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Timely and accurate oil well production warnings are crucial for optimizing
oilfield management and enhancing economic returns. Traditional methods
for predicting oil well production and early warning systems face significant
limitations in terms of adaptability and accuracy. Artificial intelligence offers
an effective solution to address these challenges. This study focuses on
the ultra-high water cut stage in water-driven medium-to-high permeability
reservoirs, where the water cut—defined as the ratio of produced water to
total produced fluid—exceeds 90%. At this stage, even small fluctuations in
water cut can have a significant impact on oil production, making it a critical
early warning indicator. We use statistical methods to classify wells and define
adaptive warning thresholds based on their unique characteristics. To further
improve prediction accuracy, we introduce a Long Short-Term Memory (LSTM)
model that integrates both dynamic and static well features, overcoming the
limitations of traditional approaches. Field applications validate the effectiveness
of the model, demonstrating reduced false alarms and missed warnings, while
accurately predicting abnormal increases in water cut. The early warning system
helps guide the adjustment of injection and production strategies, preventing
water cut surges and improving overall well performance. Additionally, the
incorporation of fracture parameters makes the model suitable for reservoirs
with fractures.
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1 Introduction

With the rapid development of technologies such as artificial intelligence and big data,
as well as the increasing demand for intelligent technologies in the oil and gas industry,
methods such as machine learning and deep learning have gradually been widely applied
in various fields of oil and gas exploration, development, and production (Sircar et al.,
2021; Pratikto et al., 2023; Miah et al., 2020; Onalo et al., 2020; Elmabrouk et al., 2014;
Nikitin et al., 2021; Ibrahim et al., 2022; Khamehchi and Bemani, 2020; Kamari et al., 2018;
Shabdirova et al., 2019). Water cut is the volume ratio of the amount of water produced
in an oil well or field to the amount of liquid produced (Dhaif et al., 2021). In this study,
it refers to the water cut in an oil well, which is an important indicator for evaluating the
effectiveness of waterflooding in oil well development and adjusting development plans.
Building an accurate and effective abnormalwater cut earlywarning system, using intelligent
algorithms to monitor and predict potential risks in real-time, can effectively ensure
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the safe production and economic benefits of the oil field
(Meshalkin et al., 2021; Abramov et al., 2016; Ahn et al., 2023).

Traditional water cut prediction methods mainly include
the waterflood characteristic curve method, mathematical model
method (Clarkson, 2013; Ma and Liu, 2018), and numerical
simulation method (Batista et al., 2011). During the ultra-high
water cut period, the waterflood characteristic curve tends to
rise, leading to significant prediction errors. Some researchers
(Wang et al., 2017; Wang et al., 2020) have modified these
methods to make them applicable to the ultra-high water cut
period, but they can only reflect the relationship between water
cut and recovery degree, without establishing a link between
production dynamics and time. In oil fields entering the high or
ultra-high water cut stage, changes in formation properties occur,
and the mathematical model method cannot effectively construct
the complex nonlinear mapping relationships, leading to certain
prediction errors. Reservoir numerical simulation relies on high-
quality field data, with high computational costs and long time
consumption (Alfarge et al., 2018; Pinilla et al., 2021). In terms
of mathematical and semi-analytical methods, Wu et al. proposed
a prediction model based on a trilinear flow model, studying
transient flow analysis in tight gas wells to analyze complex flow
mechanisms and monitor oil well production dynamics (Wu et al.,
2024a; Wu et al., 2024b; Wu et al., 2024c). V. Grishchenko et al.
through analysis of the waterflooding process, proposed a water
cut prediction mathematical model based on the displacement
process, which is calibrated with field data and can predict oil
well water cut with low error (Grishchenko et al., 2021). However,
as the reservoir enters the high water cut stage, the limitations
of traditional prediction methods become increasingly evident. To
address these limitations, machine learning techniques, due to their
powerful nonlinear fitting capability and adaptability to complex
systems, have gradually been applied in the oil and gas field in
recent years (Sadeqi-Arani and Kadkhodaie, 2023).

Machine learning methods have strong nonlinear fitting
capabilities and can establish time series predictionmodels.They are
now commonly used for oil well production dynamics prediction
and optimization (Tadjer et al., 2021; Bahaloo et al., 2023). Initially,
data-driven methods were mainly used for regression prediction of
single variables. For example, Werneck et al. (2022) designed four
deep learning architectures for the strong heterogeneous reservoirs
of the Brazilian Pre-salt fields, predicting production data at different
time scales, achieving high prediction accuracy and generalization
ability. To improve the model’s efficiency in handling critical data
segments, attention mechanisms were introduced. Kumar et al.
(2023) proposed an attention-based long- and short-term memory
(LSTM) network to predict oil production, yielding better results
than traditional prediction methods and other machine learning
models. To address the issuewhere data-drivenmodelsmay generate
results that do not alignwith fundamentalmechanistic relationships,
Nagao et al. (2024) proposed a Physics-Informed Machine
Learning (PIML) method for identifying reservoir connectivity and
performing robust production predictions. Under nonlinear and
complex reservoir conditions, the model achieved high accuracy.
Additionally, machine learning can be used to handle uncertainty
in reservoir parameters. Hunyinbo et al. (2023) introduced a real-
time uncertainty assessment method based on machine learning
for steam-assisted gravity drainage (SAGD) well-pair production

