initializing the encoder parameters using a
truncated normal distribution, which helps mitigate the exploding
or vanishing gradient problems during training Li H. et al. (2020).
After initialization, the training samples are shuffled randomly,
and a batch of samples is selected and fed into the encoder to
generate the corresponding geoelectric models. The MT forward
operator is then applied to produce the predicted MT data.
Subsequently, the loss function is evaluated using Equation 4.
These steps constitute the forward propagation phase. Next, the
gradient g of the loss function is computed with respect to the
network parameters w, and the parameters are updated using
a suitable optimization algorithm, such as the Adam optimizer
introduced byKingma andBa (2017).These steps constitute the back
propagation phase. If the value of the loss function, Φ, falls below a
predefined threshold, ε, the network is saved.Otherwise, the training
loop continues until convergence.

Input: Initialize ANN weights w, target loss ε,

Nmaxe epochs, k = 0;

1 while k < Nmaxe do

2  Shuffle the samples randomly and divide into

Nb batches;

3  foreach batch do

4   Compute m = ANN(w,dobs) and dpre =

F(m) using Equation 7;

5   Compute Φ using Equation 4;

6   Compute the gradient g of the loss Φ;

7   Update w = Adam(w,g);

8   if Φ ≤ ε then

9    save w and break;

Algorithm 1. The PGAE training algorithm.

2.3 Scaling laws

Scaling laws provide a crucial theoretical framework for
simulating the electromagnetic response of real-world resistivity
structures within a laboratory setting (Ward, 1967; Nabighian, 1987;
Wong et al., 2009). Building on the foundational work of Ward
(1967), we utilize the coordinates (x,y,z) to represent any point in
the real-world system and the coordinates (x′,y′,z′) to denote the
corresponding point in the model-scale system. The two systems
are related through a length scale factor, denoted as p, and the
transformation between them is governed by Equation 8.

x = px′,y = py′,z = pz′. (8)

Ignoring the displacement current, the MT field is described by
the diffusive forms of Maxwell’s equations with a time-dependent
component eiwt. For the real-world system, we have

∇×E (x,y,z, f) = −iωμ0H (x,y,z, f) , (9)

∇×H (x,y,z, f) = σ (x,y,z, f)E (x,y,z, f) , (10)
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where σ is the electrical conductivity.
For the model-scale system, we have

∇×E′ (x′,y′,z′, f′) = −iω′μ0H
′ (x′,y′,z′, f′) , (11)

∇×H′ (x′,y′,z′, f′) = σ′ (x′,y′,z′, f′)E′ (x′,y′,z′, f′) . (12)

Generally, we want the fields from the real-world system to be
linearly transformed from the model-scale system, that is

E (x,y,z, f) = aE′ (x′,y′,z′, f′) , (13)

H (x,y,z, f) = bH′ (x′,y′,z′, f′) . (14)

where a and b are scale factors for the electric and magnetic fields,
respectively. Therefore,

∇×E (x,y,z, f) = a
p
∇×E′ (x,y,z, f) , (15)

∇×H (x,y,z, f) = b
p
∇×H′ (x′,y′,z′, f′) . (16)

Putting Equations 9–16 together, we have

f = a
pb

f′, (17)

σ = b
pa

σ′. (18)

According to Equations 17, 18, to simulate the MT response of
real-world resistivity structures in a model-scale system, we should
ensure that the model-scale system has the same induction number
as the real-world system:

σ fl2 = σ′ f′l′2, (19)

where l is any characteristic dimension in the real-world system and
l′ is the corresponding dimension in the model-scale system.

Scaling laws enable us to model large-scale MT responses
using a small-size model. While researchers generally employ
these principles for physical modeling, they are also applicable to
numerical modeling. When we have an ANN trained for audio-
frequency MT tasks, we can leverage the trained network to invert
long-period MT data by applying scaling laws, rather than training
a new network from scratch. Additionally, discrepancies between
the number of frequencies in the real-world data and those used
in training present another challenge. A practical solution is to
interpolate the frequency sampling of the real-world data to match
that of the training set. The interpolation method will perform
effectively sinceMT apparent resistivity curves are typically smooth.

