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Accurate characterization of carbonate reservoirs remains a significant
challenge due to complex facies variations and the substantial effects of wave
propagation. We propose a facies-constrained reflectivity inversion strategy.
The method establishes a relationship between logging data and seismic
waveforms, applies clustering analysis using the Self-Organizing Map (SOM)
technique, and utilizes the clustering results to constrain the construction of
an initial model with realistic lateral variations. Based on this initial model, a
Bayesian-based reflectivity inversion is performed, incorporating a modified
Cauchy prior distribution to enhance inversion accuracy and stability. The
reflectivity method offers a one-dimensional analytical solution to the wave
equation, tacking thin layer thicknesses and wave propagation effects into
consideration, thereby significantly alleviating inversion problems encountered
in marl reservoirs. Compared to traditional inversion methods based on the
Zoeppritz equation, the facies-constrained reflectivity inversion delivers higher
accuracy and resolution. The application of this technique to identify marl
reservoirs in the Lei3

2 sub-member of the Sichuan Basin has yielded promising
results, effectively delineating favorable reservoir areas of approximately 210 km2

and offering strong support for future exploration and development.
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1 Introduction

Carbonate reservoirs are one of the most important types of reservoirs worldwide
(Yang et al., 2020; Dai et al., 2021; Zhu et al., 2021; Li et al., 2022; Meng et al.,
2022; Sarhan, 2024). In the Sichuan Basin of China, the second sub-member of the
third member of Leikoupo Formation (Lei32 sub-member) of Middle Triassic hosts
high-quality carbonate hydrocarbon source rocks (Yang et al., 2022; Wang et al.,
2023; Zhang et al., 2024). Additionally, the dense anhydrite layers above and
below the Lei32 sub-member provide excellent preservation conditions (Jiang et al.,
2021; Su et al., 2021; Zhang et al., 2023; Sarhan, 2024). This geological setting can
form evaporite seals and integrated source-reservoir unconventional oil and gas
accumulations.
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Recent testing across multiple wells has revealed significant
potential for industrial oil and gas production within the marl
reservoir of Lei32 sub-member (Xin et al., 2013; Tian et al., 2021;
Xin et al., 2022; Wang et al., 2023; Xin et al., 2024; Zhang et al.,
2024). However, predicting and studying themarl reservoirs present
several challenges. Firstly, the marl reservoirs are primarily located
at the top of the sub-member, but their small impedance differences
with the overlying salt rocks make them hard to distinguish using
traditional inversion methods (Zhang et al., 2024; Yang et al.,
2022). Secondly, extensive gypsum layers within the Lei32 sub-
member are interbedded with the marl (Zhang et al., 2023a;
Zhang et al., 2023b; Yang et al., 2022), causing significant seismic
wave propagation effects. Thirdly, the marl reservoirs are relatively
thin, and with seismic data’s primary frequency at around 20 Hz,
accurately characterizing these thin reservoirs is challenging. Finally,
the lateral variation and unclear distribution pattern of marl
reservoirs, coupled with a limited number of wells for analysis,
result in low inversion accuracy and ambiguous results. These
challenges present severe obstacles to the detailed characterization
of marl reservoirs, and the lack of prior research on predicting
marl reservoirs hampers future exploration strategies. Therefore, an
effective geophysical method is urgently needed to achieve precise
characterization of the marl reservoirs in Lei32 sub-member.

The quantitative reservoir characterization often relies on
seismic inversion (Bosch et al., 2010; Grana and Della, 2010), but
traditional methods are mostly based on the Zoeppritz equation
or its approximations (Aki and Richard, 1980; Gidlow et al., 1992;
Fatii et al., 1994; Shuey, 2012; Zhou et al., 2020; Zhou et al., 2021;
Song et al., 2023). Traditionalmethods candirectly predict the elastic
parameters for high-quality seismic data under simple geological
conditions (Babasafari et al., 2021). But these methods include
certain constraints, such as assuming that the received seismic data
consists of primary reflections, thereby neglecting wave propagation
effects (such as geometric spreading, attenuation, transmission loss,
etc.) and the influence of reservoir thickness. Additionally, the
approximations assume small variations in elastic parameters and
incident waves are projected at small angles (Mallick, 2007; Mallick
and Adhikari, 2015). Inversion using these methods can lead
to inaccuracies, which restricts their effectiveness in accurately
predicting thin carbonate reservoirs.

