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Precisely estimating the carbonate’s porosity is essential for subsurface reservoir
characterization. However, conventional methods for obtaining porosity using
either core measurements or logging interpretation are expensive and
inefficient. Considering the sequence data feature of logging curves and
the booming development of intelligent networks in geoscience, this study
proposes a reliable and low-cost intelligent Porosity Prediction Transformer
(PPTransformer) framework for reservoir porosity prediction using logging
curves as inputs. PPTransformer network not only extracts global features
through convolutional layers but also captures local features using Encoders
and self-attention mechanisms. This proposed network is a data-driven
supervised learning framework with a superior accuracy and robustness. The
testing results demonstrate that compared to the Transformer network, Long
Short-Term time series network, and support vector machine method, the
PPTransformer framework exhibits the highest average correlation coefficient
and determination coefficient indicators and the lowest root mean square
error and absolute error indicators. Moreover, adding stratigraphic lithology as
geological constraints to the PPTransformer framework further improves the
prediction performance. This indicates that geological constraints will enhance
network performance.

KEYWORDS

deep carbonate rocks, porosity prediction, PPTransformer, logging curves, deep
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1 Introduction

Carbonate rocks are critical oil reservoirs that play a significant role in China’s oil and
gas production enhancement stage.They are widely distributed in China, such as the Tarim
Basin, Sichuan Basin, Ordos Basin, and North China. Therefore, carbonate reservoirs have
become a prominent fossil resource in recent decades. Moreover, with the development of
exploration technologies, low porosity low permeability carbonate formation buried in a
deeper depth (e.g., >4,500 m) consequently draws our attention (Luo et al., 2021).

Porosity is the most significant parameter for reservoir characterization, reflecting
the reservoir’s fluid storage capacity. Over the past few decades, geophysicists have
extensively estimated porosity through many methods (Fu et al., 2017; Fan et al., 2012;
Tian et al., 2010; An and Cao, 2018; Xi and Zhang, 1995; Ma et al., 2022; Richardson,
2018; Li K. W. et al., 2021; Kumar et al., 2022; Wu et al., 2016; Wu et al., 2021). Three
main approaches have been employed: core sample measurements, complex empirical
mathematical models, and machine learning (ML) techniques.
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FIGURE 1
The identification process of carbonate porosity based on
PPTransformer, including data filtering, feature selection, dataset
division, model training, and testing.

The most straightforward method of obtaining porosity is from
core measurements (Li et al., 2012; Wang et al., 2015; Lian et al.,
2013). In addition, well log and seismic data have been extensively
used for porosity prediction. Although Well log data exhibit non-
linear characteristics, the correlation between different well logs
is only sometimes apparent due to the substantial heterogeneity
of the formations and the complexity of geological conditions
(Ju et al., 2012). On the other hand, seismic data are affected by
noise, which weakens seismic features, necessitating effective noise
reduction techniques to enhance correlations between different
datasets (Chen et al., 2021; Li C. et al., 2021; Luo et al., 2018;
Mou et al., 2015). Understanding the internal relationships between
seismic/rock physics parameters and reservoir properties helps
improve the accuracy of porosity predictions (An and Cao, 2018).
Bachrach et al. proposed a data-driven Bayesian joint inversion
method to estimate porosity in tight sandstone using seismic data,
bypassing the complexities of rock physics modeling (Xi and Zhang,
1995). Zhao et al. developed an empirical model for predicting
porosity, leveraging the Kozeny equation and partial least squares
regression to analyze the relationship between porosity and rock
composition (Zheng et al., 2017).

Researchers have developed mathematical and physical models
to establish relationships between elastic parameters and reservoir
properties (Ma et al., 2022; Richardson, 2018; Li K. W. et al.,
2021) to obtain porosity more efficiently. Porosity estimating from
physical models mainly relies on core measurements and rock
physics theories. Most physical models are qualitatively built by
analyzing reservoir parameters and elastic parameter sensitivity,
thus limiting the feasibility (Wang et al., 2020; Bengio et al.,
1994). However, the actual rock is extremely complicated.Therefore,
mathematical methods are employed to characterize rock properties
mathematically (Wu et al., 2021; Xiong et al., 2021; Zhang D. X. et al.,
2018). However, mathematical models significantly rely on initial
inputs. Consequently, physicalmodeling andmathematicalmethods
cannot be widely adopted.

