
TYPE Methods
PUBLISHED 21 November 2024
DOI 10.3389/feart.2024.1495974

OPEN ACCESS

EDITED BY

Xingye Liu,
Chengdu University of Technology, China

REVIEWED BY

Hui Sun,
Southwest Jiaotong University, China
Guochang Liu,
China University of Petroleum, Beijing, China

*CORRESPONDENCE

Shiyou Liu,
liushiyou@139.com

RECEIVED 13 September 2024
ACCEPTED 04 November 2024
PUBLISHED 21 November 2024

CITATION

Liu S, Song W, Yan A and Huang S (2024)
Frequency-broadening method of seismic
data based on sparse reconstruction inversion
strategy.
Front. Earth Sci. 12:1495974.
doi: 10.3389/feart.2024.1495974

COPYRIGHT

© 2024 Liu, Song, Yan and Huang. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Frequency-broadening method
of seismic data based on sparse
reconstruction inversion strategy
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Company, China National Offshore Oil Corporation, Haikou, China

To broaden the effective frequency bandwidth of seismic data and enhance its
resolution, we investigate the high-resolution reconstruction method grounded
in compressed sensing sparse theory, utilizing the characteristics of sparse
decomposition of seismic signals. First, we examine the construction of
an over-complete dictionary, which is then employed to sparsely represent
the seismic data and derive the reflection coefficient, combined with noise,
forms a mixed sparse component. By removing the noise sparse component
from this mixture, we isolate a clean reflection coefficient. In the iterative
reconstruction process of compressed sensing sparse decomposition, weak
signal can easily be overwhelmed by the application of the maximum energy
principle. To address this issue, we propose a useful signal control retention
method incorporating lateral adjacent low-rank constraints. This approach
increases the probability of optimizing weak signal dictionary atoms, mitigates
the unbalanced reconstruction of strong and weak signals, and facilitates the
comprehensive reconstruction of both signal types. Ensuring reconstruction
accuracy is crucial, as the conditions for reconstruction significantly affect
reliability. Therefore, we employ a signal-to-noise ratio estimation method to
establish an adaptive iteration stop condition based on a residual threshold.
During each iteration, the signal-to-noise ratio is recalculated, and the signal-
to-noise ratio is multiplied by the residual to produce a weight residual.
Finally, this new residual is used in the inner product calculations, allowing
for the preferential selection of dictionary atoms. Both theoretical models and
actual data validate the rationality and effectiveness of the proposed method.
Analysis of real data demonstrates that our approach significantly enhances
the seismic frequency band width and markedly improves the resolution
of seismic data.

KEYWORDS

compressed sensing, dictionary construction, sparse optimization, reconstruction
method, bandwidth broadening

1 Introduction

Researches on improving the resolution of seismic data has been a prominent focus,
with numerous technical methods developed, particularly those based on deconvolution
and compensation (Haldorsen et al., 1994; Kaaresen and Taxt, 1998; Chang et al., 2000;
Donoho, 2006; Gholami, 2014). The advancement of technology and the increasing
demands of practical applications have driven the continuous evolution of methods
and techniques aimed at enhancing seismic data resolution. Among various emerging
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technologies, compressed sensing has gained significant attention
due to its advantages in sparse representation and perceptual
reconstruction theory, particularly in terms of computational
efficiency, feature analysis, and noise suppression (Herrmann and
Hennenfent, 2008; Wang and Wang, 2014; Zhang et al., 2015;
Sun et al., 2023; Ding et al., 2019; Bai et al., 2014). In the context
of enhancing the seismic data resolution, compressed sensing
sparse reconstruction primarily employs matching pursuit (MP)
(Song et al., 2017), orthogonal matching pursuit (OMP), and their
respective improvements. MP serves as the core algorithm within
sparse reconstruction theory, while OMP and its variations are
extensions of the MP framework. Although MP is characterized
by its simplicity, it only facilitates local optimization. In contrast,
OMP transitions from local to global optimization but suffers from
calculational instability. Bothmethods aim tomaximize the residual
and the inner product of the dictionary as their optimization
principle, yet a common limitation is the inability to update the
dictionary. Addressing the stability problem of OMP (Zong Z. et al.,
2023; Wang et al., 2024; Zhao et al., 2023; Huang, 2023), researchers
have proposed various improved algorithms, such as the regularized
OMP method. However, these methods primarily enhance the
calculation of the inner product in the residual and atomic spaces
without fundamentally resolving the stability problem. Inadequate
atom selection can lead to significant oscillations in the residual,
whichmeans that even the improved regularizedOMPmethod does
not effectively mitigate the oscillation issue.