prediction, which quantifies prediction uncertainties and provides
confidence intervals, effectively enhancing the reliability and
timeliness of predictions, with high practical application value.
By integrating predictions from multiple machine learning models,
prediction accuracy can be improved. Kaleem et al. (2024) proposed
a hybrid machine learning framework, using ensemble methods
like stacked generalization and voting architecture to predict
multiphase flow rates, reducing errors caused by biases in single
models. Machine learning models are becoming increasingly
widespread in the oil industry, including in unconventional
reservoirs. Shah et al. (2023) proposed an intelligent production
optimization method for shale reservoirs. This method uses LSTM
to predict individual well production dynamics and combines
CO₂ injection and dynamic Bayesian networks for risk assessment,
developing optimized production plans for each well and increasing
recoverable oil to 22% of the original geological reserves. In water
cut prediction, the factors to consider need to be tailored to the
characteristics of different oil fields. Ahmadi et al. (2019) used
data-driven methods to classify saline oil wells and employed an
autoregressive (AR) model to predict the regression of salinity
on water cut. Additionally, some researchers have predicted
water cut through pump virtual metering. Abdalla et al. (2023)
developed a data-driven modeling method based on real electric
submersible pump datasets, analyzing and processing actual field
data using multiple machine learning algorithms to predict flow
rates and water cuts. Although significant progress has been
made with machine learning in oil well production and water
cut prediction and optimization, most current research focuses
on modeling dynamic data such as oil well production and
pressure, with relatively less consideration given to static parameters
that reflect reservoir geological characteristics. This limitation
may result in insufficient generalization ability of the model
under complex geological conditions, thus affecting prediction
accuracy and limiting its application in high heterogeneity reservoir
environments. Therefore, fully integrating dynamic and static
parameter information is crucial for improving model accuracy
and applicability.

Machine learning-based well-warning methods have attracted
extensive research from many scholars. Related studies focus on
utilizing the nonlinear modeling and data-driven capabilities of
machine learning to develop more precise and efficient warning
systems, aiming to enhance risk identification and anomaly
monitoring during oil well production. The application of these
methods has not only enriched traditional warning techniques but
also provided important support for the intelligence and safety
of oil well development. Most machine learning-based warning
methods concentrate on well conditions, with fewer studies on
warning systems for production dynamics. These methods often
face limitations such as low prediction accuracy, unreasonable
threshold settings, and an inability to provide early warnings. In the
area of well condition warnings, predicting downhole safety valve
performance is a key factor. Bayazitova et al. (2024) proposed a
deep neural network combining LSTM networks, gated recurrent
units (GRU), and genetic algorithms, which performs well in
monitoring various anomalies such as false closures of downhole
safety valves and flow instability in offshore self-flow wells.
Subsequently, other scholars have conducted research on the service
life of safety valves. Harrouz et al. (2024) introduced an adaptive
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neural network-based method to predict the remaining useful
life (RUL) and time of failure (ToF) of underground safety valve
systems. This method significantly improves prediction accuracy
even with limited data. By introducing feedback mechanisms
and curve fitting, the model training was improved, and the
verification results showed that, compared to traditional methods,
the proposed approach performs better on small datasets. Other
researchers have proposed models applicable to both diagnostics
and prediction. Gatta et al. (2024) proposed a deep learning
framework using a 1D convolutional autoencoder-based feature
extraction method for predictive maintenance of offshore oil wells,
reducing downtime and maintenance costs. In addition, some
scholars have conducted research on dynamic well warnings.
Mamudu et al. (2022) proposed an operational risk model for
a pressure-augmented downhole petroleum production system,
based on dynamic data of pump pressure and bottomhole
pressure. This model integrates deep learning and probabilistic
risk assessment methods, enabling effective assessment of dynamic
risks in oil wells. Furthermore, a “predict-then-warn” mode is
another warning pattern. Zhong et al. (2016) combined neural
networks and Bayesian networks to predict warning indicators
such as oil production, and used the “3σ” principle to determine
the level of risk warning, establishing a model for risk prediction
and warning in oilfield development. Machine learning-based
warning methods mainly focus on monitoring well conditions
and anomaly diagnosis, while there is relatively less research
on production dynamics warnings. Existing methods often suffer
from insufficient prediction accuracy, unreasonable threshold
settings, and difficulty adapting to the complex and changing
conditions during oil well production, resulting in suboptimal
early warning performance. To achieve more accurate and reliable
production dynamic warnings, it is essential to improve the
model’s accuracy and real-time response capability, and optimize
threshold settings to better suit the actual operating conditions of
different oil wells.