Due to their powerful data-fitting capabilities, machine learning
methods have been used for porosity prediction in recent decades.
ML techniques can automatically establish a non-linear relationship
between well log/seismic data and reservoir parameters (e.g.,
porosity) with prior knowledge (Kumar et al., 2022; Wu et al., 2016;
Wu et al., 2021). Numerous successful studies have demonstrated
the powerful ability of ML techniques to explore correlations
between multiple complex variables in geophysics. The most
commonly used reservoir parameter prediction methods include
Support Vector Regression (SVR), Random Forest (RF), and
Artificial Neural Networks (ANN) (Zhang G. Y. et al., 2018;
Ren et al., 2019; Karimpouli et al., 2010). Zhang et al. explored
the non-linear relationship between porosity and rock physics
parameters using SVR, demonstrating its better generalization than
classical linear and multi-linear regression methods (Chen et al.,
2022). Ao et al. proposed a linear random forest algorithm to
predict porosity, showing its effectiveness in regression modeling
through extensive experiments (Ao et al., 2019). Nkurlu et al.
presented a neural network method for porosity prediction,
which performed exceptionally well (Mathew Nkurlu et al.,
2020). However, although these ML algorithms are functional
for reservoir parameter prediction, the detailed processes are
difficult to interpret physically, limiting their application. Enhancing
data mining and interpretability in ML networks would help
understand the non-linear relationships between input and output
(Zhang et al., 2021).

Over the past decade, deep learning (DL) techniques have
become even more potent than ML methods by stacking hidden
layers and mapping them to higher-level representations to extract
additional features from input data (Wu et al., 2018). Depending
on whether labeled data are used to assist network training, DL
methods can be categorized into supervised and unsupervised
learning methods. With the increasing amount of data and
improvements in computational hardware, DL techniques have
been widely applied in geophysics, including for random and
coherent noise attenuation (Yang et al., 2021), channel detection
(Pham and Fomel, 2021), seismic data inversion (Kazei et al.,
2021), and seismic event picking (Chen et al., 2019). Currently,
the most popular DL techniques among geophysicists are based
on Convolutional Neural Networks (CNNs) (Zhong et al., 2019)
and Long Short-Term Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997).

The advantage of CNNs lies in sharing parameters and local
perception during network training, which allows us to extract
local and global data features (Hinton and Salakhutdinov, 2006).
Zhong et al. proposed a CNNmodel to predict reservoir parameters
through logging curves (e.g., gamma-ray (GR), density (DEN), and
shale content (SH)) as input (Wu et al., 2018). Feng et al. developed
an unsupervised CNN method to invert acoustic impedance from
seismic data and ultimately estimate porosity.Thismethod improves
lateral continuity using pre-trained weights from previous network
layers to initialize subsequent hidden layers (Feng et al., 2020).
Furthermore, LSTM, with its excellent ability to remember and
extract long-term sequence features, has been widely used in
deep sequence processing (Kalchbrenner et al., 2015; An and
Cao, 2018; Ma et al., 2022; Wang et al., 2020). Chen et al.
proposed a multi-layer LSTM (MLSTM) for porosity prediction
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FIGURE 2
Framework of the proposed PPTransformer. It mainly includes a one-dimensional convolutional part and a Transformer Encoder part.

TABLE 1 The basic information of logging curves used in this study.

Well Data type Depth range (m) Sampling interval (m) Data point

Well A Train set 6,130∼6,882 0.152 4,934

Well B Test set I 5,921∼6,301 0.152 2,498

Well C Train set 6,070∼6,592 0.152 3,428

Well D Test set II 5,923∼6,295 0.152 2,442

Well E Test set III 5,946∼6,250 0.152 1992

and analyzed the impact of different well log inputs on prediction
performance (Chen et al., 2020).

Recently, the Vision Transformer (ViT) framework has gained
widespread attention across various fields due to its superior
global feature extraction and parallel computing capabilities in
natural language and image processing (Munchmeyer et al.,
2021). ViT primarily consists of Transformer encoders (TEs)
and decoders, with each encoder composed of self-attention
(SA) mechanisms, layer normalization (LN), and feed-forward
(FFW) layers. By reducing the distance between two positions
in a sequence, ViT captures relationships between variables more
effectively, thereby learning long-range dependencies. Compared
to LSTM and CNN methods, ViT overcomes the limitations of
parallel computing, allowing for the correlation of data features
spanning longer ranges (Vaswani, 2017). Additionally, using
attention mechanisms enhances the prediction performance and
interpretability of the network.