3 Numerical experiments

Recent research has established the effectiveness of employing
ANNs to address the 1D MT inverse problem with a fixed
observation system.Nonetheless, the application of ANNs to 2D and
3Dproblems remains largely exploratory.Therefore, we demonstrate
the integration of PGAE and scaling laws in the 1D inversion of both
synthetic and real-world MT data, highlighting their potential for
enhancing inversion accuracy and generalization capabilities.

3.1 Obtaining a well-trained ANN

To prepare the training dataset, we analytically compute the
apparent resistivity curves for 1D layered Earth models consisting
of 31 layers and 25 frequencies, ranging from 10,000 Hz–1 Hz. The
thicknesses of the layers begin at 20 m and increase logarithmically,
as described in Equation 20, with the final layer always being
a homogeneous half-space. For the resistivity of each layer, we
uniformly sample values within the range of 0.1–100,000 Ω ⋅m in
the logarithmic domain and subsequently smooth the geoelectric
model using a Gaussian filter (Liu L. et al., 2023). A total of 120,000
samples are generated, with 100,000 allocated for training and
20,000 for evaluation. Some random smooth geoelectric models can
be found in Figure 2.

dzi = 20+ 100.115×(i−1) i = 2,3,…,30, (20)

where i represents the number of layers and dzi denotes the thickness
of the ith layer.

The primary objective of this study is to enhance the
generalization capabilities of the trained ANN rather than to
design a high-performance ANN. Accordingly, we employ an
ANN architecture that is as simple as possible. Specifically, we
construct an ANN with a single hidden layer containing 500
neurons. The number of neurons in the input (output) layer
corresponds to the MT data (geoelectric model) used in the
training dataset. The regularization parameter λ in Equation 4
is set to 4.5, determined through trial and error. We code the
whole PGAE framework using TensorFlow (an open-source Python
library by Google) so that automatic differentiation (Liu L. et al.,
2024) can be employed to calculate the gradient of the
loss function.

We use the Adam optimizer to train the established network,
as illustrated in Figure 3A, the data misfit decreases rapidly as the
number of training epochs increases. A significant reduction in
data misfit is observed at the end of the first epoch, indicating
that the training of the network converges quickly. The gradual
increase in model roughness shown in Figure 3B suggests that
the well-trained PGAE possesses the capability to produce models
with complex structures. After 20 epochs, the loss function, data
misfit, andmodel roughness exhibitminimal changes, indicating the
completion of the training stage. The network was trained using an
NVIDIA Tesla K80 GPU with 12 GB of onboard memory, taking
approximately 40 min.

3.2 Synthetic examples

To evaluate the performance of the trained PGAE, we simulate
numerous synthetic 1D MT data as test samples, which share
the same observation frequencies as the training samples. For
comparative analysis, we also invert these synthetic data using
the classical Occam’s inversion (Constable et al., 1987). To further
assess the noise adaptability of the trained PGAE, we introduce 5%
Gaussian noise into the test samples. As illustrated in Figures 4, 5,
the well-trained PGAE produces models comparable to those
generated by the Occam’s inversion, with both methods yielding a
satisfactory data fit.
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FIGURE 2
Random smooth models (A–I) generated according to Liu L. et al. (2023).

FIGURE 3
The loss function variations during training and evaluating. (A) the total loss function in training (sky-blue circles) and evaluating (orange crosses) and
the data misfit in training (sky-blue triangles) and evaluating (orange stars). (B) the model roughness in training (sky-blue diamonds) and evaluating
(orange crosses).
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FIGURE 4
Inversion results of different synthetic data (A–G). The real (black) and inverted models, obtained from PGAE (orange) and Occam’s inversion
(sky-blue), are shown as solid lines.

FIGURE 5
Fitting results of different synthetic data (A–G). The apparent resistivity curves are shown as dashed lines in corresponding colors as Figure 4. Error bars
are plotted on the observed curves.

