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Introduction: Surface deformation in the Three Gorges Reservoir area poses
significant threats to infrastructure and safety due to complex geological and
hydrological factors. Despite existing studies, systematic exploration of long-
term deformation characteristics and their driving mechanisms remains limited.
This study combines SBAS-InSAR technology and machine learning to analyze
and predict surface deformation in Fengjie County, Chongqing, China, between
2020 and 2022, focusing on riverside urban ground, riverside road slopes, and
ancient landslides in the reservoir area.

Methods: SBAS-InSAR technology was applied to 36 Sentinel-1A images
to monitor surface deformation, complemented by hydrological and
meteorological data. Machine learning models—Random Forest (RF), Extremely
Randomized Trees (ERT), Gradient Boosting Decision Tree (GBDT), Support
Vector Regression (SVR), and Long Short-TermMemory (LSTM)—were evaluated
using six metrics, including RMSE, R2, and SMAPE, to assess their predictive
performance across diverse geological settings.

Results: Deformation rates for riverside urban ground, road slopes, and
ancient landslides were −3.48 ± 2.91 mm/yr, −5.19 ± 3.62 mm/yr, and
−6.02 ± 4.55 mm/yr, respectively, with ancient landslides exhibiting the
most pronounced deformation. A negative correlation was observed
between reservoir water level decline and subsidence, highlighting
the influence of seasonal hydrological adjustments. Urbanization
and infrastructure development further exacerbated deformation
processes. Among the models, LSTM demonstrated superior predictive
accuracy but showed overestimation trends in ancient landslide areas.
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Discussion: Reservoir water level adjustments emerged as a critical driver
of subsidence, with rapid water level declines leading to increased pore
pressure and soil compression. Seasonal effects were particularly evident,
with higher subsidence rates during and after the rainy season. Human
activities, including urbanization and road construction, significantly intensified
deformation, disrupting natural geological conditions. Progressive slope failure
linked to road expansion underscored the long-term impacts of engineering
activities. For ancient landslides, accelerated deformation patterns were linked
to prolonged drought and reservoir-induced hydrological changes. While LSTM
models showed high accuracy, their limitations in complex geological settings
highlight the need for hybrid approaches combining machine learning with
physical models. Future research should emphasize developing integrated
frameworks for long-term risk assessment and mitigation strategies in reservoir
environments.

Conclusions: This study provides new insights into the complex surface
dynamics in the Three Gorges Reservoir area, emphasizing the interplay of
hydrological, geological, and anthropogenic factors. The findings highlight the
need for adaptive management strategies and improved predictive models to
mitigate subsidence risks.

KEYWORDS

surface deformation, SBAS-InSAR, Three Gorges Reservoir area, machine learning
prediction, reservoir water level impact

1 Introduction

Ground subsidence is a widespread geological phenomenon
that poses a serious threat to infrastructure safety, environmental
stability, and socio-economic development in many regions
worldwide. This phenomenon not only affects the integrity of
buildings and infrastructure but can also lead to increased flood
risk, groundwater contamination, and ecosystem degradation
(Herrera-García et al., 2021). In the past few decades, with
the acceleration of urbanization and the construction of large-
scale water conservancy projects, ground subsidence issues
have become increasingly prominent, attracting widespread
attention from the scientific community and policymakers.
Particularly in areas affected by large-scale water conservancy
projects such as the Three Gorges Reservoir area, ground
subsidence exhibits more complex characteristics and potential
risks due to its unique geological conditions, complex
hydrological environment, and frequent human activities
(Wang et al., 2020; Li et al., 2024).

The Three Gorges Reservoir, as one of the world’s
largest and most far-reaching water conservancy projects, has
sparked extensive scientific discussion and research since its
operation began. The operation of the reservoir has significantly
changed the hydrological situation in the area, implementing
a “winter storage, summer release” water level scheduling
mode, resulting in annual water level fluctuations of up to
30 m (Bao et al., 2015). This large-scale, periodic water level
change has had a profound impact on surface stability. The
periodic changes in water level not only alter groundwater
dynamics but may also affect the mechanical properties of
rock and soil masses, thereby triggering or exacerbating

geological hazards such as ground subsidence and landslides
(Tang et al., 2019). However, the specific mechanisms and
long-term effects of reservoir water level changes on surface
deformation are still not fully understood, especially under
different geological conditions and human activity intensities, where
this relationship may exhibit complex nonlinear characteristics
(Zhang et al., 2015; Yang et al., 2022).

In addition to reservoir water level changes, rainfall is also
an important factor affecting surface stability in the Three Gorges
Reservoir area.The region has a subtropical humidmonsoon climate
with abundant and unevenly distributed rainfall. Numerous studies
have shown that rainfall can affect surface stability by increasing soil
weight, reducing soil strength, and changing pore water pressure
(Li et al., 2019). However, against the background of periodic
reservoir water level changes, the mechanism of rainfall’s impact
on surface deformation may be more complex. For example, the
temporal configuration of reservoir water levels and rainfall may
produce additive or offsetting effects, and the impact of these
complex hydrological coupling processes on surface deformation
needs further study (Wang et al., 2021).

Human activity is another important factor that cannot be
ignored. With the rapid economic development of the Three Gorges
Reservoir area, accelerated urbanization, large-scale infrastructure
construction, and land use changes have significantly altered the
original surface conditions. These human activities may affect
surface deformation by changing surface cover, increasing ground
load, and altering groundwater systems (Wang et al., 2020).
The impact of human activities may be particularly significant
in riverside urban areas and road construction areas. However,
how to quantify and distinguish the relative contributions of
human activities and natural factors to surface deformation
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remains a challenging scientific question (Fan et al., 2020; Ye
et al., 2024).

In recent years, the rapid development of remote sensing
technology has provided a powerful tool for large-scale, high-
precision monitoring of surface deformation. Among these,
Synthetic Aperture Radar Interferometry (InSAR) technology
has been widely used in surface deformation monitoring due
to its high spatial resolution and all-weather working capability
(Ferretti et al., 2011; Shi et al., 2019). In particular, the Small
Baseline Subset (SBAS) InSAR technique, by utilizing multi-
temporal SAR data, can provide millimeter-level precision surface
deformation measurements, greatly enhancing the ability to detect
small surface deformations (Lanari et al., 2004). This technology
not only provides information on the spatial distribution of
surface deformation over large areas but can also capture the
temporal evolution process of deformation, offering unprecedented
opportunities for studying ground subsidence in complex geological
environments (Zhao et al., 2019; Wang et al., 2020). However,
how to effectively utilize this high-resolution spatiotemporal
data to understand and predict ground deformation in complex
geological environments remains an important scientific challenge
(Osmanoğlu et al., 2016;Wang et al., 2020). Traditional data analysis
methods often struggle to handle the high dimensionality and
nonlinear characteristics of InSAR data, limiting our in-depth
understanding and accurate prediction of surface deformation
mechanisms.

Machine learning and deep learning technologies provide new
approaches to addressing this challenge. These methods can extract
valuable information from complex multi-source data, offering
new possibilities for predicting ground deformation and assessing
risks (Reichstein et al., 2019). For example, ensemble learning
methods such as Random Forest (RF), Extremely Randomized
Trees (ERT), and Gradient Boosting Decision Tree (GBDT) have
shown excellent performance in handling nonlinear relationships
and high-dimensional data (Chen and Guestrin, 2016). These
methods can effectively capture complex relationships between
surface deformation and various influencing factors by constructing
multiple decision trees and combining their prediction results.
Support Vector Regression (SVR) has attracted attention due to
its advantages in small-sample learning (Cortes and Vapnik, 1995).
By mapping the input space to a high-dimensional feature space,
SVR can handle nonlinear problems, which is particularly useful
for analyzing complex relationships in geological environments.
In recent years, deep learning models such as Long Short-Term
Memory (LSTM) networks have shown outstanding performance
in time series prediction tasks, providing new possibilities for
long-term prediction of surface deformation (Hochreiter and
Schmidhuber, 1997). The design of LSTM allows it to capture
long-term dependencies, which is particularly important for
analyzing long-term trends and periodic changes in surface
deformation. Although these machine-learning methods have
achieved significant results in their respective fields, their
performance differences and applicability in handling geological
data, especially in the complexThreeGorgesReservoir environment,
have not been fully studied (Ma and Mei, 2021). Each method
has its advantages and limitations, and how to choose the most
suitable model for specific geological environments and data
characteristics, how to integrate the advantages of multiple models,

and how to interpret model results and combine them with
physical mechanisms are all issues that need in-depth discussion.
Furthermore, the application of machine learning methods in
surface deformation prediction still faces challenges such as data
quality, model generalization ability, and uncertainty quantification.
For example, how to handle noise and missing values in InSAR
data, how to ensure the prediction stability of models at different
spatiotemporal scales, and how to evaluate and communicate the
uncertainty of prediction results are all important issues that need
further research (Tiwari et al., 2020).

In this context, this study aims to combine SBAS-InSAR
technology with various machine learning models to analyze in
depth the deformation characteristics of different surface types
in the Three Gorges Reservoir area and their driving factors. We
selected Fengjie County, Chongqing, China, as the study area,
which is located in the core area of the Three Gorges Reservoir
and has typical geological features and climatic conditions. Specific
objectives include (1) Quantifying and comparing deformation
rates and patterns of different surface types (including riverside
urban ground, riverside road slopes, and ancient landslides in
the reservoir area); (2) Investigating the impacts of reservoir
water level changes, rainfall, and human activities on surface
deformation; (3) Evaluating and comparing the performance
of different machine learning models in predicting surface
deformation. Through this study, we expect not only to provide
the scientific basis for geological disaster risk assessment and
management in the Three Gorges Reservoir area but also to offer
methodological references and experiential lessons for surface
deformation research in similar areas affected by large-scale water
conservancy projects.