In this paper, we design a PPTransformer framework for
intelligent porosity predictionusingwell log data as input.Moreover,
physical constraints are incorporated into the PPTransformer
framework by using lithology as a geological constraint to
assist in model training, further improving the prediction

accuracy of the PPTransformer framework. The structure of
the paper is as follows: first, the architecture and principles of
the Transformer network are described. Second, the proposed
PPTransformer framework is validated using actual data. Third,
lithology is added as a constraint to enhance performance
further. Finally, the results are discussed, and conclusions
are drawn.

2 Methodology

2.1 Research workflow

Figure 1 illustrates the workflow for intelligent porosity
prediction in carbonate reservoirs using the PPTransformer
network. We can see that the entire workflow consists of data
process, data separation, model configuration, model training, and
test data validation.

(1) Feature selection: five well log curves (acoustic, gamma-ray,
neutron, density, and resistivity logs) are selected as inputs to
estimate porosity.
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FIGURE 3
The training Well A’s logging curves include AC, CNL, DEN, CGR, and RT. Porosity is labeled.

FIGURE 4
Loss curves of PPTransformer. It includes the training process (purple
solid line) and validation process (grey solid line). The PPTransformer
network starts to converge when reaching 250 epochs.

(2) Data preprocessing: the resistivity log is scaled logarithmically
due to their significant magnitude difference from other logs.

(3) Dataset partitioning: the total dataset is from five wells. The
two wells containing the most enormous data volumes are

TABLE 2 Comparison of porosity prediction results using different
methods on dataset I.

Method R R2 RMS MAE

PPTransformer 0.9725 0.9447 0.0447 0.1565

Transformer 0.9601 0.8358 0.1326 0.2668

LSTNet 0.8541 0.6914 0.2493 0.3643

SVM 0.7182 0.3822 0.4991 0.4675

Bold values represent the best accuracy (R, R2) and loss (RMS, MAE).

used for network training, while the remaining three are used
for testing.

(4) PPTransformer configuration: the network comprises
convolutional and Transformer encoder layers. The
convolutional layers extract global features, while the encoder
captures local features using multi-head self-attention
mechanisms.

(5) Model training and porosity prediction: the model uses the
Adam optimizer with RMSE as the loss function. It is then
applied to the test dataset to evaluate its performance.
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FIGURE 5
Comparison of porosity prediction results using different methods (e.g., PPTransformer, Transformer, LSTNet, SVM) on dataset I. The input logging
curves include AC, CNL, DEN, CGR, and RT.

FIGURE 6
Cross plot porosity results from different methods on dataset I. (A-D) represent PPTransformer, Transformer, LSTNet, SVM, respectively.

2.2 PPTransformer structure

Traditional methods for porosity prediction mainly rely on well
log data or seismic data. Similar to time series in natural language
processing, well log data is a sequence recorded at fixed sampling
intervals (e.g., 0.125 m) according to geological depth. Therefore,
we propose a supervised deep learning framework that extracts

important depth series features from input log data and establishes a
non-linearmapping relationship between well log data and porosity.
However, it is due to that the logging curves do not respond
strongly to the porosity in the deeper depth. Therefore, we focus
on extracting both global and local features when constructing this
non-linearmapping.The proposed Porosity Prediction Transformer
framework (PPTransformer) is mainly composed of two structures:
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FIGURE 7
Comparison of porosity prediction results of 4 methods on dataset I. Including 5 input logging curves (AC, CNL, DEN, CGR, RT); methods include
Transformer, LSTNet, and SVM.

TABLE 3 Comparison of porosity prediction results from different
methods on dataset II.

Method R R2 RMS MAE

PPTransformer 0.9338 0.8664 0.0983 0.2342

Transformer 0.9372 0.8662 0.0984 0.2212

LSTNet 0.8649 0.7293 0.1992 0.3264

SVM 0.8241 0.6634 0.2477 0.2929

Bold values represent the best accuracy (R, R2) and loss (RMS, MAE).

TABLE 4 Comparison of porosity prediction results from different
methods on dataset III.