The elastic wave equation inversion may be the most
suitable method for predicting elastic parameters of the thin
carbonate reservoirs (Liu et al., 2022), but it faces challenges with
computational efficiency and stability. The reflectivity method
(RM) is a vectorized recursive computational approach for full-
wavefield simulation under the assumption of a one-dimensional
layered Earth model. It factors in reservoir thickness and wave
propagation effects, providing a significantly higher computational
efficiency (Zhao et al., 1994; Ma et al., 2004). Therefore, RM
effectively addresses the challenges posed by wave propagation
effects and thin reservoirs in marl reservoir analysis. The most
widely utilized RM is the recursive matrix algorithm introduced
by Kennett (1983). Subsequent developments and applications in
RM methods are largely rooted in or evolved from this theory,
leading to its designation as KRM (Kennett RM) (Fuchs andMüller,
1971; Kennett, 1983; Muller, 1985; Zhang and Yin, 2004; Fryer,
2007; Yin et al., 2006). However, these methods incur substantial
computational overheads due to their nested calculation approach,

which complicates derivative computations. In order to streamline
this process, a vectorized RM for computing recursive matrices
was proposed (Phinney et al., 1987). This vectorized approach has
since been refined to address problems associated with derivative
calculations (Chen et al., 2020). The RM study in this paper builds
upon this modified vectorized technique for inversion research.
Additionally, sparse solutions can be achieved through Bayesian
inversion methodologies that utilize appropriately chosen long-
tailed prior probability distributions (Misra and Sacchi, 2008;
Alemie and Sacchi, 2011). A modified Cauchy distribution (Sacchi,
1997; Alemie and Sacchi, 2010; Theune et al., 2010) is incorporated
within a Bayesian framework to preserve weak reflection signals and
enhance the overall accuracy and stability of predictions (Sen and
Roy, 2003; Liu et al., 2016).

To tackle the challenges of rapid lateral variations in marl
reservoirs and limited well data, which hinder the establishment
of accurate initial models and consequently reduce inversion
accuracy, we propose a seismic facies-constrained reflectivity
inversion strategy. This strategy hinges on analyzing logging
data and correlating them with seismic waveforms. Subsequently,
cluster analysis is applied to these waveforms to identify seismic
facies, which serve as constraints for constructing the initial
model. This model, incorporating reasonable lateral variations, is
essential for subsequent inversion studies. The clustering analysis
here is performed using Self-Organizing Maps (SOM) technique
(Kohonen, 1990; De Matos et al., 2007; Liang, 2024; Owusu et al.,
2024), which is an unsupervised learning neural network consisting
of a two-dimensional grid, where each grid cell is called a neuron.
Each neuron on the grid has a weight vector that represents its
position in data space. The learning process involves two stages:
competition and cooperation. In the competition stage, input
samples are matched to determine the optimal winning neuron.
In the cooperation stage, the winning neuron and its neighboring
neurons adjust their weight vectors based on the input data, making
them closer to the winning sample. This process allows SOM to
maphigh-dimensional input data onto a two-dimensional gridwhile
preserving its topological structure and forming clustering results.

In brief, we propose a seismic facies-constrained reflectivity
inversion strategy based on Bayesian framework to enhance the
accuracy of thin marl reservoir inversion. The paper begins with an
overview of the regional geology, detailing the lithology, physical
properties, and characteristics of the reservoir. It then introduces
the facies-constrained reflectivity inversion theory. Utilizing this
technique, we achieved high-precision characterization of the thin
marl reservoirs in Lei3

2 sub-member. This approach enabled the
determination of thickness distributions for upper salt formations
and the marl reservoirs. The method’s feasibility and effectiveness
were confirmed through verification against actual well data and
geological understanding.