2 Methodology

2.1 Study area

This study selected Fengjie County in Chongqing, China as
the research area. The county is located in the core area of the
Three Gorges Reservoir Region, in the northeast of Chongqing
City. The coordinates of Fengjie County town were 31°1′6.78″N,
109°24′3.35″E (Figure 1). It was an area particularly prone to
various geological disasters due to its geological characteristics and
climatic conditions. As an important part of the Three Gorges
Reservoir, this area was significantly affected by water level changes.
After the completion of the Three Gorges Project, the hydrological
situation in this area changed significantly (Zhang et al., 2016).
The Three Gorges Reservoir implemented a water level scheduling
mode of “winter storage and summer discharge”. From October to
June of the following year was the water storage period, during
which the water level gradually rose to about 175 m. From June to
Octoberwas the flood discharge period, duringwhich thewater level
gradually dropped to about 145 m (Bao et al., 2015). This periodic
water level change had a significant impact on the stability of the
local surface.

The topography of Fengjie County was mainly mountainous
and hilly, with large differences in altitude ranging from 70 m to
2,100 m. The geological structure was complex, mainly composed
of limestone and sandstone, with most strata belonging to the
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FIGURE 1
Location of the study area. (A) Location of the study area. (B) Three key areas of significant subsidence are under investigation. (C) Landuse in 2013. (D)
Landuse in 2023. Fengjie County town is located at 31°01′03″N, 109°27′54″E.

Middle Triassic Badong Formation, characterized by fragmentation
and looseness. The county had a subtropical humid monsoon
climate with an average annual precipitation of about 1,145 mm,
with 42% of the total annual rainfall occurring from July
to September. This rainfall pattern interacted with reservoir
water level regulation, producing complex effects on surface
deformation and easily triggering geological disasters such as
landslides.

The study area contained various land use types such as urban
built-up areas, farmland, forests, and water bodies, with rich natural

resources and complex geological structures. In recent years, with
the acceleration of urbanization, the area had undergone rapid land
use changes, especially in the riverside areas where many original
wetlands and farmlands were converted to urban land. The urban
areas along the river have been expanding significantly over the
years (Figures 1C, D). The study focused on three typical areas:
riverside urban ground, riverside road slopes, and ancient landslides
in the reservoir area. The riverside urban ground had undergone
significant urbanization, with original river wetlands being filled
and large-scale infrastructure construction. The riverside road
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FIGURE 2
Data processing flow using the SBAS-InSAR method.

slope area had undergone road expansion projects, changing
the original topography and geological structure. The ancient
landslide area in the reservoir represented a typical geological
disaster-prone area within the Three Gorges Reservoir, affected by
both water level changes and human activities. Human activities
in the study area were frequent, including urban construction,
road engineering, and agricultural activities, which, together with
natural factors, affected the stability of the surface. Especially
in the ancient landslide area, increased human activities might
have exacerbated surface instability. The operation of the Three
Gorges Reservoir changed the natural flow process of downstream
rivers, resulting in seasonal and daily regulation characteristics
of river flow (Zhang et al., 2016). The unique geographical
location, complex geological conditions, significant hydrological
characteristics, and intensive human activities of Fengjie County
made it an ideal place for studying surface subsidence and
deformation in the Three Gorges Reservoir area, providing an
excellent research platform for in-depth understanding of surface
dynamic processes in reservoir areas.

2.2 Data sources

In this study, we utilized multiple data sources to
comprehensively analyze surface subsidence and deformation in
the Three Gorges Reservoir area of Fengjie County. The primary
data consisted of 36 Single Look Complex (SLC) images acquired

from the Sentinel-1A satellite’s ascending orbit, provided by NASA’s
Synthetic Aperture Radar Data Center. These images covered the
period from 1 January 2020, to 31 December 2022, offering monthly
surface coverage data that provided valuable time series information
for our research.

To enhance the accuracy of our analysis, we incorporated
a 30-m resolution Shuttle Radar Topography Mission (SRTM)
Digital Elevation Model (DEM) obtained from https://search.asf.
alaska.edu/#/. This dataset played a crucial role in InSAR data
processing, enabling us to perform differential InSAR processing
and synthetic aperture radar offset tracking processing, thereby
eliminating the influence of the topographic phase. This step was
particularly important for accurate surface deformation analysis,
especially when studying the impact of water level changes
and rainfall.

To facilitate a comprehensive understanding of the
driving factors behind surface deformation, we also collected
relevant environmental data. Daily water level data of the
Yangtze River was obtained from the Hubei Provincial
Hydrological and Water Resources Center (http://113.57.190.
228:8001/web/Report/RiverReport). Additionally, we acquired
daily rainfall data from the National Centers for Environmental
Information (NCEI) of the National Oceanic and Atmospheric
Administration (NOAA) (https://www.ncei.noaa.gov/maps/daily/).
These environmental datasets enabled us to analyze the relationship
between hydrological factors and surface deformation patterns.
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2.3 SBAS-InSAR technology

The Small Baseline Subset InSAR (SBAS-InSAR) technique
has demonstrated significant advantages in monitoring ground
subsidence over large areas and extended time series (Zhao et al.,
2019). Based on the algorithm proposed by Berardino et al. (2002),
this technique processes multiple SAR images covering the same
area and arranged in chronological order.The theoretical framework
of this technique was based on the processing of N+1 SAR images
covering the same area and arranged in chronological order. The
number of differential interferograms (M) that can be generated
follows the relationship:

N+ 1
2
≤M ≤

N(N+ 1)
2

(1)

Equation 1 indicated that by differentially processing N+1 SAR
images covering the same area and arranged in chronological order
t0,…,ti,…,tN, M differential interferograms were generated. For any
pixel in the differential interferogram k (1,…, M), the following
equation applied:

δϕk(x, r) = φ(tB,x, r) −φ(tA,x, r)

≈ 4π
λ
[d(tB,x, r) − d(tA,x, r)]

≈ ϕdisp +ϕtopo +ϕatmo +ϕnoise

(2)

Equation 2 represented the composition of the interferometric
phase in pixel (x,r) of the kth interferogram generated by images
at tA and tB, where x and r were azimuth and range coordinates,
respectively. The phase was caused by the distance change between
the target and the radar along the LOS direction. Additionally,
ϕ was the observed interferometric phase, ϕdisp was the surface
deformation phase, ϕtopo was the topographic phase, ϕatmo was the
atmospheric phase, and ϕnoise was the noise phase.

Based on the above equation, a system of equations could be
defined with the number of SAR images N and the number of
differential interferograms M. Its matrix form could be expressed as
Equation 3:

Aφ = δϕ (3)

Where matrix A was an M×N dimensional approximate correlation
matrix. The phase-solving problem was converted to solving the
following Equation 4:

Bv = δϕ (4)

By performing singular value decomposition on matrix B,
the average phase rate v in the LOS direction within the
acquisition time of adjacent images was obtained it could be
expressed as the Equation 5:

vT = [
φ1

t1 − t0
, ...,

φi −φi−1

ti − ti−1
, ...,

φN −φN−1

tN−tN−1
]
T

(5)

Finally, by further solving the minimum norm least squares
solution of the obtained average phase rate, the cumulative
surface deformation within a specific time range could
be obtained (Li et al., 2022).

In our implementation process (Figure 2), we began with
comprehensive data preprocessing using ENVI software, where we

converted SAR images and precise orbit files into SLC format.
Following the processing framework established by Chang et al.
(2023), we cropped the SAR ascending orbit images using vector
files (shp) of the study area. To optimize computational efficiency,
we cropped the SAR ascending orbit images using vector files
(shp) of the study area. We then proceeded with interferogram
generation, creating 143 interferometric pairs based on a 90-day
time baseline threshold. These pairs underwent the removal of flat
ground and topographic phase errors, followed by adaptive filtering
of the differential interferograms.

Given the extensive vegetation coverage in Fengjie County, we
employed a specific phase unwrapping threshold of 0.2, carefully
selected based on coherence analysis of vegetation-covered areas to
balance data quality and usability, similar to the approach adopted
by Ye et al. (2024) in their study of reservoir landslides during
weather extremes. After phase unwrapping, we performed offset
tracking to estimate the displacement between image pairs, which
helped to ensure the accuracy of our deformation measurements.
The final stage of our analysis involved overlaying the processed
results with Google images for visual interpretation and combining
the deformation time series with water level and rainfall data.
This comprehensive analytical approach enabled us to examine
the relationships between environmental factors and surface
deformation patterns, providing valuable insights for geological
hazard assessment and prevention strategies. In this study, surface
deformation was expressed using negative values to indicate
downward ground movement (subsidence) and positive values to
indicate upward movement (uplift). This convention was standard
practice in InSAR deformation monitoring, where larger negative
values indicated more severe subsidence. This representation
effectively illustrated the spatial distribution characteristics
and temporal evolution patterns of ground subsidence in the
study area.

2.4 Analysis of typical surface deformation
areas

In this study, we selected three representative deformation areas
to deeply explore the ground subsidence situation in the Three
Gorges Reservoir area of Fengjie County.These three areas included:
ground subsidence in areas along the Yangtze River, subsidence
phenomena on road slopes along the river, and deformation
characteristics of ancient landslides in the reservoir area. Through
this approach, we aimed to comprehensively understand ground
subsidence behavior under different geological and anthropogenic
conditions and explore potential factors influencing these
deformations. For ground subsidence in areas along the Yangtze
River, we conducted a detailed quantitative analysis of cumulative
deformation data from 2020 to 2022. Through this analysis, we
were not only able to assess the magnitude of subsidence rates but
also identify the spatial distribution characteristics of subsidence.
To enhance the accuracy of the analysis, we compared Google
historical satellite images with subsidence data, paying particular
attention to subsidence in river wetland areas. This comparison
revealed the potential contribution of large-scale infrastructure
construction, such as road and bridge construction, as well as river-
filling activities to ground subsidence. Additionally, we analyzed
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rainfall data and reservoir water level data to explore how these
hydrological factors interacted with ground deformation. We found
a significant temporal correspondence between the rapid decline
in reservoir water levels before the rainy season and accelerated
ground subsidence, suggesting that changes in reservoir water
levels might be an important factor affecting ground subsidence.
For subsidence on road slopes along the river, we conducted a
similar analysis. By comparing deformation data from different
time periods, we were able to track changes in subsidence rates and
identify potential subsidence hotspots. Furthermore, we conducted
a comparative analysis of historical images to verify our observations
and further understand the impact of road construction and other
human activities on slope stability. Finally, we conducted in-depth
research on the cumulative deformation of ancient landslides in
the Three Gorges Reservoir area. Through detailed analysis of
deformation data in landslide areas, we were able to assess the
stability of landslide bodies and identify potential risks of landslide
recurrence. This analysis was crucial for understanding landslide
mechanisms and formulating effective disaster prevention and
mitigation measures.