Although no noise was intentionally added to the training
samples, the network demonstrates remarkable adaptability to noise.
Given that noise is unavoidable in real-world data, we further
evaluate the noise tolerance of the trained PGAE by testing it
against three higher levels of Gaussian noise: 10%, 20%, and
30%. As illustrated in Figures 6, 7, the models predicted by the
PGAE are comparable to those derived from the Occam’s inversion,
indicating that the PGAE exhibits significant noise tolerance even
at high levels of Gaussian noise.

3.3 Real-world examples

We select 11 MT sites recorded in the Tarim Basin for our real-
world examples (Figure 8).The phase tensor analysis (Caldwell et al.,
2004) shows that the resistivity distribution in the shallow area
closely resembles a 1D structure (Figure 9), suitable for 1D
inversion. Data from these sites were recorded using the Phoenix
MTU-V5 system over approximately 22 h during the summer of
2019 and subsequently processed with the robust MT time series
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FIGURE 6
Inversion results of the noisier data. (A–C) have the same real model, and (D–F) have the same real model. Percentages denote the noise levels. The
lines and colors are the same as in Figure 4.

FIGURE 7
Fitting results of the noisier data. (A–C) have the same real model, and (D–F) have the same real model. Percentages denote the noise levels. The lines
and colors are the same as in Figure 5.
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FIGURE 8
The study area of the real-world data in Tarim Basin. Red-filled circles represent the MT sites.

FIGURE 9
Phase tensors for all the frequencies from the survey line in Figure 8.
Plotted using the MTpy library (Krieger and Peacock, 2014).

processing code, EMTF (Egbert and Booker, 1986), to estimate the
impedance and vertical transfer functions. We utilize 41 frequencies
ranging from 515 Hz to 0.0439 Hz, which share a similar bandwidth
with the frequencies of the training samples but employ distinct
frequency values. This enables the application of the scaling laws
described in Section 2.3.

As illustrated in Figure 10, we first transform the frequencies of
the real-world data to align with the frequency range of the training
data. Subsequently, we employ the linear interpolation algorithm
to match the number of real-world data to the neurons of the
input layer of the trained ANN. Once the trained ANN generates
an inverted model, the final step is transforming it back to its
original scale, ensuring consistency with the real-world system. In

FIGURE 10
Predicting process of the well-trained ANN with scaling laws.

this scenario, we scale the real-world frequencies by 10000/515,
resistivity by 10, and model size by √515/100000, meeting the
conditions specified in Equation 19.Themodels predicted by PGAE
are comparable to those inverted by Occam’s method (Figure 11).
Both methods yield excellent data fitting (Figure 12). Additionally,
we present the pseudo-sections of the 1D models derived from
both methods in Figure 13, revealing consistent 2D structures.
The prediction stage of PGAE requires only 0.113 s for all 11
sites, significantly faster than the Occam’s inversion, which takes
approximately 5 s per site.

4 Discussion and conclusion

The numerical experiments demonstrate that PGAE enhanced
by scaling laws performs well, producing comparable models
as the class Occam’s inversion does with higher efficiency
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FIGURE 11
Inversion results of the real-world data. (A–K) indicate the sequence of MT sites along the survey line (SW-NE). The lines and colors are the
same as in Figure 4.

FIGURE 12
Fitting results of the real-world data. (A–K) indicate the sequence of MT sites along the survey line (SW-NE). Blue boxes mark the deleted outliers for 1D
Occam’s inversion. The lines and colors are the same as in Figure 5.

after being well-trained. Here, we discuss its advantages
and flaws in three aspects: model complexity, network
architecture, and reusability of the network.