2 Methods

The facies-constrained inversion is a strategy for constructing
initial models in seismic inversion based on constraints of seismic
facies. Traditional inversion methods analyze seismic data trace by
trace, primarily focusing on vertical amplitude changes. In contrast,
facies-constrained inversion utilizes lateral waveform variations to
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FIGURE 1
The workflow of the facies-constrained reflectivity inversion method.

characterize spatial heterogeneity of reservoirs, closely related to
depositional environments (Gu et al., 2016; Zhang et al., 2018;
Zhang et al., 2018; Ting et al., 2023). The method integrates
sedimentary facies and logging data, utilizing SOM technique
for waveform clustering analysis. The clustering results are then
used as constraints for constructing an initial model that reflects
spatial variations of reservoirs and incorporates facies information.
Based on the initial model, high-precision inversion of marl
reservoirs using the reflectivitymethod is achievedwithin a Bayesian
framework. See Figure 1 for the detailed workflow.

2.1 Establishment of facies-constrained
initial model

The facies-constrained inversion method integrates geological
information into waveform attributes during the inversion process,
enhancing the accuracy of the inversion results in representing
actual sedimentary patterns (Zhang et al., 2021).The essence behind
this method is to analyze well log data, integrate sedimentary
facies and geological information to classify well log facies. These
classifications then serve as a basis for distinguishing among various
seismic waveforms. Cluster analysis is performed around these
seismic waveforms to obtain seismic facies results, and finally, the
clustered seismic facies are used as constraints to establish the initial
inversion model.

In this study, the initial phase of the constrained modeling
technique involves filtering out low-frequency and high-frequency
components from the well log data to better match the seismic
bandwidth. Next, the characteristic waveforms of the area are
clustered. Guided by the principle that well logs belonging to
the same seismic facies exhibit comparable features with seismic
waveforms, we retrieve M-trace waveform data that exhibits a
high degree of similarity to the waveforms adjacent to each well.
This process allows us to construct a waveform sample library
tailored to the target layer of the study area. Following this,
we utilize the wavelet transform to map the well logging data
into the wavelet domain for a comprehensive multiscale analysis.
By extracting similar structures from each sample, we construct

the initial inversion model. Elaborate on the construction of
the waveform sample set, within the same study stratum, using
Markov chain Monte Carlo random network to perform unbiased
estimation on these M-trace waveforms. The specific expression
is given by Equation 1:

P(u0) =
N

∑
i=1

βiP(ui) (1)

Where N is the number of optimal waveforms selected from the
sample library. P(u0) is the attribute value of the unknown point in
the target layer of the study area. P(ui) is the attribute value of the
waveform in the sample library. βi is the weighting coefficient of the
ith representative waveform sample point with respect to the other
unknown sample points, serving as a coefficient upon distance. After
establishing the initial model, we can implement the reflectivity
inversion method based on the Bayesian framework.

In addition, cluster analysis is performed using the Self-
Organizing Map (SOM) method, which is a competitive neural
network widely used for clustering and dimensionality reduction.
The fundamental principles and steps involved in this process are
outlined below.

(1) Initialization: Initialize the neural network with each neuron
possessing a weight vector that matches the dimensionality of
the input data. These weight vectors are typically initialized to
small random values.

(2) Selecting the winning neuron: For each input sample, calculate
its distance from the weight vectors of each neuron. Choose
the neuron with the smallest distance, known as the winning
neuron.This process ensures that the winning neuron exhibits
the strongest response to the input data, making it the best
match for the current input within the network.

(3) Updating neighboring neurons: Update the weight vectors of
the winning neuron and its neighboring neurons to move
their weight vectors towards the direction of the input sample.
This process ensures that neighboring neurons in the input
space move closer to each other as well. The magnitude of the
update depends on the topological distance and the learning
rate between the neurons and the winning neuron.

(4) Adjusting the learning rate and neighborhood radius: As
training progresses, decrease the learning rate and the
neighborhood radius to gradually stabilize the model.

(5) Iterative repetition: Repeat steps (2) and (3) to continuously
adjust the weights of neurons, gradually forming clusters.
Typically, multiple iterations are required to train the network
to ensure adequate topological mapping and cluster formation.

After SOM learning is complete, each neuron represents a cluster
center. Similar input data samples are mapped to nearby neurons,
forming clusters that represent the clustering results of the data.