2.5 Application and evaluation of machine
learning and deep learning models

To evaluate and compare the performance of different machine
learning models in predicting surface deformation, we selected
five widely used algorithms: Random Forest (RF), Extremely
Randomized Trees (ERT), Gradient Boosting Decision Tree
(GBDT), Support Vector Regression (SVR), and Long Short-Term
Memory (LSTM). These models were applied to three areas with
different geological characteristics: urban ground deformation
along the river (Area1), road slope subsidence along the river
(Area2), and ancient landslide deformation in the reservoir area
(Area3). For model training and testing, we divided our SBAS-
InSAR-derived time series data (2020–2022) using a temporal
split strategy with a 7:3 ratio. Specifically, the first 70% of the time
series data (approximately from January 2020 to March 2021) was
used as the training set, while the remaining 30% (approximately
from April 2021 to December 2022) served as the test set. This
temporal splitting approach was chosen to evaluate the models’
ability to predict future deformation based on historical patterns.
We adopted six evaluation metrics to comprehensively measure
model performance: Root Mean Square Error (RMSE), Coefficient
of Determination (R2), Mean Absolute Error (MAE), Pearson
Correlation Coefficient, Mean Absolute Percentage Error (MAPE),
and Symmetric Mean Absolute Percentage Error (SMAPE). These
metrics were chosen because they could reflect the prediction
accuracy and fitting degree of the models from different angles.
For each area, we trained all five models using the same input
features and target variables. Input features for the prediction
models included: (1) temporal sequence data consisting of historical
deformation measurements at 24-day intervals from Sentinel-1
InSAR observations; (2) standardized differential deformation rates
calculated using sequential measurements to capture the rate of
change; and (3) contextual spatial information preserved through
maintaining the pixel-wise relationship in the InSAR data matrices.

The target variable was the pixel-wise surface deformation rate
measured in mm/year, derived from SBAS-InSAR processing of
36 Sentinel-1 images. For model training, we used a temporal
sliding window of five timesteps to predict the next timestep’s
deformation. The dataset was split with a 7:3 ratio, where the
first 70% of the chronological sequence (approximately from
January 2020 to March 2021) was used for training, and the
remaining 30% (approximately from April 2021 to December 2022)
for testing. To handle data imbalance and ensure computational
efficiency, we applied systematic samplingwhen the training samples
exceeded 20,050 points. The hyperparameters for each model were
optimized using grid search with the following ranges: for SVR
(gamma = [0.1,0.5,1], C = [1,10,100], epsilon = [0.01,0.05,0.1]);
for tree-based models (n_estimators = [50,100,150], max_depth
= [5,10,15]); and LSTM (hidden_units = [32,64,128], dropout_
rate = [0.1,0.2,0.3]). This comprehensive approach allowed us to
capture both the temporal dynamics and spatial characteristics of
the deformation process while maintaining model generalization.
After training was completed, we applied these models to the test
set and calculated the above six evaluation metrics. Additionally,
based on time series InSAR technology, long-term predictions
of ground deformation were made for the study area, using the
best prediction model for each area, with a period from January
2020 to August 2024. To assess the accuracy and uncertainty
of the model predictions, we conducted a detailed comparative
analysis of observed data and predicted data. By comparing the
deformations in the three areas, we could see the prediction
performance of the models in different areas and the changes in
prediction uncertainty over time.

3 Results

We used the SBAS-InSAR time series method to detect active
slopes in the area and identified numerous subsidence areas.
Our monitoring results revealed widespread significant ground
subsidence in the study area (Figure 3). For comparison and analysis,
we selected three significant deformation areas as shown in the
figure, namely, ground subsidence in areas along the Yangtze River,
subsidence on road slopes along the river, and deformation of
ancient landslides in the reservoir area.

In this study, we analyzed deformation rates at different
locations, including urban areas, road slopes, and ancient landslide
areas. After statistical analysis, the average deformation rate
in urban areas was −3.48 ± 2.91 mm/yr (mean ± standard
deviation); the average deformation rate on road slopes was −5.19
± 3.62 mm/yr; while the average deformation rate in ancient
landslide areas was −6.02 ± 4.55 mm/yr. These data reflected
that the deformation rate in ancient landslide areas was more
significant compared to urban areas and road slopes, suggesting
that ancient landslide areas might have higher geological activity
frequency or more sensitive environmental response characteristics.
Moreover, the difference in standard deviations indicated the
variability of deformation rates at different locations, with the
ancient landslide areas showing the greatest variability, which might
be related to the complexity of geological structures and the
variability of environmental factors.
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FIGURE 3
Deformation in three different locations of the study area. (A) Spatial distribution of deformation in riverside urban ground, riverside road slopes, and
ancient landslides in the reservoir area. (B) Comparison of deformation in the three locations, where the horizontal line and dot in the box plot
represent the median and mean values, respectively. (C) Frequency distribution of deformation in the three locations.

3.1 Urban ground deformation along the
river

The cumulative deformation of urban ground along the river
over time could be seen in the figure (Figure 4). We could see that
before the rainy season each year, such as 1 March 2020, 8 March
2021, and 15March 2022, the cumulative deformation values inmost
areas along the river were >1mm, with no significant subsidence;
after entering the rainy season, such as 5 June 2020, and 12 June
2021, the cumulative deformation values in some areas of this region
decreased to −22 ∼ -17mm, with the rest also showing obvious
subsidence compared to March; after the rainy season, such as 21
September 2020, 16 September 2021, and 11 September 2022, the
ground showed even more obvious subsidence, with cumulative
deformation in some areas along the river dropping below −42 mm.
The cumulative grounddeformationwould rise in the following year.

We found that the average subsidence rate in urban areas
along the river reached −3.484 ± 2.914 mm/yr, which had already
exceeded the average subsidence rate in this area in recent
years (Figures 5A, B). By comparing Google historical satellite
images obtained in 2013 (Figure 5C) and 2020 (Figure 5D),
we could see that significant subsidence areas were mainly
distributed in the previous river wetland areas, indicating that this
intensified subsidence was likely related to large-scale infrastructure
construction and associated river filling in recent years. In
addition, we also compared and analyzed the relationship between
cumulative deformation data in this area and rainfall data
obtained from meteorological stations, as well as reservoir water
level data (Figure 5E). From February to June 2020, the reservoir
water level in this area showed a rapidly declining trend, dropping
from 175 m to 145m, with its subsidence rate ranging from 0

to 10 mm/yr. However, a significant turning point occurred in
July 2020, with the reservoir water level rising to about 160 m.
Around September 2020, the reservoir water level experienced
some fluctuations, ranging between 152.5 m and 167.5m, with the
subsidence rate stabilizing at around −11 mm/yr. Until October, the
water level began to rise rapidly again, and from the end of the year
to February of the following year, the water level remained stable at
around 175 m. Subsequently, the reservoir water levels in 2021 and
2022 also maintained similar patterns of change as in 2020.

We found in our research that before entering the rainy season,
there would be a relatively rapid decline in reservoir water levels,
such as from February to June 2020, January to June 2021, and
January toMay 2022.During these periods, the reservoirwater levels
all showed a declining trend, mainly due to flood discharge for flood
prevention. Interestingly, we observed that during the same periods
of rapid water level decline, ground deformation monitoring data
also reflected a significantly accelerated subsidence process in this
area. Taking these same periods, we found that most subsidence
increased with time and rising water levels, with subsidence rates
dropping from around -7 mm/yr to around −16 mm/yr.This finding
suggested that the lower the reservoir water level, the faster the
ground subsidence rate. To explain this, we proposed that when
reservoir water levels decreased, groundwater levels also decreased,
leading to significant compaction and subsidence of certain strata
above the decompression zone. However, since subsidence rates
were also affected by other factors such as local geological conditions
and rainfall infiltration, the correlation between water level changes
and ground subsidence was not very high. In comparison, we found
that the correlation between rainfall and ground subsidence rates
was not obvious, with almost no significant ground deformation
observed before and after entering and leaving the rainy season.
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FIGURE 4
Cumulative deformation at equal time intervals in Deformation Area 1 (urban area).

3.2 Road slope deformation along the river

Our study found that another significant subsidence area was
located on the slopes after road construction along the river
(Figures 7A, B). The cumulative deformation of road slopes along
the river over time could be seen from the figure (Figure 6). Taking
2020 as an example, in March, the cumulative deformation in
this area was >1mm, with no significant overall subsidence. After
entering the rainy season, the deformation became more apparent
in June and September, with cumulative deformation dropping to
−22 ∼ -17mm, only recovering slightly in December. The years 2021
and 2022 maintained the same pattern of change but with varying
degrees of change.

During the investigation period, the average subsidence rate in
this area reached −5.19 ± 3.62 mm/yr (Figures 7A, B). It was worth
noting that, from the overall trend, this area showed continuous
ground subsidence during the study period (Figure 7E). Specifically,
in early 2020, the deformation rate in this area fluctuated in the
range of −1.5 to −2.0 mm/yr. However, a significant subsidence
event occurred in May-August 2020, with the deformation rate
plummeting to about -9 mm/yr. After September 2020, the
deformation rate rebounded somewhat but still maintained at a
relatively high level of −7 to -9 mm/yr. From January to April 2021,
the deformation rate further rebounded to around -2 mm/yr. But
in May 2021, a larger-scale subsidence event occurred, with the
deformation rate again plunging sharply to a low of −18 mm/yr.
Although it rebounded afterward, it still maintained at a relatively
high level of −10 to −15 mm/yr. Entering 2022, the deformation
rate improved somewhat, but still maintained in the range of −5 to
−10 mm/yr most of the time.