Model complexity is a formidable barrier for ANN-based MT
inversions, limiting both the accuracy and generalization of these
methods across diverse geological settings.The real-world resistivity
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FIGURE 13
The electrical resistivity pseudo-sections of the real-world example
produced by (A) PGAE and (B) Occam’s inversion.

models are inherently complex due to the highly heterogeneous
nature of the Earth’s crust and mantle (Chave and Jones, 2012).
This complexity is further compounded by varying geological
features, such as fault zones, fluid-bearing formations, and volcanic
structures. In traditional inversion methods (Kelbert et al.,
2014; Key, 2016), model complexity can be managed through
regularization techniques and by setting constraints based on
prior geological information. The supervised ANNs (Liao et al.,
2022; Xie et al., 2023; Liu X. et al., 2024), while powerful, are
inherently data-driven and lack a physical basis. Addressing the
challenge requires advances in hybrid modeling techniques and the
integration of prior knowledge into the ANN framework to balance
data-driven learning with geological realism. PGAE employs the
forward operator as a decoder, which includes the physical laws
behind the specific inverse problem. The framework can train
networks without labels (models) and give a chance to add prior
constraints into the training stage, which will significantly enhance
the ability to reveal complex models. Moreover, future training
datasets should include both synthetic and real-world data, which
provide more real information related to the real tectonic and
geological background.

Regarding the network architecture, it is not the primary focus
of our study in the current stage. We focused on exploring the
fundamental idea of PGAE, hence employing a straightforward and
simple enough network with only one hidden layer. This simple
design demonstrates a satisfactory ability to map the data space to
the model space for 1D MT problems. However, the architecture
may become crucial when addressing higher-dimensional inverse

problems due to the significantly increased number of unknowns
(Xu et al., 2024). A network with an insufficient degree of freedom,
meaning an inadequate number of network parameters, may
struggle to train effectively on the provided samples. Consequently,
it would likely exhibit poor prediction performance when applied
to real-world data. Conversely, while a network endowed with an
excessive degree of freedom can be easily trained to fit the training
and evaluation samples, this requires considerable computational
time. Additionally, it may lead to overfitting, which poses challenges
in maintaining the network’s generalization capabilities (Bishop,
1995). This problem is particularly pronounced in MT inversions,
where the resistivity structure changes significantly with depth
and electromagnetic responses are frequency-dependent. Each
frequency corresponds to different depths, necessitating the
ANN to learn the relationships across a broad spectrum of
frequencies accurately. Theoretically, no established mathematical
principles definitively determine the optimal network architecture
(LeCun et al., 2015; Goodfellow et al., 2016), making trial-and-error
the only practical approach to designing a network.

In previous studies (e.g., Ling et al., 2023; Pan et al., 2024),
trained networks cannot be reused and must be re-trained from
scratch when the observation system changes. However, our study
makes an important step towards improving the reusability of
well-trained ANNs in different observation systems. For 1D MT
inverse problems, only variations in frequency range should be
considered. By applying scaling laws, the trained ANN can be used
in cases with nearly identical frequency bandwidths, expanding
its applicability. When the frequency range of a new application
spans different orders of magnitude, the trained ANN may lose
its effectiveness. Therefore, it is essential to train separate ANNs
tailored to different bandwidths to ensure reliable performance
across a broader range of scenarios. For 3Dproblems, the complexity
of the observation system increases further. Differences in site
locations must be considered to ensure the reusability of trained
ANNs. As site locations significantly affect the data characteristics
in MT inversions, data from a new group of sites cannot be directly
applied to the trained network without some transformation. Thus,
data reconstruction between different site groups is a critical factor
that must be addressed in future ANN-based MT inversion efforts.
Techniques such as compressed sensing (Donoho, 2006), which
can transform data from one set of locations to another, may offer
potential solutions to this issue. Developing robust methods for data
reconstruction should be a significant challenge.

In summary, we utilized PGAE along with scaling laws to
improve the accuracy and generalization of the well-trained ANN
for MT inversion. Specifically, PGAE takes into account the data
misfit, while scaling laws enable the ANN to perform effectively
even when the frequency range of an MT survey differs from
the range used during the network’s original training. Fully
enhancing the practicability, efficiency, and dependability of ANN-
based inversions, particularly in the context of complex MT
inverse problems, will require further research and innovation.
Future research should focus on improving the adaptability
of trained ANNs to both model complexity and observation
systems, thereby increasing the utility of ANNs across diverse
MT applications. Overcoming these challenges will be critical
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before ANN-basedmethods can be widely adopted in industry-level
MT inversion software.
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