With the research and widespread application of compressed
sensing theory, a series of challenges has emerged in its development
and application, especially in the field of seismic exploration
(Sun et al., 2024; Zong J. et al., 2023; Zong et al., 2022). These
challenges can be categorized into two groups: those arising from
the theoretical framework of compressed sensing itself, and those
resulting from the integration of compressed sensing theory with
specialized applications (Buchholtz, 1972; Zhang et al., 2017). This
paper studies the use of seismic data by constructing a seismic
wavelet dictionary, which is employed to project the observation
signal and obtain a sparse representation of the reflection coefficient
of the seismic record. Subsequently, the reflection coefficient
is estimated to enhance the resolution of the seismic record.
In addressing these practical challenges, we extend our focus
to the issues faced by compressed sensing theory in sparse
reconstruction of seismic signals. These include noise-containing
approximate sparse reconstruction, redundancy and multiplicity in
over-complete dictionaries, properties of the dictionaries, and the
trade-off between reconstruction accuracy and sparsity (Herrmann
and Li, 2012; Zhao et al., 2020; Anvari et al., 2017; Cai and Wang,
2011). Therefore, this paper conducts in-depth study from four
aspects: dictionary construction, sparse representation, algorithm
optimization, and reconstruction evaluation. By improvement of
the over-complete dictionary and weighted sparse algorithm, we
reduce the multiplicity of the reconstruction solution. To tackle the
challenge of incorrect atom selection associated with the dictionary
update corresponding to the reconstructed seismic reflection
coefficient—especially for weak reflection coefficients—we explore
a correlation control method for useful signals in adjacent traces.
Finally, a signal-to-noise ratio estimation method is used to
establish an adaptive iteration stop condition based on a residual
threshold. This culminates in a frequency extension method

suitable for effective sparse representation and reflection coefficient
reconstruction of noisy seismic data.

2 Basic theory of sparse
reconstruction

2.1 Sparse representation of signals

The sparse representation of signal y (mathematical problem) is
shown in Equation 1:

min‖x0‖, s.t.y = Ax (1)

where, A is a dictionary matrix of a∗N, where the vectors of
each column are the atoms in dictionary A. The solution to the
optimization problem here is a coefficient vector that represents an
accurate sparse representation of the target i signal y. The solution
after optimization to the problem is Xopt , then the corresponding
target signal is approximately expressed as Equation 2:

̃y = Axopt (2)

The dictionary refers to a set of basis functions in sparse
reconstruction inversion, so that any complex signal or data can
be approximated by a linear combination of these basis functions.
The dictionary atom is a single element in these basis functions. For
sparse reconstruction inversion of seismic data, the dictionary can
be regarded as a seismic wavelet library, which contains multiple
seed wave forms to match different geological features in seismic
data. The dictionary atom can be regarded as the sampling point of
the wavelet, which is the specific element in the wavelet library for
matching the characteristics of seismic data. They jointly construct
the sparse formof seismic signals and help to extract and identify the
characteristics of underground structures in the inversion process.

2.2 Sparse reconstruction of noisy signals

If the signal contains noise, reconstruction performance is
degraded or even fails. The optimal dictionary cannot be obtained
from the conventional sparse reconstruction method in the
presence of noise. It was assumed that the observed signal
is shown in Equation 3:

y =Φx+ n (3)

where, n represents noise. Sparse reconstruction theories under
noise conditions are approximately sparse of the signal, that is,
using the fewest dictionary atoms to achieve an approximate
representation of the signal, so the optimization method is:

min ‖w−1(x+ v)‖1, s.t.y =ΦW(x+ v) + n (4)