Method R R2 Rms MAE

PPTransformer 0.9219 0.9168 0.2827 0.3248

Transformer 0.8115 0.8026 0.4938 0.3552

LSTNet 0.7911 0.3893 0.8748 0.3643

SVM 0.6623 0.1736 1.1837 0.8324

Bold values represent the best accuracy (R, R2) and loss (RMS, MAE).

a one-dimensional convolutional part (1D conv) and a Transformer
Encoder part (TE).The former one-dimensional convolutional layer
extracts global features from the input well log data, reassembling

the depth sequence and enhancing prediction performance. The
latter TE component with the MHA mechanism helps establish a
robust local non-linearmapping between the input well log data and
porosity. The specific network structure is illustrated in Figure 2.

PPTransformer network can extract both global and local
features during the porosity prediction. The one-dimensional
convolutional layer with a Rectified Linear Unit (ReLU) is placed in
the first layer to extract global features from the inputwell log curves.
The output of this layer, oc, is expressed as Equation 1:

oc = ReLu(Wc ∗X+ bc), (1)

where Wc and bc represent the weight matrix and bias,
respectively;∗denotes the convolution operation; and x is the input
depth sequence matrix. The ReLU function is defined as ReLu(x)
= max (0, x), serving as the non-linear activation function. Zero
padding is used in the one-dimensional convolution layer to ensure
that the feature map has the same dimensionality as the input curve.
The extracted global features are then input into the TE part for
further local feature extraction.

The most critical structure for the Transformer Encoder
(TE) component is the Self-Attention (SA) mechanism. The SA
mechanism reallocates weights to different parts of the input
sequence to focus on essential features, thereby enhancing the
relevance of positional embeddings. Each TE component comprises
a standard SA block, two Layer Normalization (LN) blocks, one
dropout layer, and a Feed-Forward Network (FFN). This paper
constructs the PPTransformer using aMulti-HeadAttention (MHA)
mechanism based on the SA mechanism (Figure 2). A residual
connection is added before the two LN layers (between the layer
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FIGURE 8
Cross plot porosity results from different methods on dataset II. (A-D) represent PPTransformer, Transformer, LSTNet, SVM, respectively.

FIGURE 9
Comparison of porosity prediction results of 4 methods on dataset III. The input curves include AC, CNL, DEN, CGR, and RT; methods include
Transformer, LSTNet, and SVM.

inputs and sublayer outputs) in the TE component. The global
features extracted from the input are passed into the TE to extract
local features. The crucial features from the previous layer are input
into the attention mechanism, which generates three feature spaces
and redistributes the weights. The three feature space matrices are
the query (Q), key (K), and value (V) matrices Equation 2 below:

Q = LWQ,K = LWK,V = LWV. (2)

The weight matrices WQ, WK, and WV are designated for
the three attention mechanism parameters, with L being the
input to the attention mechanism. The attention mechanism
allocates weights through scaled dot-product attention, as given
Equation 3 below.

SA(L) = Softmax(QK
T

√c
)V, (3)
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FIGURE 10
Cross plot porosity results from different methods on dataset III. (A-D) represent PPTransformer, Transformer, LSTNet, SVM, respectively.

FIGURE 11
Porosity prediction results of well D, the blue curve is the label porosity, the red curve is the predicted porosity.

where c represents the dimension of the input vector.

Softmax(x) = (exi/
M
∑
m=1

exm) is a probability activation function
used to compute similarity scores, normalizing the output to the
range (0, 1). A Multi-Head Attention mechanism is configured in
the TE block’s first layer. The output of the Multi-Head Attention

mechanism is combined with a residual connection to the input
L before being input into the Layer Normalization (LN1) layer, as
indicated in Equation 4:

LN1(L) = L+MHA(L). (4)
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FIGURE 12
Porosity prediction results of well E, the blue curve is the label porosity, the red curve is the predicted porosity.

TABLE 5 Comparison of porosity prediction results from
different methods.

Methods (dataset) R R2 Rms MAE

Lithology constrained (I) 0.9020 0.8683 0.4137 0.5066

No lithology constrained (I) 0.8553 0.7339 0.7062 0.7237

Lithology constrained (II) 0.8785 0.7709 0.8838 0.6951

No lithology constrained (II) 0.8242 0.6436 1.0617 0.8104

This process enhances the model’s capacity to learn complex
representations while preserving the integrity of the original
input data.

LN(x) = γ
x− 1

m

m

∑
i=1

xi

√ 1
m

m

∑
j=1
(xi −

1
m

m

∑
i=1

xi)
2

+ ε

+ β. (5)

In the LN layer (Equation 5), the scaling and shifting parameters
are denoted as γ and β, respectively. ε represents a small value to
prevent division by zero.