Comparative analysis of historical images revealed that in 2013,
the road in this area had not yet been expanded, while in 2020, the

road was significantly widened (Figures 7C, D). We speculated that
the road construction at the foot of the slope changed the original
foundation soil structure and groundwater flow state, which was
the main reason for significant subsidence in this area. Moreover,
from the rainfall data, the overall rainfall situation in 2020 and
2021 was not abnormal and did not show an obvious corresponding
relationship with changes in subsidence rates. Especially before the
two significant subsidence events in May 2020 and May 2021, there
was no particularly heavy rainfall, with rainfall mostly below 5 mm.
Therefore, these two subsidence events were not much related to
short-term rainfall changes. Instead, during these two events, the
reservoir was in the process of rapid water level decline, dropping
rapidly from 175 m to 145m, and water level change should be
the main factor inducing subsidence. In fact, in 2022, the Yangtze
River experienced prolonged severe drought, with water levels at
low levels. After the rainy season, the water level remained in the
range of 145m–160 m for a long time, which could also explain
why this area had been in a state of high subsidence during this
period. Once the water level rose, the subsidence condition in this
area would improve accordingly.This finding differed from previous
understandings, where past studies generally found that the rise in
reservoir water levels would increase groundwater pressure, thereby
leading to more severe soil subsidence.

3.3 Ancient landslide deformation in the
Reservoir area

The cumulative deformation of ancient landslides in the Three
Gorges Reservoir area showed the same periodic pattern as the
previous two study areas. Before each year’s rainy season, the
deformation was mostly >1mm, not very significant; after entering
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FIGURE 5
Deformation Area 1 (urban ground subsidence along the river). (A) Deformation rate map overlaid on topographic contours. (B) Deformation rate map
overlaid on Google imagery. (C) Image of the area in 2013. (D) Image of the area in 2020. (E) Relationship between subsidence rate, rainfall, and water
level changes in this area from 2020 to 2022, and the gradually darkening color represents the average deformation rate of the region, where darker
colors indicate later periods.

the rainy season, the cumulative deformation suddenly decreased,
with most areas showing negative values; until the end of the year
and the beginning of the next year, it increased somewhat. However,

overall, the cumulative deformation in this ancient landslide area
increased year by year over these 3 years (Figure 8), with more and
more areas falling into the range of −22 ∼ -17 mm.

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2024.1503634
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yang et al. 10.3389/feart.2024.1503634

FIGURE 6
Periodic cumulative deformation in Deformation Area 2 (slope subsidence after road construction along the river).

The average deformation rate of ancient landslides in the Three
Gorges Reservoir area was significantly faster than the previous
two locations, reaching −6.02 ± 4.55 mm/yr, showing a trend of
continuous accelerated subsidence.The annual average deformation
rate had significantly increased from −5 mm/yr before 2020 to
over −15 mm/yr in 2022 (Figure 9D). The subsidence was most
significant in the middle part of the landslide body (Figures 9A, B),
which might be related to the gradually increasing frequency
of human activities (Figure 9C). The rainfall distribution was
consistent with the seasonal changes in deformation rates. During
periods of higher rainfall, the absolute values of deformation rates
were also larger, such as around July in 2020, 2021, and 2022,
when rainfall reached as high as 5mm, with 2022 even reaching
12.5 mm.The corresponding subsidence rates for these periods were
-5 mm/yr ∼ -10 mm/yr, −10 mm/yr ∼ -20 mm/yr, and −17.5 mm/yr
∼ -22.5 mm/yr respectively, all being themaximum subsidence rates
for the entire year, indicating that rainfall was one of the important
factors affecting ground deformation in this area. The changes in

reservoir water levels were generally consistent with rainfall and
deformation rates, also influencing ground deformation.

3.4 Performance evaluation of machine
learning models in predicting ground
deformation in the Three Gorges Reservoir
area: multi-model multi-metric
comparative analysis

The performance of five machine learning models (RF, ERT,
GBDT, SVR, and LSTM) in three different ground deformation
areas was evaluated through six indicators.The RMSE values ranged
from 4.68 to 10.11, with LSTM consistently showing the lowest
RMSE across all areas, especially in Area 1 (7.52) and Area 2
(4.68) (Figure 10A). The coefficient of determination (R2) varied
between 0.45 and 0.75, with LSTM performing best in Area 2
(0.75) but poorly in Area 1 (0.45) (Figure 10B). The MAE ranged
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FIGURE 7
Deformation Area 2 (slope subsidence after road construction along the river). (A) Significant subsidence area combined with Google imagery. (B)
Subsidence area combined with elevation contours. (C) Image of the area in 2013. (D) Image of the area in 2020. (E) Relationship between subsidence
rate, rainfall, and temperature changes in this area from 2020 to 2022, the gradually darkening color represents the average deformation rate of the
region, whereas darker colors indicate later periods.

from 1.88 to 5.58, with GBDT performing best in Area 2 (1.88),
while LSTM performed best in Area 1 (4.58) (Figure 10C). The
Pearson correlation coefficient ranged from 0.67 to 0.87, with
LSTM achieving the highest correlation in Area 2 (0.87) but the
lowest in Area 1 (0.67) (Figure 10D). The MAPEshowed significant
differences between models and areas, with values between 85.29%
and 250.88%. Notably, GBDT performed best in Area 2 (85.29%),
while LSTM excelled in Area 1 (126.86%) (Figure 10E). The
Symmetric Mean Absolute Percentage Error (SMAPE) ranged from
58.8% to 91.1%, with LSTM consistently achieving the lowest
SMAPE across all areas, especially in Area 1 (58.8%) and Area
3 (79.27%) (Figure 10F). Overall, these results indicated that model
performance varied significantly across different areas and metrics,
with LSTM and GBDT generally outperforming other models,
especially in Areas 1 and 2, while performance in Area three was
relatively more consistent across models.

Figure 11 showed the error band plots of observed and predicted
deformations for urban ground deformation along the river (Area
1), road slope deformation along the river (Area 2), and ancient
landslide deformation in the reservoir area (Area 3). These areas
used the best-performing GBDT, LSTM, and LSTM models for
prediction, respectively. In urban ground deformation along the
river, observed deformation gradually decreased from 0 mm to
about −10 mm, while predicted deformation decreased to −15 mm,

showing a slight overestimation trend in the prediction data.
The standard deviation increased in the later stages of the study,
indicating greater uncertainty in the predictions. For road slope
deformation along the river, observed deformation decreased
from 0 mm to −15 mm during the study period, while predicted
data decreased to nearly −20 mm, and the standard deviation of
predictions increased significantly in the later stages, reaching about
15 mm, indicating greater uncertainty in the model’s predictions
for this area. In ancient landslide deformation in the reservoir
area, observed data remained relatively stable around −10 mm,
while predicted deformation decreased to below −30 mm, with
the standard deviation of predictions reaching 25 mm in the later
stages, far higher than the observed data, reflecting the most
significant overestimation trend of subsidence in the model for
ancient landslide deformation in the reservoir area (see Figure 11).

Figure 12 showed a comparison of the median observed and
predicted deformations for the three areas. In urban ground
deformation along the river, the observed median was −8.93 mm,
while the predicted median was −10.58 mm, with a small difference
between the two. For road slope deformation along the river,
the observed median was −9.49 mm, while the predicted median
was −13.19 mm, with a difference of 3.7 mm, showing a trend
of continued subsidence in the model. For ancient landslide
deformation in the reservoir area, the observed median was

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2024.1503634
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yang et al. 10.3389/feart.2024.1503634

FIGURE 8
Periodic cumulative deformation in Deformation Area 3 (ancient landslide deformation) at equal time intervals.

−8.84 mm, while the predicted median was −13.79 mm, with a
difference of 4.95 mm, indicating significant overestimation in
the model’s predictions. The standard deviation of predictions

for the reservoir area was 5.79 mm, higher than the observed
4.81 mm, indicating greater variability and uncertainty in the
model predictions for this area.
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FIGURE 9
Deformation Area 3 (ancient landslide deformation). (A) Contour map of the ancient landslide body. (B) Orthophoto of the ancient landslide body. (C)
Images of the area in 2004, 2010, and 2018, show frequent human activities in the central part. (D) Relationship between subsidence rate, rainfall, and
water level changes in this area from 2020 to 2022, and the gradually darkening color represents the average deformation rate of the region, where
darker colors indicate later periods.

4 Discussion

4.1 Reservoir water level decline
accelerates ground subsidence

In this study, we investigated the impact of reservoir water
level adjustments on the subsidence behavior of riverside cities,
slope areas along riverside roads, and ancient landslides. We found
a significant negative correlation between the two, revealing the
critical role of reservoir water level adjustments in triggering
and accelerating ground subsidence - the lower the reservoir
water level, the faster the ground subsidence rate (Figures 5E,
7E). We observed that artificially lowering the reservoir water
level before the rainy season for flood control exacerbated
ground subsidence in riverside areas. For riverside urban areas,
this phenomenon was particularly evident on slopes after the
construction of riverside roads. During two periods of rapid water
level decline in May 2020 and May 2021 (Figure 5E), severe
subsidence events occurred in this area. The decline in water
level led to a lowering of groundwater levels around the reservoir,

reducing pore water pressure in the strata, increasing effective
stress between soil particles, and resulting in soil compression and
subsidence. This mechanism explains why reservoir water level
adjustments have a significant impact on subsidence in riverside
areas, not only verifying Song et al., 2018 findings on increased
landslide activity due to reservoir water level decline, but also
extending it to broader riverside areas including urban ground
and road slopes. Furthermore, our study deepened Guzzetti et al.,
2022 view on the impact of hydrological changes on ground
stability by revealing how human-controlled reservoir water level
changes can become a key factor affecting ground subsidence,
while also considering changes to geological structures due to
human activities (such as road construction), thus providing a
more comprehensive framework for understanding subsidence
phenomena in riverside areas.