This study proposes an LSTM prediction model that
simultaneously considers both oil well production dynamic data
and static data, enhancing the model’s ability to capture the
complex variation patterns of oil well water cut, enabling it to
predict future water cut levels. Additionally, based on statistical
analysis and field water cut data from oil wells, thresholds suitable
for different wells are summarized. Using the LSTM model and
real-time adjusted thresholds, a water cut early warning model
is established, providing support for the adjustment of oil well
development plans. In response to the limitations of existing
methods, this study proposes a multi-input LSTM prediction model
that integrates oil well production dynamic data with reservoir
geological characteristics and other multi-source information.
This approach more accurately captures the complex variation
patterns of oil well water cut, significantly improving the accuracy
of water cut prediction. Additionally, through statistical analysis
and field data, the model is capable of setting reasonable early
warning thresholds for different types of oil wells and intelligently
adjusting these thresholds based on real-time data. This generates
more accurate and timely warning signals, enabling dynamic
monitoring and intelligent early warning. This method provides
a scientific basis for optimizing oil field development plans and

FIGURE 1
Annual average oil production and average water cut per well in the
reservoir.

helps significantly improve the safety and economic efficiency of oil
well development.

2 Data preparation

2.1 Geological overview of the oilfield

TheBohai Sea is in the northeast ofChina, andQoilfield is located
in the central Bohai Sea of China and is an offshore low-amplitude,
bottom-water heavy oil reservoir with medium-to-high permeability.
There are 40 sets of oil-water contacts in the Q oilfield. The oil and
water layers alternate frequently. Different blocks, fault blocks, oil
groups, oil layers, and sand bodies have different oil-water contacts.
The reservoir is complex, and bottom water is widely distributed.
As shown in Figure 1, the initial production of the Q oilfield was
poor. The water-free production period was short, and the recovery
rate was very low. The water cut increased quickly, and production
declined rapidly. The bottom water coned into the wells very fast.
After years of development with directional wells, the oilfield has
now entered a ultra-high water cut stage. It is characterized by high
water cut and low recovery rate. In the ultra-high water cut period,
variations in water cut have a particularly significant impact on oil
well production. Understanding the patterns of water cut changes
during this phase is crucial for early detection and accurate prediction
of abnormal conditions.

2.2 Data process

Figure 2 shows the data processing flowchart. First, the collected
data undergoes feature selection to reduce the interference of
redundant features on the model. Next, the selected dynamic
features are transformed into a time-series format to fit the input
requirements of the time-series model. Then, both dynamic and
static features are normalized to eliminate the impact of magnitude
differences on themodel. Finally, the dataset is split into training and
test sets in a 7:3 ratio and input into the model.
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FIGURE 2
Data processing flowchart.

2.2.1 Dataset description
This study collected production data from 492 oil wells in the Q

oilfield from 2001 to 2024, covering 22 features. The main features
include oil pressure, casing pressure, back pressure, bottom hole
flowing pressure, bottom hole temperature, pump inlet temperature,
pump inlet pressure, pump outlet pressure, pump leakage current,
pump current, pump motor temperature, pump voltage, pump
frequency, pump vibration, wellhead temperature, choke size, gas-
oil ratio, water cut, daily fluid production, daily gas production,
daily water production, and daily oil production. Considering
that well’s daily data log is partially missing and that daily data
fluctuates greatly, the daily data is averaged on a monthly basis
to obtain monthly averages, which are then used to construct the
foundational dataset.

Figure 3 shows the average daily oil production and water
cut for all wells from 2001 to 2013. Figure 4 is the logging data
distribution of the reservoir sand body, including shale content,
interlayer thickness, formation resistivity, porosity, permeability,
and oil saturation.

2.2.2 Feature selection
Dynamic data can reflect the production status and changing

trends of oil wells in real-time. It is an important basis for predicting
short-term well behavior, helping the model capture production
trends and cyclic patterns. By effectively utilizing dynamic data,
the water cut early warning system can more accurately predict
the future production of oil wells, providing decision support
and reducing potential economic losses. Static data describe the
geological and engineering characteristics of the reservoir, offering
fundamental information about the long-term production potential

and behavior of the reservoir. Static data remain relatively stable
throughout the life cycle of a well and are the basis for reservoir
management and production optimization. By incorporating static
data into the input of the LSTM model along with dynamic data,
the model’s generalization ability and prediction accuracy can
be improved.