2.2 The reflectivity inversion method

As mentioned above, the reflectivity method can achieve full-
wave field simulation of elastic wave equations, factoring in both
the wave propagation effect and layer thickness. Assuming there
are N layers of horizontally layered media underground, the total
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reflectivity coefficient R(p,ω) can be calculated through a six-
element vector Γ (Equation 2) in the domain of frequency and
slowness (Phinney et al., 1987; Chen et al., 2020):

Γn = [δ −RSPδ −RSSδ RPPδ RPSδ |R|δ]
T (2)

Among them, Γn represents the overall reflection response below
the n-th layer interface of the medium, the element R represents the
reflection coefficient, the first subscript of R is the type of incident
wave, and the second subscript is the type of reflected wave. δ is the
scaling factor, usually taken as a constant of 1. |R| is a determinant
of the reflection coefficient and has no clear physical meaning.

Based on the elastic half-space below the base of themedium, the
total response ΓN under layer N (Equation 3) can be formulated as:

ΓN = [1 0 0 0 0 0]T (3)

Then we can use a recursive method (Equation 4) like this:

Γn =WnΓn+1
Wn = P+nOnP−n

(4)

Where Qn is wave propagator matrix for layer n, On is layer
crossing matrix, P+n , P−n is downward and upward interface crossing
matrix respectively.

Starting from the response at the bottom interface of the
medium, the overall response below the top interface can be
calculated through Equation 5:

Γ0 =W0W1⋯WN−1ΓN (5)

The total reflectivity in the frequency-wavenumber domain can
be computed for PP waves (Equation 6):

RPP(ω,p) = Γ0(4)/Γ0(1) (6)

By integrating its slowness and frequency, and then convolving
the seismic wavelet, the seismic records in the spatiotemporal
domain can be calculated through Equation 7 (Mallick and
Frazer, 1987):

Ω(t,x) = 1/2π∫
∞

−∞
χ(ω)eiwtdω∫

∞

−∞
ω2pR(ω,p)ϒ0(wpx)dp (7)

Where χ(ω) is the seismic wavelets in the frequency domain,
ϒ0(wpx) is the Bessel function. However, the integration of slowness
requires sufficient sampling to mitigate the phenomenon of spatial
aliasing. Practical experience has demonstrated that the time needed
for integration increases exponentially with the number of samples.
To minimize time loss, we directly integrate over frequencies and
resample slowness to obtain synthetic seismic data in the time-angle
domain as shown in Equation 8:

pn = sin θ/αn

R(θ, t) = 1/2π∫
∞

−∞
R(θ,ω)eiwtdω

(8)

The aforementioned content presents the forward modelling
theory of reflectivity method. To better identify marl reservoirs,
the reflectivity method is introduced into the Bayesian inversion
framework. Based on the prior distribution and likelihood
function, the posterior probability distribution can be computed. By

calculating the derivative of the posterior probability distribution
function with respect to the model parameters and setting it
equal to zero, the maximum a posteriori (MAP) solution can be
calculated. Therefore, the problem is transformed into solving the
objective function (Equation 9):

Ψ(m) = 1/2σ2d(d−G(m))
T(d−G(m)) + ƛ(m) (9)

Wherem represents the parameter to be inverted (including the
velocity of compressional and shear waves, and density), d is the
observed seismic data, G is the reflectivity forward operator, and
G(m) represents the regularization term. σ2d is the noise variance.

The Gaussian distribution is one of the most common prior
distributions and is widely used in pre-stack reservoir inversion.
However, its smooth solutions tend to suppress high values, leading
to reflection coefficient estimates that are lower than the true values,
thereby reducing the resolution of the inversion. In contrast, the
Cauchy distribution is designed to achieve sparse solutions, which
allows for better recovery of high values inmodel parameters during
the inversion process, enhancing resolution (Alemie and Sacchi,
2010). However, the Cauchy distribution is not a convex function,
which means that it cannot guarantee convergence to the optimal
solution during the iterative solving process. Therefore, we use
the modified Cauchy distribution to conduct inversion research,
which can effectively balance the enhancement of signal-to-noise
ratio at strong reflection boundaries while providing appropriate
protection for weak signals (Yin et al., 2013). Thus, ƛ(m) can be
expressed as Equation 10:

ƛ(m) =
N

∑
i=1

(m− μ)Tξi(m− μ)
1+ (m− μ)Tξi(m− μ)

(10)

Where μ represents the mean, ξi = (Di)TΣ−1Di, Σ is the
covariance matrix, andDi is the sorting matrix.