However, thismechanism differs from previous understandings.
Past research generally believed that rising reservoir water levels
increase groundwater pressure, leading to more severe soil
subsidence, and that water level fluctuations soften the rock and
soil on the shore, inducing groundwater fluctuations and reducing
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FIGURE 10
Performance evaluation of five machine learning models (RF, ERT, GBDT, SVR, and LSTM) in three surface deformation areas. (A) Root Mean Square
Error (RMSE). (B) Coefficient of Determination (R2). (C) Mean Absolute Error (MAE). (D) Pearson Correlation Coefficient. (E) Mean Absolute Percentage
Error (MAPE). (F) Symmetric Mean Absolute Percentage Error (SMAPE). Area one represents riverside urban ground deformation, Area two represents
riverside road slope subsidence, and Area three represents ancient landslide deformation in the reservoir area.

the shear strength of shore rock and soil, affecting landslide stability.
Our findings may be related to the special geological conditions
of the area (Sun et al., 2019), such as the presence of different
types and thicknesses of soil layers, and different degrees and
directions of cracks. These conditions may affect the process and
speed of groundwater flow and soil consolidation. Taib et al.
(2017) study also showed that soil compactness affects pore
water pressure and thus the speed of water dissipation. Therefore,
we suggest that the potential impact on ground subsidence
should be fully considered when conducting reservoir scheduling
management.

Through in-depth analysis of the subsidence phenomenon on
the slopes of riverside roads, we speculate that this difference
may be related to the following aspects: First, the area is
located on slopes after the construction of riverside roads, and
its soil structure and permeability may be different from other
areas, leading to different response modes to water level changes
(Taib et al., 2017; Luo et al., 2022); Second, there may be
a certain degree of landslide or collapse phenomenon in the
area, making it more susceptible to the effects of gravity and
shear forces. When the reservoir water level drops, these forces
increase, thus accelerating ground subsidence (Stark et al., 2005;
Sun et al., 2019); In addition, there may be some degree of
non-linear or lag effect in the area, making its reaction to
water level changes not immediate or synchronous. For example,
before the two significant subsidence events in May 2020 and
May 2021 (Figure 7E), there was no particularly large rainfall

or water level change. However, there may be some cumulative
or delayed influencing factors before or after, leading to these
two sudden subsidence events, which is similar to some previous
research results (Chen et al., 2018).

In addition to the direct impact of rainfall, the seasonal
adjustment of reservoir water levels also had a significant impact
on subsidence in this area. The lowering of water levels not only
affected groundwater levels but may also have altered slope stability,
especially in cases where human activities such as road construction
or modification had already changed the original topography and
geological conditions (Zhang et al., 2020).

Analysis of ancient landslides in the Three Gorges reservoir
area revealed a trend of continuous accelerating subsidence,
contrasting sharply with conclusions drawn from short-term
data previously. The mechanism of this continuous subsidence
may involve long-term changes in groundwater flow patterns
due to reservoir water level adjustments. Additionally, subsidence
in ancient landslide areas also interacts complexly with
factors such as rainfall, geological conditions, and human
activities (Xia et al., 2013).

Future research should focus on developing more complex
models to explain the complex interactions between water
level fluctuations, geological conditions, and human activities;
conducting long-term monitoring studies to better understand
the cumulative impact of water level adjustments on ground
stability; exploring potential mitigation strategies to reduce the
negative impact of necessary water level adjustments on ground
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FIGURE 11
Surface deformation prediction results for three typical areas. Blue lines represent observed values, red lines represent predicted values, and colored
bands indicate prediction error ranges. Note: Negative values indicate ground subsidence in millimeters (mm).

subsidence; and studying the broader environmental and ecological
impacts of these ground deformation processes in reservoir
areas. By addressing these issues, we can further improve our
understanding of the complex dynamics in areas adjacent to
reservoirs and develop more effective management strategies for
these critical areas.

4.2 Human activities exacerbate natural
subsidence processes in riverside cities

Our results indicate that complex interactions between
natural and anthropogenic factors drive subsidence, presenting
significant seasonal variations and spatial heterogeneity. The
average subsidence rate observed in our study area was −3.484 ±
2.914 mm/yr, which aligns with the trend of increasing subsidence
rates inmany urban deltas and coastal areas globally (Edmonds et al.,
2020). The spatial distribution of subsidence is concentrated

in former wetland areas that are currently undergoing rapid
urbanization, suggesting that human activities play a crucial role
in exacerbating natural subsidence processes. Similar patterns have
been observed in other rapidly developing delta regions, where
infrastructure development and wetland reclamation have led to
accelerated subsidence (Paszkowski et al., 2021).

Our analysis revealed a distinct seasonal pattern in subsidence
rates, with the most significant subsidence occurring during
and after the rainy season. This temporal variation appears to
be closely related to reservoir water level changes, with lower
water levels corresponding to higher subsidence rates (Figure 5E).
This relationship can be explained by the compression of the
aquifer system due to reduced pore pressure caused by lowering
groundwater levels (Sharifi et al., 2024). In our study, the impact
of rainfall on subsidence rates was less pronounced, contrasting
with findings from some other regions. This difference may be
attributed to local geological conditions or the dominant role
of the managed water system (i.e., the reservoir) in controlling
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FIGURE 12
Box plot comparison of observed and predicted deformation results
for three surface deformation areas (riverside urban ground
deformation, riverside road slope deformation, and ancient landslide
deformation in the reservoir area). The blue and red solid lines
represent observed and predicted results, respectively, while the
horizontal lines and dots in the box plots represent the median and
mean values of deformation, respectively.

groundwater levels. However, it is worth noting that rainfall
patterns can indirectly influence subsidence by affecting reservoir
management strategies (Chan et al., 2024).

Spatial analysis of subsidence patterns, particularly the
concentration of high subsidence rates in recently developed
urban areas, highlights the key role of land-use changes in driving
subsidence. This observation is consistent with findings from
other studies that have documented increased subsidence rates
following the conversion of natural wetlands or agricultural lands
to urban areas (Machowski et al., 2016). The replacement of
permeable surfaces with impervious urban infrastructure may alter
local hydrology and sediment dynamics, potentially exacerbating
subsidence.

Our findings on the relationship between river flow and
subsidence rates are particularly noteworthy. The observation of
reduced subsidence rates during periods of higher river flow
suggests that maintaining stable river flow may be a potential
strategy for mitigating subsidence in riverside urban areas. This
aligns with the findings of Sharifi et al. (2024), who found that
river flow can help prevent ground subsidence in urban areas by
maintaining groundwater levels and potentially promoting sediment
deposition.

A comparison of satellite images from 2013 to 2020
revealed significant land-use changes in subsidence-prone
areas, highlighting the rapid pace of urban development and
its potential consequences. This rapid transformation of the
landscape not only directly contributes to subsidence through
increased loading and groundwater extraction but also reduces
the area’s natural resilience to withstand and adapt to subsidence
processes (van Bijsterveldt et al., 2023).

In conclusion, our study highlights the multifaceted nature of
ground subsidence in riverside cities, emphasizing the need for an
integrated approach to managing subsidence that considers both
natural and anthropogenic factors. Future research should focus
on developing predictive models that incorporate these complex
interactions to better inform urban planning and water resource
management strategies for subsidence-prone areas.

4.3 Progressive slope subsidence triggered
by road expansion

The subsidence phenomenon we observed was closely related to
road expansion projects. By comparing images from 2013 to 2020, we
found that the roadwas significantlywidened(Figures 7C, D), and this
engineering activity altered the original foundation soil structure and
groundwater flow patterns, becoming the main cause of significant
subsidence. During the investigation period, the average subsidence
rate in this area reached −5.19 ± 3.62 mm/yr (Figures 7A, B). This
finding is highly consistent with the results of Huang et al. (2022).
They pointed out that engineering excavation is the main trigger for
the reactivation of ancient landslides, while rainfall is a contributing
factor. Our study further confirms this view, while also highlighting
the need to consider the potential impact on slope stability when
conducting infrastructure construction.

The subsidence patterns we observed also showed significant
spatial heterogeneity and temporal variation characteristics
(Figure 7E). This is consistent with the findings of Gao et al. (2022).
They found that during the excavation and support process of
double-structured slopes when local displacements and plastic
strain concentration zones appear on the slope surface, the reference
significance of extreme values and safety factors decreases. This
point was confirmed in our study, especially in the two significant
subsidence events observed in 2020 and 2021. These events were
concentrated in specific areas, indicating that slope excavation may
lead to stress redistribution and local instability.

Notably, our study also suggests that the subsidence process
after slope excavation may present progressive characteristics. As
Jiang et al. (2015) found in their study of the Jinping I Hydropower
Station, slope excavationmay lead to progressive failure.The pattern
of subsidence rate changes over time that we observed (Figure 6)
supports this view, especially the sustained high subsidence state
during the prolonged drought in 2022. From an engineering practice
perspective, our findings have important implications for high-
slope excavation and reinforcement. Chen et al. (2016) emphasized
the importance of developing new engineering techniques and
processes in large-scale slope reinforcement projects. Our research
results provide an important scientific basis for the development
and application of these techniques, especially in considering the
long-term stability impact of slope excavation.

Overall, our study deepens the understanding of themechanism
by which slope excavation affects slope subsidence, providing
valuable insights for the planning, design, and risk management
of water conservancy projects. Future research can further explore
the interaction between slope excavation, water level fluctuations,
and geological conditions, and how these factors jointly affect the
long-term stability of slopes.

4.4 Accelerated deformation of ancient
landslides in the reservoir area: combined
effects of water level changes, drought,
and human activities

The cumulative deformation of ancient landslides we observed
showed a clear periodic pattern, with a significant correlation
between landslide activity and the reservoir impoundment process
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(Tang et al., 2019). Our study further confirmed this, especially
during the rainy season and from the end of the year to the
beginning of the next year, when cumulative deformation showed
significant changes (Figure 8). This periodic change may be related
to reservoir water level fluctuations and the seasonal distribution
of rainfall, which is consistent with the findings of Li et al. (2019),
who emphasized that water level fluctuations and rainfall are the two
main factors affecting landslide occurrence.