Traditional time series prediction models often rely solely on
time series data, neglecting the potential contributions of static
features. The dataset constructed in this study comprehensively
considers the influence of the reservoir, individual wells, and
injector-producer well groups. It includes static parameters that
reflect the geological characteristics of the wells as well as
dynamic parameters that capture the production process. The rich
feature dimensions provide machine learningmodels with sufficient
information, helping to better capture the complex production
patterns of oil wells.

Depending on the number of input features, data-driven
prediction models can be divided into univariate and multivariate
prediction methods. In this study, a multivariate prediction
approach is adopted. Multivariate prediction considers multiple
features simultaneously, providing the model with rich training
samples and enhancing its generalization ability. However, toomany
features can increase the computational cost and risk of overfitting.
Therefore, Pearson correlation coefficients are used in this study for
feature selection.

The formula for Pearson correlation coefficient is as follows:

ρX,Y =
cov(X,Y)
σXσY
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FIGURE 3
Daily average oil production and water cut per Well.

FIGURE 4
Reservoir logging data statistics chart.

where cov(X,Y) is the covariance between X and Y, withσX and σY
as their standard deviations.

For each feature, the Pearson correlation coefficient with the
water cut is calculated. The closer the absolute value of the Pearson
correlation coefficient is to 1, the stronger the correlation between
the two features. Six dynamic features were selected: daily fluid
production, daily oil production, daily water production, bottom
hole flowing pressure, injection volume (water injection from

surrounding wells), and bottom hole flowing pressure. In addition,
since water cut is also affected by static features, four static features
were included: permeability, porosity, water saturation, and the
distance between injector and producer wells.

The selected dynamic and static features comprehensively
consider the impact of individual wells, well groups, and
reservoirs, and each parameter has physical significance,
as shown in Table 1.
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TABLE 1 Physical meaning of parameters.

Parameter type Parameter Physical significance

Single Well

Daily Fluid Production

Direct Well Performance IndicatorsDaily Oil Production

Daily Water Production

Bottom Hole Pressure Energy Driving Fluid to Surface

Well Group
Water Injection Rate

Factors Influencing Flow and Injection Efficiency
Well Spacing

Parameters

Porosity
Oil Storage and Production Potential

Water Saturation

Permeability Fluid Permeability

2.2.3 Data normalization and splitting
Due to significant differences in the magnitude of the data,

directly inputting the data into the model may negatively affect its
performance. Normalization scales all features to the same range,
reducing the differences in scale between different features, and thus
improving the stability of the algorithm.The normalization formula
is as follows:

Xnorm =
X −Xmin

Xmax −Xmin

where X is the original feature, Xnorm is the normalized feature, Xmin
is the minimum value of the feature, andXmax is the maximum value
of the feature.

After normalization, the data are split into training and
validation sets in a 7:3 ratio.

2.2.4 Time series transformation
By converting dynamic data into a sequence format, the

dynamic data is restructured as the input format for the
time series model. First, the time series data is segmented,
grouping several consecutive time steps into one input sequence,
with the corresponding future time steps selected as the
model’s prediction target. Each input sequence contains the
historical values of various production parameters, and these
historical values retain their chronological order. By performing
data shifting operations, past data is aligned and combined
with data from subsequent time steps, allowing the model
to capture production trends and dependencies from the
historical data.

Next, the static features are integrated with the dynamic
time series features through data concatenation. The
static data is expanded to match the time dimension of
the dynamic data, ensuring that each sample contains
both dynamic features reflecting short-term changes and
static features representing the long-term characteristics
of the well.

3 Method and principle

After completing data processing, it is necessary to calculate the
thresholds and predict the water cut values. If the change in water
cut exceeds the threshold, an early warning is triggered; otherwise,
the system remains in a safe state. The process of the early warning
system is shown in Figure 5.

3.1 Thresholds

3.1.1 Water cut stage division
During the production process of oil wells at different water cut

stages, the impact of water cut changes on daily oil production varies
significantly. For example, in wells at the ultra-high water cut stage,
a 1% increase in water cut can have a significant negative impact on
daily oil production, but a 1% increase in wells at the low water cut
stage is generally within an acceptable range. Therefore, accurately
dividing the water cut stages of oil wells is a critical part of the water
cut early warning system. The criteria for different water cut stages
are shown in Table 2.

Due to the complex field conditions in the oilfield, operations
such as well initiation, liquid discharge, and flowback can cause
abnormal fluctuations in the water cut of oil wells. In extreme cases,
the water cut may rise to 100%. These anomalies not only increase
the noise in the water cut data but may also lead to misjudgment of
the water cut stage, resulting in incorrect production decisions.

The sliding window method determines the water cut stage
of the well by calculating the median within each small window
and comprehensively analyzing the water cut data over a larger
window that covers all well data. As shown in Figure 6, each
small window contains 5 days of water cut data, while each large
window contains n days of data (with n adjustable according to
actual conditions). Compared to simple average calculations, the
median is more robust in handling extreme and anomalous values,
providing a more accurate reflection of the true water cut trend
in the well. Additionally, using the median values from multiple
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FIGURE 5
Early warning system flowchart.