In this case, the above Equation 4 can also be expressed as
Equation 5:

min ‖w−1(x+ v)‖1, s.t.‖y−ΦW(x+ v)‖2 < ε (5)

where, v represents the noise associated with the sparse coefficients.
It is assumed that both the noise in the sparse coefficients and
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the noise arising from the seismic record are additive in nature.
The design of an optimal dictionary under noisy conditions aims
to enhance reconstruction performance. In the presence of noise,
the reconstruction conditions of the signal are closely related to
the amplitudes of the non-zero elements. When these amplitudes
are small, conventional MP algorithms may not reliably identify
the optimal dictionary atom. Consequently, the reconstruction
constraint can be expressed as Equation 6:

‖DX‖2 + ‖Dn‖2 < (β− u(k− 1,Φ,ψ) − u(k,Φ,ψ)) (6)

where, D is the actual dictionary matrix, β,u is the degree
of coherence and cumulative correlation coefficient of atoms in
each column of the dictionary. where, β ≤ μ, based on practical
experience, the value of μ is generally between 0.5 and 1.

The atoms selected for optimal solutions in the context of noisy
signals are not always orthogonal. It is important to recognize that
Equation 1 forms a union of convex sets; thus, each minimization
result maintains the same sparsity but yields different fitting errors,
indicating that Equation 1 constitutes amulti-solution problem.The
following optimization problem can be formulated to address such
non-unique issues as shown in Equation 7:

min{‖x‖0 +
1
2
‖y−Ax‖2ε

−1}, s.t.‖y−Ax‖2 < ε (7)

3 Frequency-broadening method of
seismic data based on sparse
reconstruction inversion strategy

3.1 Method for estimating reflection
coefficient of sparse reconstruction of
noisy seismic signals

Noisy seismic signals are expressed as Equation 8:

y = A∗ r+ n (8)

Its matrix form is Equation 9:

y = Ar+ n (9)

A sparse reflection coefficient model r was estimated based
on a given seismic record. For the established objective function,
the optimization process under the sparse reconstruction
framework is Equation 10:

min ‖r‖0, s.t.y = Ar+ n (10)

To facilitate the solution of the problem, the above problem was
transformed into the Equation 11 objective function problem:

I = ‖y−Ar‖22 + λ‖vr‖
2
2 (11)

To address the issues discussed in this thesis, the overcomplete
dictionary underwent sparse processing to reconstruct the sparse
solution of the reflection coefficient. Both the sparse dictionary
and the estimated reflection coefficient should exhibit sparsity.
One method to enhance the sparsity of the reflection coefficient

estimation involves applying a weight function to the reflection
coefficient model as shown in Equation 12:

vi = |ri|
2−p
p + εr (12)

where, p changes between 0 and 2. In practical experience, p =
1 can work well in most cases, p < 1 indicates that a stronger
sparsity is given, but it is easy to lose weak seismic signals, and
p >1 indicates that less sparsity is given. The reflection coefficient
is shown in Equation 13:

r = srv (13)

If the objective function is substituted, the transformed objective
function is:

I = ‖y−ASrv‖
2
2 + λ‖vr‖

2
2 (14)

where, λ is the weighting coefficient. The objective function in
Equation 14 can be minimized by solving the system of equations
as shown in Equation 15:

(sTrATAsr + λI)v = sTrATy (15)

If As = ASr, the Equation 16 are obtained.

(AT
s As + λI)v = AT

s y (16)

This transformation reflects the sparsity and orthogonality
of the overcomplete dictionary, aiming to reduce reconstruction
multiplicity. In this study, the overcomplete dictionary was
optimized under fixed sparsity conditions using a weightingmethod
to enhance the sparsity or orthogonality of the dictionary atoms.
The optimization procedure for the given overcomplete dictionary
is shown in Equation 17:

min (max∑|⟨A,As⟩| +
max∑|⟨A,As⟩|

min |⟨A,As⟩|
(17)

It is very difficult to solve the above problem,
considering the calculation problem, the optimized dictionary
can satisfy (Equation 18):

min ‖AHA‖2
2
, s.t.AH

S,iAi = 1, i = 1,⋯,N (18)

For each AS
∗I, under the objective function I = ‖y−ASrv‖22 +

λ‖vr‖22, the Lagrange function can be constructed as:

L(As,iλi) =
1
2
‖AsHA‖2

2
+ λi(AH

S,iAi − 1) (19)