Considering the nonlinearity of the forward operator G(m),
the objective function can be solved through the Gauss-Newton
iteration method (Liu et al., 2016; Chen et al., 2020). The iteration
formula is expressed as:

mr+1 =mr − κP(mr)H(mr)−1 (11)

where κ represents the inversion iteration step size, while P and
H denote the first and second-order partial derivatives of Ψ(m)
with respect to the model parameters, respectively. P and H can be
expresses as:

P(m) =
∂Ψ(m)
∂m
= (

∂G(m)
∂m
)
T
(G(m) − d) + σ2dλ(m− μ)

H(m) =
∂2Ψ(m)
∂2m
≈ (

∂G(m)
∂m
)
T ∂G(m)

∂m
+ σ2dλ

(12)

where λ is the regularization factor.
Setting the initial model constrained by seismic facies as

m0, the reflection coefficient R can be calculated based on the
aforementioned reflectivity method forward theory. Subsequently,
by convolving the reflection coefficient with the seismic wavelet,
the synthetic seismic record G(m) can be obtained. The derivative
of G(m) with respect to the model parameters m0 is then
computed. Iterative calculations are performed using Equation 12
by substituting G(m) and the calculated derivatives, and the model
parameters are updated according to Equation 11 until reaching the
maximum iteration count.
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FIGURE 2
Paleogeographic background of the Middle Triassic Leikoupo Formation sedimentary period in the Upper Yangtze region.

3 Case study

3.1 Geological setting

During the Middle Triassic period, the Indosinian Orogeny
instigated a collective uplift of the carbonate platform. This
geological event resulted in the formation of the ancient Luzhou-
Kaijiang uplift in the eastern region of the basin, while the western
section eventually evolved into the present-day western Sichuan
Basin (Zhang and Yin, 2006; Ma et al., 2010; Li et al., 2012), as
illustrated in Figure 2. Our study area, Block X, is situated in Sichuan
Basin of southwestern China, covering an area of approximately
420 square kilometers. There is only one well in the study area: the
CT1 well, which was drilled in 2023. Currently, the exploration of
the marl reservoir is in its initial stage.

This ancient geographical pattern affected the depositional
environment during the formation period of Leikoupo layers.
Influenced by the Indosinian Orogeny, the Lei32 sub-member is
characterized by lagoon deposits. Characterized by relatively weak
hydrodynamic conditions and high salinity levels, the lagoon was
controlled by sea-level fluctuations, leading to the deposition of
alternating layers of gypsum, salt rock, and argillaceous limestone
(Li et al., 2012; Tan et al., 2014). Multiple sets of organic-
rich argillaceous limestones and calcareous mudstones were also
deposited during this period.Moving outward from this gypsum salt
rock lagoonal center, there is a gradual transition to gypsum-bearing
argillaceous limestone lagoon and then argillaceous limestone

lagoon. Notably, the thickness of these deposits peaks in the central
regions and tapers off towards the edges. The uplifted area in
the east underwent significant erosion (Figure 3B). Surrounding
the lagoon, there are successive deposits of argillaceous limestone
and calcareous mudstone. Closer to the gypsum salt rock lagoonal
center, the development of gypsum and salt rocks was more
pronounced. Conversely, as the distance increases, the content of
gypsum and salt rocks gradually decreased, and the proportion
of argillaceous limestone and calcareous mudstone in the strata
increased accordingly (Figure 3A).