Following LN1, a Feed-Forward Network (FFN) with two
hidden layers is added. The first layer uses the ReLU activation

function, while the second layer does not employ an activation
function. The output of the FFN can be represented as Equation 6:

FFW(LN1) = ReLu(LN1W1 + b1)W2 + b2, (6)

whereW1,W2, b1, and b2 are the weights and biases learned during
training. After the FFN, a standard dropout layer is added to avoid
overfitting before passing the output to the second LN layer (LN2).
The second residual connection is placed between LN1 and the
final output of the TE component. The overall output of the TE
component z is expressed as Equation 7:

z = LN2(L) = LN1 + FFW(LN1) . (7)

The PPTransformer framework first applies a one-dimensional
convolutional layer to extract global features from the input
well log curves. The extracted features are then passed into the
TE component, where the MHA mechanism extracts robust
features from the input sequence. Then residual structures
enhance the learning capability from low-level to high-level feature
representations. Finally, a fully connected layer with a Sigmoid
activation function is set as the network’s last layer, outputting the
predicted porosity.

The advantages of the PPTransformer framework can be
summarized. First, the one-dimensional convolutional layer extracts
global features from the input well log data, reassembling the depth
sequence and enhancing prediction performance; second, the TE
component with the MHA mechanism helps establish a robust
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non-linear mapping between the input well log data and porosity.
The MHA mechanism allows the model to extract better features,
reallocate weights to the underlying information, and improve the
feature extraction capability.

3 Results and discussion

3.1 Data introduction

For data collection, the study area is divided into the Sangtamu
Formation, Lianglitage Formation, and Yingshan Formation, with
the Lianglitage and Yingshan Formations serving as the primary
producing layers. The strata of the Lianglitage and Yingshan
Formations are marginal and platform interior deposits, with
the Lianglitage Formation exhibiting mud development and the
Yingshan Formation consisting of pure limestone. The reservoir
mainly underwent weathering and dissolution, forming large,
highly porous cavernous reservoirs and highly heterogeneous, dense
cave-type, fracture-cave-type, pore-type, and fracture-pore-type
reservoirs.

The basic information on logging curves used in this study is
shown inTable 1. A total of 15,294 sample pointswere collected from
the five wells. According to the standard division for deep learning
datasets, the training and test sets typically account for 80% and 20%,
respectively. To improve the model’s robustness and generalization
while maintaining the integrity of the well log curves, the two wells
with the most enormous data volumes, Well A and Well C, were
used as the training dataset, containing a total of 8,362 sample
points, accounting for 54.67% of the overall data. The remaining
three wells, Well B, Well D, andWell E, were used as the test dataset,
containing 6,932 sample points, accounting for 45.32% of the overall
data. Each well consists of five curves: acoustic time difference (AC),
uranium-free gamma ray (CGR), neutron curve (CNL), density
curve (DEN), and resistivity curve (RT).The label data is the porosity
curve (POR) (Figure 3). According to the logging curve availability
and sensitivity among input curves and porosity, the input well
log data, including AC, CGR, CNL, DEN, and RT, are selected
ultimately. From the rock physics perspective, theCGRcurve reflects
the clay volume, dominantly determining the formation type (e.g.,
shale, sandstone, carbonate). In addition, AC, CNL, andDEN curves
are the most commonly used to interpret rock’s porosity during
the petrophysical logging interpretation. Moreover, the RT curve is
applied to interpret the fluid type in the pore volume. Therefore,
geologically speaking, these five logging curves are most sensitive
to rock porosity prediction.

3.2 Experimental process

The proposed PPTransformer network is a supervised learning
framework that relies on well log data and actual labels to establish
an implicit non-linear mapping relationship. The root mean square
error (RMSE) loss function calculates the error between the actual
labels and the predicted values during the training iterations.
Various optimization methods were employed during the training
phase to achieve optimal performance in porosity prediction. First,
dropout and LN layers were used in the TE components to prevent

overfitting during network training, with the dropout rate for all
TE components set at 0.2. Second, the Adam optimizer was used
to update parameters, with an initial learning rate of 1. Finally,
an adaptive learning rate adjustment algorithm was employed to
accelerate convergence and prevent overfitting. The learning rate
decreases as the training epochs increase. The total number of
training epochs was set to 300 (Figure 4). Specifically, after every
50 epochs, the learning rate was reduced to 0.1 times its previous
value. When the validation loss did not decrease for 30 consecutive
epochs, early stoppingwas applied to terminate training and save the
best parameters. Due to the tight nature of carbonate reservoirs, the
porosity values tend to be very low, and the original porosity values
could not be used as labels for model training. Therefore, a scale
transformation was applied to the porosity values, multiplying the
overall porosity parameter by 100 and using the percentage values
for model training. Correspondingly, when comparing results, the
predicted values were divided by 100.