Equation 20 can be obtained from the Equation 19:

As,i =
R−1Ai

A·iR
−1Ai

(20)

Where R is shown in Equation 21,

R = AAH (21)

If the probability of each optimal atom’s occurrence is
determined, a weighted optimized dictionary can be constructed. In
this case, R = AW2AH represents the weight coefficient. The inner
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product of the signal and the atoms in the overcomplete dictionary
indicates the extent to which a corresponding atom constitutes
the optimal atom for the signal. Therefore, the inner product of
the overcomplete dictionary’s optimal signal can be utilized as the
initialization weight as shown in Equation 22:

W0 = diag{|A
Hy|} (22)

The calculation was conducted as Equation 23:

R = AW2AH (23)

The dictionary matrix was updated as Equation 24:

As,i =
R−1Ai

A·iR
−1Ai

(24)

The weight was updated as Equation 25:

W = diag{|AHy|} (25)

3.2 Dictionary construction and
optimization methods

3.2.1 Dictionary construction
To fully utilize the prior information contained in actual seismic

records, a wavelet dictionary was initially constructed based on
these records. To accommodate the spatio-temporal variations in
seismic data, we calculated the amplitude of the autocorrelation
function at each sampling position from shallow to deep using a
sliding time window. Similarly, we computed the envelope of the
instantaneous phase. The amplitude of the autocorrelation function
and the envelope of the instantaneous phase were then combined to
create the actual seismic wavelet dictionary.

Although the extracted seismic wavelet is closest representation
of the actual seismic record, it is impossible to extract a
completely accurate actual wavelet dictionary due to various
factors, including calculation methods and noise. To enhance the
estimation performance of reflection coefficients reconstruction
and improve the accuracy of weak reflection coefficients, a
theoretical mixed-phase wavelet dictionary was constructed based
on the previously extracted wavelet dictionary from actual seismic
data. The construction method involves obtaining the dominant
frequency by analyzing the seismic records, followed by employing
a combination of time shifting, amplitude attenuation, and the
dominant frequency to create the mixed-phase wavelet.

3.2.2 Dictionary update optimization
The optimization processes involved in compressed sensing

sparse reconstruction fundamentally focus on the optimization
and updating of the dictionary. Specifically, an optimal
sparse representation is achieved through the iterative update
and optimization of the dictionary, ultimately enhancing
the reconstruction performance. To facilitate the accurate
reconstruction of both strong and weak reflection coefficients
corresponding to strong and weak amplitude seismic records, we
employ a dictionary updating strategy that incorporates both a local
dictionary and a public dictionary for previously constructed actual

seismic wavelet and theoretical mixed-phase wavelet. For strong
amplitude seismic records (or high signal-to-noise ratio), the OMP
optimization algorithm can accurately effectively reconstruct strong
reflection coefficients. However, for weak amplitude seismic records
(or low signal-to-noise ratio), the application of themaximum inner
product principle may result in the selection of incorrect atoms,
leading to a degradation in reconstruction performance or even
complete failure. To enhance the reconstruction performance of
weak seismic signals, we utilize a shared dictionary along with
a weighted constrained dictionary optimization strategy. This
approach is based on two assumptions: first, that the wavelet of
the wavelet of the adjacent trace seismic record remains constant
over time, allowing the use of a common wavelet; and second, the
seismic signals of adjacent traces are similar.

Under the above assumption, we employ updating methods for
both the public dictionary and the lateral constrained dictionary to
process r weak seismic signals. The specific design method involves
calculating the correlation coefficients of the residuals from adjacent
channels (3 or five channels) using a common dictionary. These
correlation coefficient serve as both weighting coefficient and the
update weights for the dictionary. Seismic signals from adjacent
channels exhibit similarity and large correlation coefficients, while
the noise from these channels tends to be dissimilar, resulting
in lower correlation coefficients. Therefore, by integrating the
residual correlation coefficients from adjacent channels as weight
coefficients in the dictionary updating process, we enhance the
weight of useful signals while diminishing the weight of noise. This
approach effectively suppresses noise and reduces the likelihood of
erroneously selecting dictionary atoms.