The strata of the Leikoupo Formation mainly consist of
interbedded limestone and gypsum deposits. The top is in
unconformable contact with the continental clastic rocks of
the Upper Triassic Xujiahe Formation, while its underlying
strata conformably contact the Jialingjiang Formation of the
Lower Triassic. According to electrical properties, lithology, and
sedimentary cycles, the Leikoupo Formation can be subdivided into
four sections, Lei-1, Lei-2, Lei-3, and Lei-4. The Lei-3 member
can be further refined into three sub-members, namely, Lei3

1,
Lei32, and Lei33, arranged sequentially from bottom to top. In
the Central Sichuan Basin, the Lei31 sub-member predominantly
features argillaceous limestone as its lithology. Similarly, the Lei33

sub-member is also primarily composed of argillaceous limestone.
The Lei32 sub-member, on the other hand, exhibits an interbedding
of gypsumand argillaceous limestone, with hallowburial depth.This
combination of features makes the Lei3

2 sub-member a prime area
for exploration within the central Sichuan region (Figure 3C).
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FIGURE 3
(A) Sedimentary facies of the Lei3

2 sub-member (B) Residual formation thickness of the Lei3
2 sub-member (C) Stratigraphic columns of the Lei3

2

sub-member in central Sichuan Basin.

3.2 Reservoir conditions

The Lei32 sub-member can be further divided into two sections
based on lithological variations.The upper section is predominantly
characterized by salt rocks, whereas the lower section is mainly
comprised of argillaceous limestones and calcareous mudstones
(Xin et al., 2022). Integrating core observation, SEM and other
laboratory techniques, the reservoir lithology is mainly argillaceous
limestone and calcareous mudstone beneath the salt rock at the top
of Lei3

2 sub-member.The reservoir space is dominated by inorganic
micro-nanopores, organic micro-nanopores and microfractures.
Structural cracks are relatively developed, including early low angle
cracks and late high angle cracks, with some of the cracks filled
with calcite (Figure 4). The minerals that produce mineral related
pores mainly include clay minerals, dolomite, calcite, and pyrite,
while organic matter pores are mainly developed in organic matter.
Under the scanning electron microscope, it is evident that organic
matter pores and pores related to clay, as well as micro-fractures,
are well developed. In contrast, the pure limestone areas exhibit
an abnormally dense structure.

Based on actual physical property measurements conducted on
core samples, the reservoir porosity ranges from 2.00% to 8.51%,
averaging at 2.7%, while the reservoir permeability spans from
0.00076 to 1.68 mD, with an average of 0.19 mD. Overall, the marl
reservoir of Lei32 sub-member is characterized as a low-porosity,
low-permeability unconventional reservoir. Besides, the reservoir
properties are jointly controlled by clay content, gypsumcontent and
the presence of fractures. There exists a certain positive correlation
between permeability and porosity (Figure 5A). Specifically, the
content of clay minerals is the main factor affecting the reservoir
porosity, with a positive correlation existing between porosity and
clay mineral content, as illustrated in Figure 5B. With the increase
of clay mineral content, the intergranular pores and contraction
joints related to clay minerals will also increase, leading to an
increase in porosity. Moreover, dissolved pores and caves developed
along fractures in gypsum containing mudstone limestone have
better physical properties compared to non-gypsum containing
mudstone reservoirs. Fractures play a significant role in enhancing
the permeability of the reservoir, potentially increasing it by several
orders of magnitude when fractures are well-developed.
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FIGURE 4
The reservoir characteristic in the Lei3

2 sub-member of Central Sichuan Basin. (A) Well CT1, 3496 m, core of mudstone limestone. (B) Well CT1,
3550 m, cracks and dissolved pores that expand along cracks. (C) Well CT1, 3496 m, cracks and dissolved pores that expand along cracks. (D) Well CT1,
3495 m, core of gray mudstone. (E) Well HP1, 2648 m, gray mudstone, micro fractures and small amount of nanopores developed within the organic
matter. (F) Well CT1, 3565.81 m, mudstone limestone, the mud crystal calcite developed intergranular pores.

FIGURE 5
Relationship between NMR porosity and permeability (A) and clay content (B) in the Lei3

2 sub-member.