Figure 4 shows the loss curve of the model training. We can see
that the model tends to converge after 250 epochs, with the final
loss value of 0.02. During deep learning training models, the weak
gradient signals of samples, noise, or small gradient changes may
significantly cause short-term fluctuations (e.g., spikes in the loss
curve) in the loss process. This situation is closely related to the
characteristics and parameter settings of the neural network. Such
spikes will disappear when the model converges ultimately.

3.3 Evaluation metrics

To quantify prediction error and evaluate the performance
of the proposed method, Pearson’s correlation coefficient R, the
coefficient of determination R2, RMSE, and mean absolute error
(MAE) were used as evaluation metrics. Pearson’s correlation
coefficient measures the correlation between two variables ranging
from [−1,1]. Higher positive values indicate a stronger correlation,
while negative values represent a negative correlation. The R2 value
reflects the reliability of the variation in the dependent variable
explained by the regression model, with values ranging from [0,1].
The larger values indicate better performance. RMSE measures the
deviation between the predicted and actual values, with smaller
values indicating lower error and better prediction performance.
MAE is the average of the absolute deviations between each observed
value and the arithmetic mean, with smaller values indicating better
performance. The formulas for these four evaluation metrics are
listed as Equations 8-11 as follows:

R(Yt,Yp) =

n

∑
i=1
(Yt,i −Yt)(Yp,i −Yp)

√
n

∑
i=1
(Yt,i −Yt)

2
n

∑
i=1
(Yp,i −Yp)

2

, (8)

R2(Yt,Yp) = 1−

n

∑
i=1
(Yt,i −Yp,i)

2

n

∑
i=1
(Yt,i −Yt)

2
, (9)

rms(Yt,Yp) = √
1
n

n

∑
i=1
(Yt,i −Yp,i)

2, (10)

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2024.1510138
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Huang et al. 10.3389/feart.2024.1510138

MAE(Yt,Yp) =
1
n

n

∑
i
|Yt,i −Yp,i|, (11)

where Yt and Yp represent the predicted porosity and true porosity,
respectively, and Yt and Yp represent their respective mean values.
Normalization is performed before inputting the well log data into
the network, scaling the values to the range [0,1] to unify the
dimensions.

3.4 Results analysis

3.4.1 Results analysis for test dataset I
Test dataset I consists of the whole data points of Well B,

with detailed information in Table 2. Three methods were used
for benchmarking: a general Transformer network, a Long Short-
Term Time Series Network (LSTNet), and a Support Vector
Machine (SVM). Figure 5 shows the porosity prediction results and
the five input well log curves. Intuitively, based on the magnitude
of porosity values, the porosity curve can be divided into the
upper (<6,050 m) and lower (>6,050 m) sections. The upper section
has high porosity, while the lower section has low porosity. More
importantly, the PPTransformer framework provides the best match
between the actual and predicted porosity compared to other
methods. In addition, we can see that all four methods capture
the shape and trend of the porosity curve (blue label) and perform
well in the low-porosity sections. However, the PPTransformer has
the slightest error between predicted and actual values, while the
SVM and Transformer methods exhibit underfitting in the high-
porosity sections.

In addition, several evaluation metrics were used to
quantify the prediction results (Table 2). Regarding evaluation
metrics, PPTransformer achieves the highest R and R2 and
the lowest RMSE and MAE compared to the benchmark
methods, indicating that it has the highest accuracy and the
lowest error. Figure 6 shows the cross-plots of porosity predictions
using the four methods. The results of the PPTransformer and
Transformer are consistent with the slope. In contrast, the
results of LSTNet have more significant oscillations around
the reference line, indicating a more substantial deviation. The
SVM method results show only marginal consistency with the
slope. Based on the cross-plots, residual and error histograms
were plotted further to analyze the error of different porosity
prediction methods.