3.3 Analysis of sparse dictionary, sparsity
and residual relation

For the sparse reconstruction of noisy signals, the residual
during the iterative process can be divided into two components:
RC = RD+RN. Here, RD represents the residual between the
reconstructed signal and the original effective signal, while
RN denotes the noise residual. The objective of noisy signal
reconstruction is to minimize, RD such that when the optimal
dictionary is selected and the iterations reach an appropriate
level of sparsity, RD = 0 and RC = RN. This indicates that the
residual consists solely of noise. However, since the sparsity is often
unknown, selecting an appropriate dictionary and determining the
suitable level of sparsity poses significant challenges, complicating
the control of RN.Consequently, it is essential to conduct a
thorough analysis of the relationships among sparsity, residuals,
and dictionaries. Notably, as sparsity increases, the residual may
not decrease as expected; instead, it may increase, suggesting that
the initial atomic selection is inappropriate or that the initial
dictionary is unsuitable for the weak reflection information at
a certain iteration level. A monotonically decreasing minimum
residual curve with increasing iterations indicates the suitability of
the local dictionary, whereas a staggered curve with a minimum
value suggests that the dictionary is inadequate. The correctness,
redundancy, and sparse orthogonality of the dictionary are critical
for optimizing the process and ensuring the convergence properties
of the residuals. Figures 1A, B illustrate the variation characteristics
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of residuals under the seismic overcomplete dictionary, revealing
that while the residuals decrease initially, they stabilize and do not
converge with further iterations. Figures 1C, D depict the sparse
orthogonalization of an overcomplete dictionary and its iteration
results, demonstrating good convergence with noticeable changes
in residuals. However, as the number of iterations increases, the
changes in residuals become minimal, as shown in Figure 1E. To
clarify, the results for the number of iterations in Figure 1D were
cropped, as illustrated in Figure 1F, highlighting that greater changes
in the number of iterations correspond to smaller changes in
residuals. To further analyze the changes in residual errors and the
dictionary, the inflection point in Figure 1D was examined, leading
to the selection of the theoretical wavelet. Figures 2A, B present
the iterative residual results under the theoretical mixed-phase
dictionary and the mixed-phase dictionary, respectively, illustrating
a monotonous decrease in residuals and a clear convergence effect.

3.4 An evaluation method for improving
the accuracy and accuracy control of
reconstructed reflection coefficient

In practical applications, the sparsity of the target signal is
often unknown. Typically, substituting an estimated sparsity into
algorithms such asMP,which require sparsity to be known, leads to a
rapid decline in reconstruction performance.The research indicates
that the size and distribution of the residual are determined by
both the dictionary and the level of sparsity. The choice of residual
threshold is crucial for determining reconstruction accuracy. Setting
the residual threshold to zero for a noise-free signal maximizes
reconstruction accuracy. Conversely, for noise-containing signals,
minimizing the residual threshold enhances the reconstruction
accuracy of effective signals. In the context of the evaluationmethod
for seismic data frequency extension and reconstruction presented
in this paper, sparsity is a key parameter that governs the algorithm’s
iteration termination. Factors influencing sparsity include:

(1) The length of the seismic record;
(2) Residual size
(3) Dictionary features and number of dictionary atoms
(4) SNR of seismic signals
(5) Reconstruction accuracy and reconstruction precision

In the absence of noise, when the specified sparsity is less than
the true sparsity of the signal, the OMP reconstruction algorithm
selects K coefficients from largest to smallest based on their values,
using the dictionary to generate the sparse signal YC. Conversely,
when the specified sparsity is greater than or equal to the true
sparsity of the signal, the reconstructed signal theoretically matches
the actual signal. However, in the presence of noise, when the
specified sparsity is greater than or equal to the true sparsity, the
reconstructed signal diverges from the actual signal. As sparsity
increases, the reconstructed signal will not only encapsulate all
components of the original signal but will also incorporate noise.
In the OMP algorithm, over-sparse representations are frequently
misidentified as significant signal components. The distribution of
these noise elements adheres to specific patterns. Following the
decomposition of the seismic signal in the temporal (longitudinal)

domain, the reflection coefficients of the useful signal exhibit a non-
uniform distribution, while the noise is uniformly distributed. In
contrast, in the spatial (lateral) direction, the reflection coefficients
of the useful signal are uniformly distributed, whereas the noise
distribution is irregular. These characteristics provide a theoretical
foundation for estimating sparsity.