3.3 Rock physics analysis

The targeted reservoir is the marl of Lei32 sub-member, which
lies beneath a substantial layer of gypsum salt rock. This gypsum
salt layer poses challenges for the inversion of the underlying
target reservoir. This study employs the proposed method to
conduct quantitative reservoir prediction in this region. Initially,
rock physics analysis is performed to identify sensitive parameters
that differentiate between salt rock and marl reservoir. Figure 6A
shows a scatter plot of P-wave velocity against density, illustrating
the range of parameter values for different reservoir types. Here,
the yellow, red, and blue dots represent reservoirs, poor reservoirs
and dry layers, respectively. The classification of these reservoir

types is grounded in well log interpretation. Significantly, there
is considerable overlap in P-wave velocity between the reservoir
and the dry layer, posing a challenge for conventional inversion
techniques. For deeper analysis, the intersection of P-wave velocity
and density is still conducted, but this time it is differentiated
by lithology rather than reservoir type, as shown in Figure 6B.
We can observe that there is a noticeable density variation
between salt rock and marl, with the dry layer of low P-wave
velocity corresponding to salt rock. Typically, salt rocks exhibit
densities below 2.5 g/cm³, whereas marls generally surpass this
threshold. Upon excluding the influence of salt rock, it is evident
that the reservoir is distinguished by low P-wave velocity and
medium-low density. Consequently, P-wave velocity proves to be
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FIGURE 6
Scatter diagram of the relationship between P-wave velocity and density of different reservoirs (A) and lithology (B).

a reliable parameter for differentiating between the reservoir, poor
reservoir, and dry layer.

3.4 Waveform clustering analysis

As previously mentioned, leveraging sedimentary and logging
facies, we establish correlations between seismic waveforms and
logging facies. We utilize SOM waveform clustering to analyze
distinctive waveform characteristics and derive clustering outcomes.
Subsequently, these results are utilized to impose constraints on the
development of the initial phase model.

Figure 7 displays the logging facies division for well CT1
within the study area, which is categorized into three types:
gypsum salt rock lagoon, argillaceous limestone lagoon and mud-
bearing limestone lagoon.The gypsum salt rock lagoon deposits are
primarily characterized by grey and white gypsum and salt rock
sediments. The argillaceous limestone lagoon deposits are mainly
composed of dark grey and grey-black argillaceous limestone and
calcareousmudstone sediments.Themud-bearing limestone lagoon
deposits are primarily composed of grey mud-bearing limestone
sediments. Notably, the top of the Lei32 sub-member consists of a
gypsum salt rock lagoon facies, while the middle and lower parts
are characterized by argillaceous limestone lagoon andmud-bearing
limestone lagoon.

Figure 8B is the waveform clustering analysis results cross
the well CT1, namely, the identified seismic facies. As we can
see, the identified seismic facies exhibit a close alignment with
the logging facies, demonstrating a high degree of discrimination
and exceptional resolution. In addition, we also noticed a robust
correlation between the clustering results and the seismic wave
group characteristics shown in Figure 8A. This correspondence
underscores the effectiveness of the clustering method and
its capacity to capture lateral variations accurately. Following
this, these clustering results are utilized to constrain the
establishment of the initial model that faithfully capture lateral
variations in line with sedimentary patterns. These models
serve as the foundational basis for Bayesian-based reflectivity
inversion studies.

3.5 Inversion of salt rocks

According to the aforementioned petrophysical analysis results,
salt rock is distinguished by its low density, which sets it apart
from other rock types. Therefore, we initially employed the
Bayesian reflectivity method within a facies-constrained model
to conduct pre-stack inversion, aiming to obtain density profiles
for identifying salt rock. Notably, the salt rock of Lei32 sub-
member is primarily concentrated at the top, with a substantial
thickness exceeding 20 m. Figures 9A–C represent the raw
seismic profile, the inverted density profile derived from the
facies-constrained reflectivity method, and the inverted density
profile based on the traditional Zoeppritz equation, respectively.
The warm colour at the top of Lei32 sub-member signify low
density, corresponding to the presence of salt rock. The blue
curve adjacent to the well is the actual density curve from
well logging.

Clearly, the top of the salt rock exhibits a low-density signature,
closely following the curve adjacent to the well. However, tracking
the base of the salt rock, marked by the peak reflection, proves
challenging due to significant lateral variations in thickness
observed in seismic profiles. Traditional inversion results using
the Zoeppritz equation (Figure 9C) show relatively lower accuracy
and resolution, thereby complicating the precise identification
of the base of salt rock. In contrast, the density profiles from
the recommended inversion method (Figure 9B) allow for easy
comparison and accurate tracking of the bottom boundary of the
salt rock. The salt bottom horizon traced aligns more consistently
with the strong peak reflection observed in the seismic data. By
establishing a frameworkmodel based on this tracked boundary and
the Lei32 sub-member bottom, we can confine the vertical range for
subsequent reservoir inversion, thereby effectively eliminating the
influence of the salt rock.