3.4.2 Results analysis for test dataset II
The proposed method and three comparison methods were

further applied to test dataset II. Test dataset II consists of
the whole data points from Well D. Figure 7 shows porosity
prediction results and the five input well log curves. Intuitively,
the PPTransformer framework and the general Transformer model
provide the best fit between the actual and predicted porosity
among the various methods. Both the LSTNet and SVM methods
exhibit a underfitting in the middle and lower sections of
the well. Table 3 shows that PPTransformer and Transformer
achieved the highest R and R2 values and the lowest RMSE and
MAE values. It implies that PPTransformer and Transformer’s

performance on Dataset II is nearly identical. Figure 8 shows the
cross-plots of porosity predictions using the four methods on
Dataset II. The predicted results from both PPTransformer and
Transformer align well with the reference slope. The predicted
porosity from LSTNet presents more significant oscillations than
the reference line, and the SVMmethod exhibits the most extensive
oscillation range.

3.4.3 Results analysis for test dataset III
Finally, the four methods were applied to test dataset III, which

consists of all the data points from Well E. Figure 9 shows the
four methods’ porosity prediction results and the five input well
log curves. Table 4 shows that PPTransformer achieved the highest R
and R2 values and the lowest RMSE andMAE values. Intuitively, the
general Transformer model provides the best fit between actual and
predicted porosity. In most sections of Well E, the PPTransformer
and LSTNet methods exhibit a smaller oscillation range, and the
PPTransformer predictions appear less stable than those from the
Transformer and LSTNetmethods.The SVMmethod performed the
worst on Well E, not only compared to the other three methods but
also compared to its performance onWells B andD. Inmost sections
of the well, the SVM method showed severe underfitting, failing to
predict the shape and trend of the porosity curve, and its expected
values were far from the baseline. Similar to Wells B and D, Well
E’s data was divided into four segments based on its length, with
each segment containing approximately 500 sample points due to
the smaller data volume in Well E compared to Wells B and D.

The cross plots of predicted and actual porosity using the four
methods are shown in Figure 10. Interestingly, the results from
Transformer and LSTNet are more concentrated, with the scatter
points closer to the slope line. However, a few points deviate
significantly, indicating more significant prediction errors for these
points. Considering the low actual porosity values, these points
will own a relatively high misfit, contributing to the fact that the
evaluationmetrics for Transformer andLSTNet areworse than those
for PPTransformer. The predicted porosity from PPTransformer
overall are outstanding, with very few points having significant
errors. It explains its superior performance in the four evaluation
metrics. The SVM method’s prediction results were poor, not only
worse than the other threemethods but also significantly worse than
its performance on Wells B and D.

3.5 PPTransformer for adding geologic
constraints

From a geological perspective, the lithology of reservoir
rocks exhibits stratal characteristics, mainly depending on
their depositional environment and diagenetic processes. The
depositional environment is closely related to lithological properties
and can provide geological constraints. Porosity is closely associated
with reservoir lithology, and lithology can provide geological
constraints for porosity prediction. Therefore, we add lithological
information (lithology curve) to the input curves to assist
model training.

Figures 11, 12 show the predicted porosity of test datasets
I and II, respectively. They show that the PPTransformer
model predicts the trend of porosity curves. Visually, it is
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impossible to distinguish the improvement brought by adding
lithology constraints. Table 5 presents different performancemetrics
of the test datasets. In datasets I and II, all four evaluation metrics
show varying improvement degree after incorporating lithology
constraints. It demonstrates that adding lithology constraints will
enhance the accuracy of porosity prediction. Specifically, lithology-
constrained porosity prediction exhibits a small disturbance for the
type I and II reservoirs.However, dense limestone (red) and compact
rock (yellow) do not significantly improve the porosity prediction
accuracy. Therefore, further investigation on the lithology effect
needs to be done.

4 Conclusion

ThePPTransformer network is developed to intelligently predict
porosity in deep carbonate formations using AC, CGR, CNL, DEN,
and RT as inputs. The PPTransformer network can simultaneously
extract global and local features through a unique framework
design. Results from the test dataset demonstrate that the proposed
PPTransformer model is the most robust network. It can efficiently
and accurately establish the nonlinearmapping relationship between
input well logging data and porosity, outperforming the evaluation
metrics of Transformer, LSTNet, and SVMmodels. Additionally, by
incorporating lithology information into themodel training process,
the PPTransformer network will predict porosity more accurately.
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