Research indicates that sparsity is directly proportional
to signal length, inversely proportional to residual size, and
proportional to dictionary capacity. These factors have a significant
and direct relationship with sparsity. Additionally, sparsity is
potentially linked to the dictionary, signal-to-noise ratio, and
reconstruction accuracy. This study investigates the conditions
for stopping the iteration of the noise-related residual threshold
OMP algorithm. Based on the preceding analysis, seismic signal
noise and its SNR are critical determinants of reconstruction
accuracy and serve as the primary criteria for evaluating the
stopping conditions of the iterative optimization algorithm. Given
the characteristics of the problem addressed in this thesis, the
singular value analysis method was employed to assess noise
and SNR, and the threshold conditions for stopping iterations
of the optimization algorithm were established based on these
parameters.

Local matrix PM×N is composed of N sample points in each
adjacent M channel, and M singular values are obtained by singular
value decomposition. Among them, the largest singular value Y1
represents the energy of the signal, and other singular values
represent the energy of the noise. M singular values were obtained
by singular value decomposition of MN matrix, the largest singular
value λmax (the first singular value) represents the signal energy, and
the other singular values represent the signal noise energy.The noise
energy of the signal is:

The localmatrix PM×N consists of N sample points within each of
the adjacent M channels. Singular value decomposition is employed
to derive M singular values from the MN matrix. Among these
singular values, the largest singular value λmax (the first singular
value) signifies the energy of the signal, while the remaining singular
values represent the energy associated with noise. The noise energy
of the signal can be defined as Equation 26:

EN =
M

M− 1

M

∑
I=2

λi (26)

The signal energy is Equation 27:

Es = λ1 −
M

M− 1

M

∑
I=2

λi (27)

The SNR is Equation 28:

SNR =
λ1 −

M
M−1

M

∑
I=2

λi

M− 1
M

∑
I=2

λi

(28)

The relationship between noise energy and SNR was set as an
iterative threshold as shown in Equation 29:

TH =
ENSNR

C
(29)

Where, C is constant.
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FIGURE 1
Different dictionary matrix and residual variation characteristics. (A) Overcomplete dictionary matrix. (B) Residual variation characteristics of
Overcomplete dictionary. (C) Optimized overcomplete dictionary matrix. (D) Residual variation characteristics of optimized overcomplete dictionary.
(E) Residual variation characteristics of optimized overcomplete dictionary (F) Residual variation characteristics of optimized overcomplete dictionary
(The last 120 iterations result).
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FIGURE 2
Mixed phase dictionary matrix and residual variation characteristics. (A) Mixed phase dictionary matrix. (B) The variation characteristics of residuals with
the number of iterations.

The stopping iteration condition of the algorithm is determined
by the signal-to-noise ratio and the accompanying noise. It is
important to recognize the distinction between the SNR of the
original signal and the signal-to-noise ratio encountered during
the calculation process; in this context, the signal-to-noise ratio
refers to either the signal-to-noise ratio of the processed signal
or the signal-to-noise ratio of the reconstructed signal. Noise
encompasses not only the inherent noise of the original signal
but also the noise introduced during the reconstruction process.
Consequently, to achieve accurate and reliable signal reconstruction,
it is essential to comprehensively optimize the stopping conditions,
sparse dictionary, and computational methods. Accurate signal
reconstruction depends on using the correct dictionary, an
appropriate number of dictionaries, and an appropriate threshold for
the residual size.

4 Analysis of theoretical model
validation

The theoretical model was employed to validate and analyze
the research method, as illustrated in Figure 3. Figures 3A–D
present the reconstruction results of the reflectivity model, the
synthetic seismic record model, the weighted matching pursuit
method, and the joint optimization reconstruction method,
respectively. The results indicate that the joint optimization
method outperforms the weighted matching pursuit method.
Furthermore, the correctness and rationale of the method were
theoretically verified.