We also found that the average deformation rate of ancient
landslides showed an accelerating trend, significantly increasing
from −5 mm/yr in 2020 to over −15 mm/yr in 2022 (Figure 9D).
This accelerating trend is consistent with the drive-resistance model
proposed by Zou et al. (2021). They pointed out that periodic water
level fluctuations affect slope stability, and annual displacement
“jumps” are related to the outward seepage forces generated during
water level decline periods.

Notably, the extreme drought event that occurred in 2022 may
have exacerbated this trend (Figure 9D). Long-term low water level
conditions may lead to significant changes in pore water pressure
within the landslide body, further increasing landslide instability.
This observation highlights the potential impact of extreme
climate events on landslide dynamics, while also emphasizing the
importance of considering climate change factors when assessing
landslide risks. Furthermore, we noticed that subsidence was most
significant in the middle part of the landslide body (Figures 9A, B),
which may be related to the increasing frequency of human
activities (Figure 9C). This finding emphasizes the important role
of human activities in landslide deformation, which echoes the
research results of Hill et al. (2024). They pointed out that human
modifications to the environment, such as vegetation removal,
agricultural activities, and increased slope gradients, may amplify
earthquake-induced landslide hazards.

Our study also revealed the important influence of rainfall on
ancient landslide deformation. During periods of high rainfall, the
absolute values of deformation rates were also high, such as the high
subsidence rates of −17.5 mm/yr to −22.5 mm/yr corresponding
to high rainfall around July 2022. This is consistent with the
research results of Yao et al. (2019), who found that most of the
displacement of the Baijia Bao landslide occurred during the rainy
season and the annual drawdown period of the reservoir. However,
our study further suggests that the impact of rainfall may change
over time, which is consistent with the findings of Song et al. (2018),
who pointed out that the increase in landslide activity is mainly
dominated by reservoir water level decline rather than rainfall.

It is worth noting that the deformation characteristics we
observed may be influenced by complex interactions of multiple
factors. Reservoir water level is the main driving factor for
deformation, while rainfall may promote deformation during
periods of high water levels (Huang et al., 2020). From the
perspective of long-term stability, our research results have
important implications for assessing and managing landslide risks
in the Three Gorges reservoir area. Slow-moving landslides,
although rarely causing direct loss of life (Lacroix et al., 2020),
may lead to significant damage to infrastructure and sometimes
suddenly transform into rapidly moving landslides. Therefore, our
findings provide an important basis for assessing the long-term
behavior and potential risks of landslides. Notably, there is an
important limitation in our monitoring approach that should be

addressed. Since we only used ascending Sentinel-1 data, our
measurements might underestimate the horizontal displacement
component (Chang et al., 2022), particularly in ancient landslide
areas where slope-parallel movements could be more significant
than vertical subsidence. This limitation suggests that future studies
should combine descending orbit data or othermonitoringmethods
to obtain a more complete characterization of landslide movement
patterns, as demonstrated by Chang et al. (2024) in their study of
slow-moving landslides in vegetated terrain.

4.5 LSTM model demonstrates superior
performance in predicting surface
deformation in the three gorges reservoir
area

This study applied four machine learning models (RF, ERT,
GBDT, and SVR) and one deep learning model (LSTM) to
predict and evaluate the performance of deformation in different
surface deformation areas of the Three Gorges reservoir area.
The results showed significant differences in model performance
across different regions and evaluation metrics, with LSTM and
GBDT performing excellently in most cases. In terms of prediction
accuracy, the LSTM model performed best on metrics such as
RMSE and SMAPE, especially in the areas of riverside urban
grounddeformation and riverside road slope deformation.However,
we also noted that LSTM’s performance was not as good as
other models in some metrics and regions. For example, in
terms of R2, LSTM performed relatively poorly in the riverside
urban ground deformation area. This difference may reflect the
complexity of underlying mechanisms and influencing factors
in different deformation areas. Reservoir landslides often exhibit
stepped deformation characteristics, which pose challenges for
prediction models (Jiang et al., 2024). Therefore, future research
could consider combining physical mechanisms and deep learning
methods to better capture this complex deformation behavior.

The GBDT model performed excellently on some metrics,
especially in terms of MAE and MAPE. This suggests that
GBDT may have advantages in handling outliers and non-linear
relationships. When predicting the development degree of natural
fractures in coal seam reservoirs, tree-based ensemble learning
methods (such as random forest and XGBoost) were also found to
have high prediction accuracy (Wang et al., 2024). This inspires us
to consider combining the advantages of multiple models in future
research, such as the method combining multi-temporal InSAR
(MT-InSAR) and gated recurrent units (GRU) (Zhou et al., 2024).

In the time series analysis of prediction results, we found
differences in prediction trends among different deformation areas.
Particularly in the reservoir ancient landslide deformation area,
the model significantly overestimated the subsidence trend. This
overestimation may be related to the complex geological conditions
and hydrological factors in the area. Hill et al.'s study pointed out
that for non-periodic signals or predictions of single measurement
points, simple extrapolation methods may sometimes be superior
to complex time series prediction methods (Hill et al., 2021).
Therefore, when dealing with complex geological environments, it
may be necessary to incorporate more geological and hydrological
information to improve the model’s predictive ability.
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To improve the reliability of long-term predictions, future
research could consider introducing more auxiliary data, such
as combining environmental factors like rainfall, groundwater,
and lake area changes as proposed by Radman et al. (2021). The
methods and results of this study provide new ideas for large-scale,
long-term surface deformation monitoring and prediction. The
semi-supervised learning method proposed by Tiwari and Shirzaei
provides the possibility for automatic detection of deformation
hotspots in InSAR data (Tiwari and Shirzaei, 2024). Combined
with this method, our model may achieve a larger-scale and
more efficient surface deformation early warning system in the
future. Meanwhile, the deep autoencoder architecture developed
by Rouet-Leduc et al. provides new approaches for autonomously
extracting millimeter-level deformation signals from InSAR
time series (Rouet-Leduc et al., 2021), which may help improve
the sensitivity of our model in handling minute deformations.

5 Conclusion

This study conducted a comprehensive analysis and prediction
of surface deformation in Fengjie County of the Three Gorges
reservoir area by applying SBAS-InSAR technology and various
machine learning models. The research results revealed complex
surface dynamic processes in the region, especially in key areas
such as riverside urban ground, riverside road slopes, and
ancient reservoir landslides. Among these, the ancient reservoir
landslide area showed the most significant subsidence, with an
average deformation rate of −6.02 ± 4.55 mm/yr, far higher than
other areas. We found that factors such as reservoir water level
adjustments, rainfall, geological conditions, and human activities
jointly influence surface deformation. Particularly noteworthy is
the significant negative correlation between reservoir water level
decline and accelerated ground subsidence, which differs from
previous understandings and highlights the unique geological and
hydrological conditions of the area. At the same time, human
activities, especially urbanization processes and road expansion
projects, significantly exacerbated natural subsidence processes.
These findings not only deepen our understanding of surface
dynamics in the Three Gorges reservoir area but also provide
an important scientific basis for reservoir management and
urban planning.

In terms of applying prediction models, this study compared
the performance of various machine learning and deep learning
models, finding that the LSTM model performed best in most cases,
especially in handling complex time series data. However, the study
also found differences in the performance of different models across
various regions and evaluation metrics, reflecting the complexity
of surface deformation prediction. Notably, models tended to
overestimate when predicting deformation in the reservoir’s ancient
landslide area, highlighting the challenges of long-term prediction
in complex geological environments while also reflecting the
complexity and severity of deformation in landslide areas. Future
research should focus on integrating more geological, hydrological,
and environmental data, and developing hybrid models that
combine physical mechanisms and machine learning, to improve
the accuracy and reliability of predictions, especially for high-
risk areas such as landslides.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

JY: Writing–original draft, Conceptualization, Data curation,
Resources. PK: Writing–original draft, Writing–review and
editing, Conceptualization, Formal Analysis, Funding acquisition,
Methodology, Project administration, Software, Supervision,
Visualization. XD: Writing–original draft, Formal Analysis,
Investigation, Methodology, Software. YX: Writing–review and
editing, Conceptualization, Project administration, Supervision.
QG: Writing–review and editing, Methodology, Validation. YT:
Writing–review and editing, Resources, Supervision, Validation.
JF: Writing–original draft, Formal Analysis, Methodology,
Visualization. QJ: Writing–review and editing, Data curation,
Software.WW:Writing–review and editing,Methodology, Software.
RA: Writing–review and editing, Investigation, Methodology,
Supervision, Visualization.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the National Key Research and Development
Program of China (2022YFC3003205), the Opening fund of State
Key Laboratory of Geohazard Prevention and Geoenvironment
Protection (ChengduUniversity of Technology) (SKLGP2023K008),
Natural Science Foundation of Chongqing Municipal Science and
Technology Commission (CSTB2023NSCQ-MSX0990) and the
Hebei Natural Science Foundation (D2023403055).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Frontiers in Earth Science 19 frontiersin.org

https://doi.org/10.3389/feart.2024.1503634
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yang et al. 10.3389/feart.2024.1503634

References

Bao, Y., Gao, P., and He, X. (2015). The water-level fluctuation zone of Three
Gorges Reservoir—a unique geomorphological unit. Earth-Sci Rev. 150, 14–24.
doi:10.1016/j.earscirev.2015.07.005

Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E. (2002). A new algorithm
for surface deformation monitoring based on small baseline differential SAR
interferograms. IEEE Trans. Geosci. Electron. 40, 2375–2383.

Chan, F. K. S., Paszkowski, A.,Wang, Z., Lu, X., Mitchell, G., Tran, D. D., et al. (2024).
Building resilience in Asian mega-deltas. Nat. Rev. Earth and Environ. 5 (8), 522–537.
doi:10.1038/s43017-024-00561-x

Chang, F., Dong, S., Yin, H., and Wu, Z. (2022). Using the SBAS InSAR technique to
monitor surface deformation in the Kuqa fold-thrust belt, Tarim Basin, NW China. J.
Asian Earth Sci. 231, 105212. doi:10.1016/j.jseaes.2022.105212

Chang, J., Lu, W., Kong, X., Ren, J., Li, X., Yin, L., et al. (2023). A novel method of
correlation analysis between ground subsidence and tunnelling parameters based on
model fusion. Rock. Mech. 56, 3037–3054.