TABLE 2 Water cut stage division standards.

Water cut
stage

Low Medium High Ultra-high

Water Cut Range/% ≤20 20 ∼ 60 60 ∼ 90 ≥90

consecutive small windows for comprehensive analysis effectively
reduces misjudgments caused by short-term anomalies in a single
window, ensuring the stability and reliability of stage division.

3.1.2 Well classification
After completing the water cut stage division, further dynamic

classification analysis of the wells is conducted. The classification is
based on the average water cut and average daily oil production of
each well at its current water cut stage. This classification considers
the real-time dynamic performance of the wells during production,
helping to reveal the impact of water cut changes onwell production,
and ensuring that more targeted and differentiated early warning
strategies are applied to different types of wells.

The K-means clustering method is used for dynamic well
classification. The main principle is to divide the objects in the
dataset into K clusters, minimizing the sum of the Euclidean
distances from each object to the center of its cluster. Through

iterative optimization, the clustering result ensures that objects
within each cluster are as close as possible, while objects between
different clusters are as far apart as possible. The main steps are
as follows (Lloyd, 1982):

1. Randomly selectK data points as the initial cluster centers, and
manually set the value of K.

2. Calculate the Euclidean distance between each data sample xi
and the K cluster centers, and assign each sample to the cluster
with the nearest center. The formula for calculating Euclidean
distance is as follows:

d(x,y) = √
n

∑
i=1
(xi − yi)

2

where xi is the i-th data point, yi is the i-th cluster center, and n is
the dimension of the data.

3. For each cluster, recalculate the cluster center. The new cluster
center is the mean of all data points in the cluster, and the
formula is as follows:

yi =
1
|Si|
∑
x∈Si

x

where Si is all the data points in cluster i.
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FIGURE 6
Water cut stage division method diagram.

4. Repeat steps 2 and 3 until the cluster centers no longer change
significantly, at which point the clustering process is complete.

3.1.3 Threshold setting
Based on the previous water cut stage division and clustering

results, the wells are classified into different categories. For each
cluster, the change in water cut between consecutive time points is
calculated and normalized to represent the change per unit time. By
calculating the standard deviation (σ) of the water cut changes for
each well cluster, themagnitude of water cut fluctuations during that
stage is reflected. A larger σ value indicates that the well’s production
performance is more unstable during that stage.

The formula for calculating the early warning threshold
is as follows:

Threshold = n× σ

where n is the sensitivity coefficient set by field personnel, which can
be adjusted flexibly according to different production requirements.
It is recommended to set n between 1 and 3. Typically, n is set
to 3. However, if greater sensitivity to changes is needed for early
warnings, values of 2 or 1 can be used. Setting sensitivity too low
may cause real issues to be overlooked, leading to underreporting,
while setting it too high can result in unnecessary consumption of
time and resources.

When the change in the water cut of a well exceeds the threshold
nσ, the system triggers an early warning.Thismethod fully considers
the differences in sensitivity to water cut changes between wells,
providing a scientifically based threshold grounded in statistical
analysis. It not only captures abnormal situations but also effectively
reduces false alarms and missed warnings, improving the precision
and adaptability of the early warning system.

3.2 Model construction

3.2.1 LSTM principle
The Long Short-Term Memory (LSTM) model is an optimized

version of the traditional Recurrent Neural Network (RNN) with
strongmemory capabilities, making it well-suited for handling time-
series data. Its principles are as follows (Landi et al., 2021):

LSTM consists of a cell state, an input gate, an output gate, and
a forget gate. The cell state can store values across arbitrary time

FIGURE 7
LSTM structure diagram.

intervals, and the three gates control how information enters and
exits the cell. The forget gate compares the previous state with the
current input and decides which information to retain or discard (1
means retain, 0 means forget).The input gate and the forget gate use
the same mechanism to decide which information to update. The
output gate determines which part of the cell state will be output,
processes it, and produces the final output.

Figure 7 demonstrates the concatenation of internal cell states
at different time steps. The four yellow rectangles in the figure
represent the hidden layer structure of the network, with the
symbols on top representing the activation functions used. The
unit state concatenates the input Xt at time t and the output ht−1
at time t− 1, then performs forget or retain processing in the
internal unit. In Figure 7, the horizontal line on the top controls
long-term memory, while the one on the bottom controls short-
term memory.

This structure allows LSTM to effectively capture long-term
dependencies in sequence data, making it highly suitable for time-
series data processing.

In this study, a multi-input LSTM model was designed.
The LSTM network, due to its ability to capture both long-
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FIGURE 8
Multi-input model network structure diagram.

and short-term dependencies in time-series data, is widely used
in time-series prediction tasks. In this model, dynamic data
is used as the time-series input, while static data is used as
auxiliary input. This allows the model to capture the gradually
changing dynamic information during well production, while also
considering the fundamental geological characteristics of the well,
thereby improving prediction accuracy.