5 Analysis of processing results of
actual materials

The effectiveness of the research method for processing actual
data was further validated through empirical analysis. Initially,
various types of dictionaries were examined. Figure 4A illustrates

the distribution of iteration residuals for overcomplete dictionaries,
while (b) and (c) display the distribution of differences for
optimized overcomplete dictionaries and mixed-phase dictionaries,
respectively. A comparison of the three residual distributions
reveals that the overcomplete dictionary constructed directly from
seismic data exhibits slower changes in residuals, indicating a
slower convergence rate. In contrast, the optimized overcomplete
dictionary demonstrates reduced oscillation and achieves faster
convergence.

Sparsity serves as the stopping criterion for iterations in the
algorithm, guiding the reconstruction outcome. In this study, noise
levels and signal-to-noise ratios were derived by calculating the
singular values of the reconstructed seismic signals during the
algorithm optimization process. Consequently, an adaptive iterative
stopping condition for the algorithm was established. The results
illustrated in Figure 5 indicate that the threshold iteration stopping
condition, determined through adaptive SNR analysis, significantly
enhances both the continuity of the results and the effectiveness of
noise control.

To evaluate the effectiveness of the proposed method,
actual seismic data were processed, and the results were
subsequently compared and analyzed. Figures 6, 7 illustrate
the outcomes of sparse reconstruction across different
frequency bandwidths. The comparative analysis indicates a
significant enhancement in the resolution of the processed
results, while effectively suppressing noise, particularly in the
high-frequency range.

6 Discussion

The seismic data bandwidth expansion technology,
based on the theory of compressed sensing and sparse
reconstruction, exhibits distinct characteristics compared to
earlier methods. Notably, it offers improved noise suppression
during the reconstruction process, which is crucial for high-
frequency bandwidth expansion. Additionally, this technology
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FIGURE 3
Reconstruction result of theoretical model. (A) Reflection coefficient model. (B) Synthetic seismic record. (C) Reconstruction result of theoretical
model with weighted matching pursuit method. (D) Reconstruction result of theoretical model with joint optimization method.

encompasses various aspects that warrant further study and
discussion.

6.1 Different stopping criteria

The primary objective of this technique is to utilize an
overcomplete dictionary to sparsely project seismic signals, thereby
achieving a relatively sparse estimation of reflection coefficients.
By employing both forward and backward iterative approximation
methods, reflection coefficients that converge towards the true
solution are obtained, facilitating the reconstruction of seismic

records.The stopping criteria for these iterative approximations vary
based on the presence of noise in the signals. In theory, for noiseless
signals, the stopping criterion is defined as the point at which the
residual approaches zero. Conversely, for noisy signals, the stopping
criterion must account for noise variance; specifically, the iterative
residual should exceed the noise variance. As the reconstruction
iterations progress, noise is progressively suppressed, resulting in a
decreasing variance and, consequently, a smaller residual.This study
correlates the residual in the iterative process with the signal-to-
noise ratio of the seismic signal. By weighting the residual according
to the signal-to-noise ratio, this approach not only addresses the
magnitude of the residual but also considers the effective signal it
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FIGURE 4
Iterative residual distribution of different dictionary reconstruction. (A) Iterative residual distribution by overcomplete dictionary. (B) Iterative residual
distribution by optimized overcomplete dictionary. (C) Iterative residual distribution by mixed phase dictionary.

FIGURE 5
Reflection coefficient estimation result. (A) Original seismic profile. (B) Reflection coefficient estimation result with adaptive threshold stop condition.

FIGURE 6
Result before and after seismic data processing. (A) Original seismic profile. (B) Seismic profile after processing.

contains. Testing this methodology in data processing has yielded
encouraging results, as shown in Figure 8.

6.2 Sparsity

In the matching pursuit algorithm, known sparsity is utilized as
an input parameter to constrain the candidate atom set or to serve as
a stopping criterion. However, in practical applications, the sparsity of
the target signal is often unknown and is typically estimated. Feeding

an inaccurately estimated sparsity into algorithms like matching
pursuit, which require precise sparsity values, can lead to a rapid
degradation in reconstruction performance. Research indicates that
both the magnitude and distribution of the residual are influenced by
the dictionary and the level of sparsity. The selection of a residual
threshold is critical for determining reconstruction accuracy: for
noiseless signals, the highest accuracy is achieved when the residual
threshold is set to zero, while for noisy signals, optimal accuracy for
reconstructing useful information occurs when the residual threshold
matches thenoise level.Byoptimizingthisprocess,noisecanbe further
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FIGURE 7
Result before and after seismic data processing (Broaden different frequency bandwidth). (A) Original seismic profile. (B) Seismic profile after
processing.