Chang, F., Dong, S., Yin, H., Ye, X., Zhang,W., and Zhu, H. (2024). Temporal stacking
of sub-pixel offset tracking for monitoring slow-moving landslides in vegetated terrain.
Landslides 21 (6), 1255–1271. doi:10.1007/s10346-024-02227-7

Chen,M. L., Lv, P. F., Zhang, S. L., Chen, X. Z., and Zhou, J.W. (2018). Time evolution
and spatial accumulation of progressive failure for Xinhua slope in the Dagangshan
reservoir, Southwest China. Landslides 15, 565–580. doi:10.1007/s10346-018-0946-8

Chen, T., and Guestrin, C. (2016). “Xgboost: a scalable tree boosting system,” in
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining.

Chen, Z.,Wang, Z., Xi, H., Yang, Z., Zou, L., Zhou, Z., et al. (2016). Recent advances in
high slope reinforcement in China: case studies. J. RockMech. Geotech. Eng. 8, 775–788.
doi:10.1016/j.jrmge.2016.11.001

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,
273–297. doi:10.1007/bf00994018

Edmonds, D. A., Caldwell, R. L., Brondizio, E. S., and Siani, S. M. (2020). Coastal
flooding will disproportionately impact people on river deltas. Nat. Commun. 11 (1),
4741. doi:10.1038/s41467-020-18531-4

Fan, X., Yang, F., Siva Subramanian, S., Xu, Q., Feng, Z., Mavrouli, O., et al. (2020).
Prediction of amulti-hazard chain by an integrated numerical simulation approach: the
Baige landslide, Jinsha River, China. J. Landslide 17, 147–164. doi:10.1007/s10346-019-
01313-5

Ferretti, A., Tamburini, A., Novali, F., Fumagalli, A., Falorni, G., and Rucci, A. (2011).
Impact of high resolution radar imagery on reservoir monitoring. J. Environ. Plan. 4,
3465–3471. doi:10.1016/j.egypro.2011.02.272

Gao, X., Tian, W. P., Li, J., Qi, H., Zhang, Z., and Li, S. (2022). Force and deformation
response analysis of dual structure slope excavation and support. Geomatics, Nat.
Hazards Risk 13, 501–537. doi:10.1080/19475705.2022.2037738

Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., and Melillo, M. (2022).
“Rainfall and landslide initiation,” in Rainfall (Elsevier), 427–450.

Herrera-García, G., Ezquerro, P., Tomás, R., Béjar-Pizarro, M., López-Vinielles, J.,
Rossi,M., et al. (2021).Mapping the global threat of land subsidence.Nature 371, 34–36.
doi:10.1126/science.abb8549

Hill, E. M., McCaughey, J. W., Switzer, A. D., Massey, C. I., Taig, T., Yates, K., et al.
(2024). Human amplification of secondary earthquake hazards through environmental
modifications. Nat. Rev. Earth Environ. 5, 463–476. doi:10.1038/s43017-024-00551-z

Hill, P., Biggs, J., Ponce-López, V., and Bull, D. (2021). Time-series prediction
approaches to forecasting deformation in Sentinel-1 INSAR data. J. Geophys. Res. Solid
Earth 126, e2020JB020176. doi:10.1029/2020jb020176

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9 (8), 1735–1780. doi:10.1162/neco.1997.9.8.1735

Huang, D., Luo, S. L., Zhong, Z., Gu, D. M., Song, Y. X., and Tomás, R. (2020).
Analysis and modeling of the combined effects of hydrological factors on a reservoir
bank slope in the Three Gorges Reservoir area, China. Eng. Geol. 279, 105858.
doi:10.1016/j.enggeo.2020.105858

Huang, X., Guo, F., Deng, M., Yi, W., and Huang, H. (2020). Understanding the
deformation mechanism and threshold reservoir level of the floating weight-reducing
landslide in the Three Gorges Reservoir Area, China. Landslides 17, 2879–2894.
doi:10.1007/s10346-020-01435-1

Huang, X., Wang, L., Ye, R., Yi, W., Huang, H., Guo, F., et al. (2022). Study on
deformation characteristics and mechanism of reactivated ancient landslides induced
by engineering excavation and rainfall in Three Gorges Reservoir area. Nat. Hazards
110, 1621–1647. doi:10.1007/s11069-021-05005-z

Jiang,Q.,Qi, Z.,Wei,W., andZhou,C. (2015). Stability assessment of a high rock slope
by strength reduction finite element method. Bull. Eng. Geol. Environ. 74, 1153–1162.
doi:10.1007/s10064-014-0698-1

Jiang, Y., Zheng, L., Xu, Q., and Lu, Z. (2024). Deformationmechanism-assisted deep
learning architecture for predicting step-like displacement of reservoir landslide. Int. J.
Appl. Earth Obs. Geoinf 133, 104121. doi:10.1016/j.jag.2024.104121

Lacroix, P., Handwerger, A. L., and Bièvre, G. (2020). Life and death of slow-moving
landslides. Nat. Rev. Earth Environ. 1, 404–419. doi:10.1038/s43017-020-0072-8

Lanari, R., Mora, O., Manunta, M., Mallorquí, J. J., Berardino, P., and
Sansosti, E. (2004). A small-baseline approach for investigating deformations
on full-resolution differential SAR interferograms. J. Geodyn. 42, 1377–1386.
doi:10.1109/tgrs.2004.828196

Li, S., Xu,Q., Tang,M., Iqbal, J., Liu, J., Zhu, X., et al. (2019). Characterizing the spatial
distribution and fundamental controls of landslides in the three gorges reservoir area,
China. Bull. Eng. Geol. Environ. 78, 4275–4290. doi:10.1007/s10064-018-1404-5

Li, S., Xu, W., and Li, Z. (2022). Review of the SBAS InSAR Time-series
algorithms, applications, and challenges. Geodesy Geodyn. 13, 114–126.
doi:10.1016/j.geog.2021.09.007

Li, X., Li, W., Wu, Z., Xu, Q., Zheng, D., Dong, X., et al. (2024). Identification and
deformation characteristics of active landslides at large hydropower stations at the early
impoundment stage: a case study of the lianghekou reservoir area in sichuan province,
southwest China. Remote Sens. 16, 3175. doi:10.3390/rs16173175

Luo, S. L., Huang, D., Peng, J. B., and Tomás, R. (2022). Influence of permeability
on the stability of dual-structure landslide with different deposit-bedding interface
morphology: the case of the three Gorges Reservoir area, China. Eng. Geol. 296, 106480.
doi:10.1016/j.enggeo.2021.106480

Ma, Z., and Mei, G. J. (2021). Deep learning for geological hazards analysis:
data, models, applications, and opportunities. Earth-Sci Rev. 223, 103858.
doi:10.1016/j.earscirev.2021.103858

Machowski, R., Rzetala, M. A., Rzetala, M., and Solarski, M. (2016).
Geomorphological and hydrological effects of subsidence and land use change in
industrial and urban areas. Land Degrad. and Dev. 27, 1740–1752. doi:10.1002/ldr.2475

Osmanoğlu, B., Sunar, F., Wdowinski, S., and Cabral-Cano, E. J. (2016). Time
series analysis of InSAR data: methods and trends. Int. J. Appl. Earth Observation
Geoinformation 115, 90–102. doi:10.1016/j.isprsjprs.2015.10.003

Paszkowski, A., Goodbred, Jr S., Borgomeo, E., Khan, M. S. A., and Hall, J. W. (2021).
Geomorphic change in the ganges–brahmaputra–meghna delta. Nat. Rev. Earth and
Environ. 2, 763–780. doi:10.1038/s43017-021-00213-4

Radman, A., Akhoondzadeh, M., and Hosseiny, B. (2021). Integrating InSAR and
deep-learning for modeling and predicting subsidence over the adjacent area of Lake
Urmia, Iran. GISci Remote Sens. 58, 1413–1433. doi:10.1080/15481603.2021.1991689

Reichstein,M., Camps-Valls, G., Stevens, B., Jung,M., Denzler, J., Carvalhais, N., et al.
(2019). Deep learning and process understanding for data-driven Earth system science.
Nature 566, 195–204. doi:10.1038/s41586-019-0912-1

Rouet-Leduc, B., Jolivet, R., Dalaison, M., Johnson, P. A., and Hulbert, C. (2021).
Autonomous extraction of millimeter-scale deformation in InSAR time series using
deep learning. Nat. Commun. 12, 6480. doi:10.1038/s41467-021-26254-3

Sharifi, A., Khodaei, B., Ahrari, A., Hashemi, H., and Haghighi, A. T. (2024). Can
river flow prevent land subsidence in urban areas? Sci. Total Environ. 917, 170557.
doi:10.1016/j.scitotenv.2024.170557

Shi, J., Yang, H., Peng, J., Wu, L., Xu, B., Liu, Y., et al. (2019). InSAR monitoring
and analysis of ground deformation due to fluid or gas injection in Fengcheng oil field,
Xinjiang, China. J. Int. Soc. Remote Sens. Environ. 47, 455–466. doi:10.1007/s12524-018-
0903-y

Song, K., Wang, F., Yi, Q., and Lu, S. (2018). Landslide deformation behavior
influenced by water level fluctuations of the Three Gorges Reservoir (China). Eng. Geol.
247, 58–68. doi:10.1016/j.enggeo.2018.10.020

Stark, T. D., Choi, H., and McCone, S. (2005). Drained shear strength
parameters for analysis of landslides. J. Geotech. Geoenviron Eng. 131, 575–588.
doi:10.1061/(asce)1090-0241(2005)131:5(575)

Sun, H. Y.,Wu, X.,Wang, D. F., Xu, H. D., Liang, X., and Shang, Y. Q. (2019). Analysis
of deformation mechanism of landslide in complex geological conditions. Bull. Eng.
Geol. Environ. 78, 4311–4323. doi:10.1007/s10064-018-1406-3