The loss function used is Mean Squared Error (MSE), which
measures the gap between the predicted values and the actual values.
The Adam optimizer is employed to make the training process more
stable and efficient, especially when handling large-scale data and
complex model structures.

3.2.2 Network layer configuration
The model is composed of two LSTM layers and a fully

connected layer, designed to achieve precise predictions for complex
time series by integrating dynamic and static data. The model
consists of two main components: one part processes dynamic data
through the LSTM network to capture dependencies in the time
series, while the other part processes static data through a fully
connected layer, mapping it to the same feature space as the dynamic
data. Finally, the features from these two parts are fused through
concatenation, and the output layer generates predictions for Daily
Oil Production (DOP), Daily Liquid Production (DLP), and Bottom
Hole Pressure (BHP). The overall structure is shown in Figure 8.

First, the two LSTM layers in the model sequentially process
the dynamic data. The first LSTM layer extracts short-term
dependencies in the dynamic data and outputs an intermediate
hidden state. The second LSTM layer further captures long-term
dependencies in the time series, enhancing the model’s ability to
understand and predict well production dynamics.

The input of the static data is processed through a fully
connected layer. This fully connected layer applies a linear
transformation and nonlinear activation function, mapping the
static features to the same feature space as the LSTM hidden states.

This process ensures that static features contribute effectively to the
model’s predictions and eliminates potential conflicts when fusing
dynamic and static features.

After processing through the two LSTM layers and the
fully connected layer, the dynamic and static data features are
concatenated in the feature space, forming a higher-dimensional
feature representation. The concatenated feature vector is then
passed through the fully connected output layer, where it undergoes
a linear transformation to produce the final predictions.

3.3 Evaluation metrics

Based on whether the predicted values and actual values trigger
an early warning, the results can be categorized into four types: True
Positives (TP), False Positives (FP), True Negatives (TN), and False
Negatives (FN). TP represents the number of samples where the
early warning system correctly predicted an alert (both the predicted
and actual values meet the early warning conditions). FP represents
false alarms (the predicted value meets the early warning condition,
but the actual value does not). TN represents correctly identified
normal conditions (neither the predicted nor actual values meet the
early warning conditions), and FN represents missed alarms (the
predicted value does not meet the early warning condition, but the
actual value does).

The effectiveness of the early warning system is measured using
Accuracy, Precision, Recall, False Positive Rate (FPR), and False
Negative Rate (FNR). The formulas are as follows:

Accuracy = TP +TN
TP +TN + FP + FN

Precision = TP
TP + FP

Recall = TP
TP + FN
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FIGURE 9
Dynamic well classification results.

FPR = FP
FP +TN

FNR = FN
FN +TP

Accuracy: Represents the proportion of samples where the
system correctly predicts whether the well’s water cut is abnormal,
without distinguishing between abnormal and normal conditions.

Precision: Represents the proportion of true anomalies among
all the cases predicted as anomalies. A high precision indicates that
the system effectively reduces false alarms.

Recall: Represents the proportion of correctly identified
anomalies among all actual anomaly samples. A high recall rate
indicates that the model can capture more anomaly cases.

FPR: Represents the proportion of normal samples that are
incorrectly predicted as anomalies. A lower FPR means fewer
false alarms.

FNR: Represents the proportion of actual anomaly samples that
are not detected by the early warning system. A lower FNR means
fewer missed alarms.

4 Results

4.1 Threshold calculation

First, the sliding window method is used to determine the
current water cut stage of the well. Then, based on the current water
cut stage and daily oil production of each well, the wells are classified
into three categories using the K-means algorithm.The classification
results are shown in Figure 9, where Cluster 1 represents low water
cut wells (42 wells), Cluster 2 represents high water cut wells with
weak production capacity (304 wells), and Cluster 3 represents high
water cut wells with strong production capacity (145 wells).

Based on the dynamic classification results and the current
water cut stage of each well, the data is grouped, and the difference
in water cut between consecutive time points is calculated to
obtain the change in water cut per unit time. Statistical analysis is

then performed on these difference values to obtain the standard
deviation σ, as shown in Figure 10. Notably, there is no ultra-high
water cut stage for wells in Cluster 1.

From the perspective of water cut stages, the medium water cut
stage has the highest σ value, indicating that water invasion intensifies
during this stage, leading to greater fluctuations in the water cut. The
ultra-high water cut stage has the lowest σ value, reflecting that the
well has entered a stable water flooding stage, where the reservoir is
primarily water-driven and the water cut fluctuates less.