FIGURE 8
Reflection coefficient estimation result with different stopping criteria. (A) Original seismic profile. (B) Reflection coefficient estimation result with the
coherent maximum stopping criterion. (C) Reflection coefficient estimation result with the weighted residual minimum stopping criterion.

FIGURE 9
Reconstruction result of seismic data with different sparsity. (A) Original seismic profile. (B) Reconstruction result of seismic data with too small sparsity.
(C) Reconstruction result of seismic data with appropriate sparsity.

suppressed, thereby enhancing the range of signal reconstruction,
as shown in Figure 9. Furthermore, compressed sensing should be
evaluated using different standards based on the specific application.
In the context of seismic exploration, compressed sensing has found
extensive applications, including noise suppression, missing seismic
trace reconstruction, and bandwidth expansion of seismic data. In
the problem of seismic data bandwidth expansion reconstruction
addressed in this paper, sparsity plays a crucial role as a stopping
criterion for the algorithm. Factors influencing sparsity include its
established role as a known input parameter within the matching
pursuit algorithm, where it constrains the capacity of the candidate
atom set or serves as a stopping condition.

6.3 Limited bandwidth

Sparse reconstruction-based bandwidth expansion enhances
resolution while preserving a high signal-to-noise ratio.
Overcomplete dictionaries more effectively capture the complex
features of seismic data, enabling flexible bandwidth expansion.
Both low and high-frequency bands can be expanded
simultaneously or selectively according to specific needs. A potential
relationship exists between bandwidth and sparsity; reduced
sparsity facilitates the expansion of low-frequency components,
while increased sparsity supports high-frequency expansion,
as shown in Figure 10. Furthermore, bandwidth is inherently linked
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FIGURE 10
Reconstruction result of seismic data with different frequency bandwidth. (A) Original seismic profile. (B) Reconstruction result of seismic data with too
wide frequency bandwidth. (C) Reconstruction result of seismic data with appropriate frequency bandwidth.

FIGURE 11
Reconstruction result of seismic data with different method. (A) Original seismic profile. (B) Reconstruction result of seismic data with traditional
method. (C) Reconstruction result of seismic data with method in this paper.

to the over complete dictionary, making accurate estimation of
this dictionary crucial for achieving effective seismic bandwidth
expansion.

6.4 Technical advantages

The seismic data compressed sensing sparse reconstruction
frequency extension technology studied in this paper, compared
with the traditional compressed sensing sparse reconstruction
technology (Tang, 2010; Yin et al., 2014; Song and Wu, 2017),the
technical advantages are reflected in two aspects. On the one hand,
it can keep the low frequency band unchanged when broadening
the high frequency, and can broaden the high frequency and low
frequency at the same time. On the other hand, in the process
of high-frequency broadening, high-frequency noise can be well
suppressed, as shown in Figure 11. The comparison results show
that the technical method in this paper has obvious effects in noise
suppression, amplitude energy and resolution enhancement.

7 Conclusion

Sparsity is a crucial factor influencing the reconstruction quality
of strictly sparse, noise-free signals. In contrast, the reconstruction
quality of noisy signals is affected by both sparsity and signal
amplitude. This paper presents an approach that not only captures
the complex characteristics of the signal but also minimizes the
multiplicity of reconstruction solutions. We propose a reliable
reconstruction method using an adaptive dictionary and constraint
matching, specifically through an iterative residual evaluation
mechanism.This approach enhances both the reconstruction quality
and performance of seismic signals. Addressing the challenge of
unknown sparsity in practical applications, we analyze the factors
that influence sparsity and establish the conditions for algorithm
termination based on signal-to-noise ratio and noise. By examining
the relationships among sparse signal length, residual size, and
signal-to-noise ratio, we determine optimal stopping criteria.
Comparative analyses of processed data demonstrate a significant
improvement in resolution and effective noise suppression.
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