Taib, S., Selaman, O., Chen, C., Lim, R., and Awang Ismail, D. (2017). Landslide
susceptibility in relation to correlation of groundwater development and ground
condition. Adv. Civ. Eng. 2017, 1–7. doi:10.1155/2017/4320340

Tang, M., Xu, Q., Yang, H., Li, S., Iqbal, J., Fu, X., et al. (2019). Activity
law and hydraulics mechanism of landslides with different sliding surface and
permeability in the Three Gorges Reservoir Area, China. Eng. Geol. 260, 105212.
doi:10.1016/j.enggeo.2019.105212

Tiwari, A., Narayan, A. B., and Dikshit, O. J. (2020). Deep learning networks for
selection of measurement pixels in multi-temporal SAR interferometric processing. Int.
J. Photogrammetry Remote Sens. 166, 169–182. doi:10.1016/j.isprsjprs.2020.06.005

Frontiers in Earth Science 20 frontiersin.org

https://doi.org/10.3389/feart.2024.1503634
https://doi.org/10.1016/j.earscirev.2015.07.005
https://doi.org/10.1038/s43017-024-00561-x
https://doi.org/10.1016/j.jseaes.2022.105212
https://doi.org/10.1007/s10346-024-02227-7
https://doi.org/10.1007/s10346-018-0946-8
https://doi.org/10.1016/j.jrmge.2016.11.001
https://doi.org/10.1007/bf00994018
https://doi.org/10.1038/s41467-020-18531-4
https://doi.org/10.1007/s10346-019-01313-5
https://doi.org/10.1007/s10346-019-01313-5
https://doi.org/10.1016/j.egypro.2011.02.272
https://doi.org/10.1080/19475705.2022.2037738
https://doi.org/10.1126/science.abb8549
https://doi.org/10.1038/s43017-024-00551-z
https://doi.org/10.1029/2020jb020176
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.enggeo.2020.105858
https://doi.org/10.1007/s10346-020-01435-1
https://doi.org/10.1007/s11069-021-05005-z
https://doi.org/10.1007/s10064-014-0698-1
https://doi.org/10.1016/j.jag.2024.104121
https://doi.org/10.1038/s43017-020-0072-8
https://doi.org/10.1109/tgrs.2004.828196
https://doi.org/10.1007/s10064-018-1404-5
https://doi.org/10.1016/j.geog.2021.09.007
https://doi.org/10.3390/rs16173175
https://doi.org/10.1016/j.enggeo.2021.106480
https://doi.org/10.1016/j.earscirev.2021.103858
https://doi.org/10.1002/ldr.2475
https://doi.org/10.1016/j.isprsjprs.2015.10.003
https://doi.org/10.1038/s43017-021-00213-4
https://doi.org/10.1080/15481603.2021.1991689
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1038/s41467-021-26254-3
https://doi.org/10.1016/j.scitotenv.2024.170557
https://doi.org/10.1007/s12524-018-0903-y
https://doi.org/10.1007/s12524-018-0903-y
https://doi.org/10.1016/j.enggeo.2018.10.020
https://doi.org/10.1061/(asce)1090-0241(2005)131:5(575)
https://doi.org/10.1007/s10064-018-1406-3
https://doi.org/10.1155/2017/4320340
https://doi.org/10.1016/j.enggeo.2019.105212
https://doi.org/10.1016/j.isprsjprs.2020.06.005
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yang et al. 10.3389/feart.2024.1503634

Tiwari, A., and Shirzaei, M. (2024). A novel machine learning and deep learning
semi-supervised approach for automatic detection of InSAR-based deformation
hotspots. Int. J. Appl. Earth Obs. Geoinf 126, 103611. doi:10.1016/j.jag.2023.103611

van Bijsterveldt, C. E. J., Herman, P. M. J., van Wesenbeeck, B. K., Temmink, R.
J. M., Gerkema, T., Bouma, T. J., et al. (2023). Subsidence reveals potential impacts
of future sea level rise on inhabited mangrove coasts. Nat. Sustain 6, 1565–1577.
doi:10.1038/s41893-023-01226-1

Wang, L., Yin, Y., Huang, B., and Dai, Z. (2020). Damage evolution and stability
analysis of the Jianchuandong dangerous rockmass in theThreeGorges Reservoir Area.
Eng. Geol. 265, 105439. doi:10.1016/j.enggeo.2019.105439

Wang, L., Zhang, Z., Huang, B., Hu, M., and Zhang, C. (2021). Triggering
mechanism and possible evolution process of the ancient Qingshi landslide
in the Three Gorges Reservoir. Geomatics, Nat. Hazards Risk 12, 3160–3174.
doi:10.1080/19475705.2021.1998230

Wang, W., He, Y., Zhang, L., Chen, Y., Qiu, L., and Pu, H. (2020). Analysis of surface
deformation and driving forces in Lanzhou. J. Geodyn. 12, 1127–1145. doi:10.1515/geo-
2020-0128

Wang, Z., Cai, Y., Liu, D., Lu, J., Qiu, F., Sun, F., et al. (2024). Characterization
of natural fracture development in coal reservoirs using logging machine learning
inversion, well test data and simulated geostress analyses. Eng. Geol. 107696.
doi:10.1016/j.enggeo.2024.107696

Xia, M., Ren, G. M., and Ma, X. L. (2013). Deformation and mechanism of landslide
influenced by the effects of reservoir water and rainfall, Three Gorges, China. Nat.
Hazards 68, 467–482. doi:10.1007/s11069-013-0634-x

Yang, C., Lv, S., Hou, Z., Zhang, Q., Li, T., and Zhao, C. (2022). Monitoring of
land subsidence and ground fissure activity within the Su-Xi-Chang area based on
time-series InSAR. J. Remote Sens. 14, 903. doi:10.3390/rs14040903

Yao, W., Li, C., Zuo, Q., Zhan, H., and Criss, R. E. (2019). Spatiotemporal
deformation characteristics and triggering factors of Baijiabao landslide in Three
Gorges Reservoir region, China. Geomorphology 343, 34–47. doi:10.1016/j.geomorph.
2019.06.024

Ye, Y., Tan, X., Liu, Y., Bian, S., Zhou, C., Zeng, X., et al. (2024). Drainage
reorganization and divide migration driven by basin subsidence: An example from the
Micang Shan, outskirts of eastern Tibet and its implications for Cenozoic evolution of
the Yangtze River. Basin Research 36, e12875.

Zhang, X., Dong, Z., Gupta, H., Wu, G., and Li, D. (2016). Impact of the three
gorges dam on the hydrology and ecology of the Yangtze River. Water 8, 590.
doi:10.3390/w8120590

Zhang, Y., Wu, J., Xue, Y., Wang, Z., Yao, Y., Yan, X., et al. (2015). Land subsidence
and uplift due to long-term groundwater extraction and artificial recharge in Shanghai,
China. Hydrogeol. J. 23, 1851–1866. doi:10.1007/s10040-015-1302-x

Zhang, Y., Zhang, Z., Xue, S., Wang, R., and Xiao, M. (2020). Stability analysis of
a typical landslide mass in the Three Gorges Reservoir under varying reservoir water
levels. Environ. Earth Sci. 79, 42–14. doi:10.1007/s12665-019-8779-x

Zhao, F., Meng, X., Zhang, Y., Chen, G., Su, X., and Yue, D. (2019). Landslide
susceptibility mapping of karakorum highway combined with the application of SBAS-
InSAR technology. Sensors 19, 2685. doi:10.3390/s19122685

Zhou, C., Cao, Y., Gan, L., Wang, Y., Motagh, M., Roessner, S., et al. (2024). A
novel framework for landslide displacement prediction using MT-InSAR and machine
learning techniques. Eng. Geol. 331, 107493. doi:10.1016/j.enggeo.2024.107497

Zou, Z., Tang, H., Criss, R. E., Hu, X., Xiong, C., Wu, Q., et al. (2021). A model for
interpreting the deformation mechanism of reservoir landslides in the Three Gorges
Reservoir area, China.Nat. Hazards Earth Syst. Sci. 21, 517–532. doi:10.5194/nhess-21-
517-2021

Frontiers in Earth Science 21 frontiersin.org

https://doi.org/10.3389/feart.2024.1503634
https://doi.org/10.1016/j.jag.2023.103611
https://doi.org/10.1038/s41893-023-01226-1
https://doi.org/10.1016/j.enggeo.2019.105439
https://doi.org/10.1080/19475705.2021.1998230
https://doi.org/10.1515/geo-2020-0128
https://doi.org/10.1515/geo-2020-0128
https://doi.org/10.1016/j.enggeo.2024.107696
https://doi.org/10.1007/s11069-013-0634-x
https://doi.org/10.3390/rs14040903
https://doi.org/10.1016/j.geomorph.2019.06.024
https://doi.org/10.1016/j.geomorph.2019.06.024
https://doi.org/10.3390/w8120590
https://doi.org/10.1007/s10040-015-1302-x
https://doi.org/10.1007/s12665-019-8779-x
https://doi.org/10.3390/s19122685
https://doi.org/10.1016/j.enggeo.2024.107497
https://doi.org/10.5194/nhess-21-517-2021
https://doi.org/10.5194/nhess-21-517-2021
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Methodology
	2.1 Study area
	2.2 Data sources
	2.3 SBAS-InSAR technology
	2.4 Analysis of typical surface deformation areas
	2.5 Application and evaluation of machine learning and deep learning models

	3 Results
	3.1 Urban ground deformation along the river
	3.2 Road slope deformation along the river
	3.3 Ancient landslide deformation in the Reservoir area
	3.4 Performance evaluation of machine learning models in predicting ground deformation in the Three Gorges Reservoir area: multi-model multi-metric comparative analysis

	4 Discussion
	4.1 Reservoir water level decline accelerates ground subsidence
	4.2 Human activities exacerbate natural subsidence processes in riverside cities
	4.3 Progressive slope subsidence triggered by road expansion
	4.4 Accelerated deformation of ancient landslides in the reservoir area: combined effects of water level changes, drought, and human activities
	4.5 LSTM model demonstrates superior performance in predicting surface deformation in the three gorges reservoir area

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