From the perspective of well categories, Cluster 3 wells have
lower σ values at all stages. Upon investigation, it was found that
these wells have implemented effective water flooding management
and pressure maintenance measures, which have controlled the
fluctuations in water cut during production.

4.2 Optimal time step selection

Before optimizing the time step, it is necessary to determine the
time interval. Given that the daily water cut in field data fluctuates
frequently and lacks clear patterns, the average daily water cut for
each month is used as the early warning indicator. Using monthly
averages significantly reduces abnormal fluctuations in the data. The
LSTMmodel is then employed to capture long-term trends, resulting
in higher accuracy and reliability. As a result, themodel’s time interval
is set to 1 month,making it easier toprocess themonthly averagedata.

The input and output time steps have a significant impact on
the prediction results of the model. If the time step is too short, it
may not provide enough information for the model, while a time
step that is too long may introduce irrelevant information, leading
to overfitting. Therefore, this early warning system optimizes the
best time step combinations for different data samples to ensure
the stability and accuracy of the model’s predictions. The evaluation
metric used is the Mean Absolute Percentage Error (MAPE). By
standardizing the error, MAPE provides an objective reflection of
the model’s performance across different time steps. The calculation
formula is as follows:

MAPE = 1
n

n

∑
i=1
|
yi − ŷi
yi
| × 100%

where yi is the actual water cut value, ̂yi is the predicted water cut
value, and n is the number of data points.

Figure 11 shows the water cut prediction errors under different
input time steps (with outliers removed). Each box represents the
errors for output time steps ranging from 1 to 24 at a given input
step. When the box is relatively low and the whiskers are short,
it indicates that the errors are smaller and less volatile, suggesting
higher accuracy and stability. Three red boxes (steps 5, 13, and 16)
show relatively short heights and whisker lengths, with lower and
more stable errors, warranting further analysis.

Figure 12 illustrates the water cut errors at different output time
steps, with three lines representing the prediction errors for input
steps of 5, 13, and 16. It can be seen that when the input time step is
5, the model’s overall errors remain at a low level without significant
error peaks, indicating that an input time step of 5 is more suitable
for predicting water cut. Additionally, when the output time step
is 12, the model error reaches its lowest point. Therefore, the final
selected time step combination is: input time step of 5 and output
time step of 12.
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FIGURE 10
Standard deviation for different water cut stages and well clusters.

FIGURE 11
Relationship between input time steps and prediction error.

4.3 Early warning results

The calculated thresholds (set at 1 times σ) and the established
model were used to perform water cut early warnings for the wells.

Figure 13 shows the early warning results for predicted water
cut, comparing the dual-driven model trained with both dynamic
and static data, and the single-driven model trained with only
dynamic data.

The five evaluation metrics were calculated based on the early
warning results, and the results are shown in Table 3. By analyzing
these metrics, a comprehensive assessment of the system’s early

FIGURE 12
Relationship between output time steps and prediction error.

warning performance for abnormal situations can bemade, providing
quantitative insights for optimizing the early warning system.

As shown in Figure 14, this figure presents a comparison of
several key performance metrics between the model considering
both dynamic and static features (dual-drivenmodel) and themodel
considering only dynamic features (single-drivenmodel) in the early
warning of water cut in oil wells. It is evident that the dual-driven
model outperforms the single-driven model across all metrics.

Specifically, compared to the single-driven model, the dual-
driven model improved Accuracy, Precision, and Recall by 6.6%,
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FIGURE 13
Water cut warning results for different models. (A) Model trained with dynamic and static features; (B) Model trained with dynamic features only.

TABLE 3 Performance metrics of the early warning system.

Model Accuracy Precision Recall FPR FNR

Dynamic-
Static

0.9434 0.8293 0.9444 0.0570 0.0556

Dynamic 0.8853 0.6980 0.8704 0.1103 0.1296

FIGURE 14
Comparison of early warning metrics between dynamic features only
and dynamic-static features.

18.8%, and 8.5%, respectively. Additionally, the FPR and FNR were
reduced by 48.3% and 57.1%, respectively. This indicates that the
dual-driven model not only performs better in terms of overall early
warning accuracy but also improves the ability to reduce false alarms
and missed alarms, effectively enhancing the validity and reliability
of the early warning system.

5 Discussions

This paper establishes an oil well production early warning
method based on water cut variation, achieving an accuracy of
94.34% in predicting abnormal water cut changes in oil well
production. The proposed method can guide the field in adjusting
injection and production parameters in advance to prevent water

cut increases and can also be used for optimizing injection
and production parameters. Compared with related cases, the
innovation and limitations of the proposed method are mainly
reflected in the following two aspects:

(1) Comparison with Existing Water Cut Prediction Methods and
Early Warning Methods:

Conventional water cut prediction methods have many
limitations. In recent years, machine learning methods have gained
popularity,primarilyappliedtothepredictionofproductiondynamics.
A few scholars have also conducted research on water cut prediction.
For example, Ahmadi et al. (2019) employed a data-driven approach
to classify saline oil wells and used an autoregressive (AR) model
to create the regression relationship between salinity and water cut.
This method established the relationship between salinity and water
cut, but its application is highly limited in other types of reservoirs,
as it only considers the relationship between salinity and water cut,
overlooking other potential factors. Abdalla et al. (2023) developed a
data-driven modeling approach based on actual electric submersible
pump datasets. This method analyzes and processes real field data
using various machine learning algorithms to predict flow rates and
water cut. The method is applicable for filling in measurement data
and predicting the water cut for the current day, but it is not suitable
for predicting futurewater cut levels. Furthermore, this approach only
considers dynamicparameters such aspumppressure andbottomhole
flowing pressure, with insufficient consideration of static parameters.

The method proposed in this study differs from the two
methodsmentioned above.Thismethod employs adata-drivenmodel
architecture that combines dynamic and static parameters, enabling
the simultaneous consideration of oil well dynamics and geological
parameters for water cut prediction. Compared to Ahmadi et al.’s
approach, it is more comprehensive, and its focus is different from
that of Ahmadi et al., who establish a relationship between salinity
and water cut. Ramez’s method considers dynamic parameters like
pump pressure and bottomhole flowing pressure, but it does not
account for static geological parameters. Moreover, Ramez’s method
is only applicable when dynamic conditions are known, primarily for
predicting the current day’s water cut, and it cannot forecast future
water cut changes.Themethod proposed in this paper, by considering
both dynamic well parameters and static geological parameters,
achieves the prediction of future water cut levels. While the water
cut prediction method in this paper is similar to the production
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rate prediction methods proposed by Werneck, Kumar, and others
(Werneck et al., 2022;Kumar et al., 2023), the key difference is that this
study does not incorporate the attention mechanism but introduces
static geological parameters.The introduction of static geological data
makes this method more suitable for the early warning of water cut
rise in highly heterogeneous reservoirs.

In terms of early warning methods, many studies have
established the relationship between predictive parameters and
warning results, with related research primarily focusing on oil well
operating conditions, while some studies focus on well dynamic
parameters research. For example, the operational risk prediction
model proposed by Mamudu et al. (2022) can effectively assess the
dynamic risks of oil wells. The method in this paper is similar to
the approach proposed by Zhong et al. (2016), where prediction
precedes warning. The difference is that this study determines the
thresholds for oil wells in a more reasonable manner by classifying
them and setting phased thresholds. And the method proposed by
Zhong is a probabilistic prediction model. Compared with this early
warning model, the method proposed in this paper provides a more
direct early warning, and the early warning result is more clear.

(2) Applicability to Specific Reservoir Conditions:

Most of the early warning methods are set according to the
operating conditions of specific reservoirs, and there are few studies
on well dynamic parameter early warning (Bayazitova et al., 2024;
Harrouz et al., 2024; Gatta et al., 2024; Mamudu et al., 2022;
Zhong et al., 2016). The prediction before warning method adopted
in this study is a kind of dynamic parameter early warning method.
The establishment of prediction model determines the applicability
of this method. And it is found that most of the water cut
predictionmethods havemany limitations, some of them are limited
in the applicability of the reservoir, and some of them are not
comprehensive (Ahmadi et al., 2019; Abdalla et al., 2023). The
method in this study takes into account the influence of static
geological parameters, and the permeability, porosity, sand body
thickness and other parameters can improve the prediction ability
of the model in the high water cut period. Therefore, the proposed
method is suitable for medium-to-high permeability reservoirs
under long-term water drive. However, to apply it to ultra-low
permeability reservoirs with long-term water drive, it would be
necessary to incorporate considerations of fractures. Therefore, it
is worth exploring to add fracture parameters such as fracture
intensity, length and width to appropriate network layers and
combine them with other parameters to improve the model and
make it suitable for reservoirs with fractures.

6 Conclusion

This study aims to establish a more accurate early warning
system for oil well production in medium-to-high-permeability
reservoirs under long-termwater flooding.The research conclusions
are as follows:

(1) The method proposed in this study considers both dynamic
and static characteristics of oil wells, effectively improving the
accuracy of early warnings. Compared to models that only
consider dynamic features, the proposed approach increases
early warning accuracy by 6.6%.

(2) The proposed method classifies oil wells and incorporates
stage-specific early warning thresholds, significantly
enhancing its adaptability to different well conditions and
reducing false and missed alarms.

(3) The research method in this study is very effective in medium
and high permeability reservoirs with long-term water drive,
and its application in other reservoirs remains to be explored.

(4) The early warning system can predict abnormal increases in
water cut in advance, enabling improvements in well group
injection and production strategies to prevent surges in water
cut. Additionally, it can be used for optimizing injection and
production parameters of oil wells.
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