3.6 Inversion of marl reservoirs

After removing the influence of salt rock, we use the facies-
constrained reflectivity inversion technique to compute the P-wave
velocity profile, thereby achieving effective identification of marl
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FIGURE 7
Comprehensive stratigraphic column of Lei3

2 sub-member of well CT1.

reservoirs. Figure 10B depicts the inverted profile, where the pink
curve adjacent to the well is the actual P-wave velocity curve.
It is evident that the marl reservoirs are associated with lower
P-wave velocity, and the inversion results align closely with the
P-wave velocity curve derived from real drilling. Specifically, the
three sets of reservoirs in Well CT1 are corresponding to three
distinct zones of low P-wave velocity, showcasing robust lateral
continuity of the reservoir. Furthermore, the inversion result
indicates a significantly higher resolution using this recommended
method. This alignment demonstrates the credibility of the
facies-constrained reflectivity inversion method in predicting
marl reservoir. To provide additional insights into the inversion

performance, Figure 10C displays the P-wave velocity profile
obtained from the traditional Zoeppritz equation for comparison.
The conventional method is influenced by the weak peaks at the
bottom of the Lei32 sub-member, resulting in the inversion of a
set of low-impedance reservoirs at the bottom. This discrepancy
between the inverted reservoir and actual drilling results
underscores the limitations of traditional methods in identifying
marl reservoirs.

The velocity threshold for marl reservoirs, as determined by
rock physics analysis, has been established at 5,500 m/s. Utilizing
this threshold, we can delineate a criterion for the inverted P-
wave velocity data, where values falling below this threshold
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FIGURE 8
Seismic profile (A) and seismic facies classification profile (B) cross the well CT1.

FIGURE 9
Seismic profile (A); inverted density profile based on the facies-constrained reflectivity method (B) and on traditional Zoeppritz equation (C). The purple
squares in the figure represent the reservoirs.

FIGURE 10
Seismic profile (A); inverted P-wave velocity profile based on the facies-constrained reflectivity method (B) and on traditional Zoeppritz equation (C).
The purple squares in the figure represent the reservoirs.

signify the presence of target reservoirs, thereby facilitating the
prediction of reservoir thickness. The predicted thickness of
the marl reservoir in Lei32 sub-member of Well CT1 is 59 m,
and the well log interpretation indicates a reservoir thickness of

55 m. The minimal discrepancy between these values is deemed
acceptable, and the primary source of error can be attributed
to differences in resolution between well logging and seismic
reservoir prediction techniques.

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2024.1495720
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2024.1495720

FIGURE 11
The comparisons between the actual velocity curves (A), density curves (B) from well CT1 and the inverted curves. The black curves represent the actual
well logging data, while the red curves represent the inverted data derived from the well location based on the facies-constrained reflectivity method.

To further demonstrate the accuracy of the inversion results, the
inversion results based on the facies-constrained reflectivity method
at the location of Well CT1 were extracted separately. Figure 11
are the comparisons between the actual velocity curves (a), density
curves (b) from well CT1 and the inverted curves. It can be
observed that both the P-wave velocity and density derived from
the inversion match well with the actual well data. Notably, the
inversion of P-wave velocity is more accurate and can even capture
areas of significant variation, while the density inversion results
maintain the same trend as the real data. This further indicates
that the proposed method is quite suitable for the inversion of
marl reservoir data.

3.7 Reservoir planar distribution

By incorporating rock physics analysis, we have determined
that the density threshold for salt rock is 2.5 g/cm³, and the P-
wave velocity threshold for marl reservoirs is 5,500 m/s. Based
on the inverted density and P-wave velocity using the facies-
constrained reflectivity method, and by setting these thresholds, we
can effectively map out the planar distribution of both salt rocks and
marl reservoirs.

Figures 12A, B represent the salt rock thickness map of the Lei32

sub-member based on the facies-constrained reflectivity method
and on traditional Zoeppritz equation, respectively. The thickness
of salt rock is predominantly influenced by fault-related folding and
squeezing deformation. In regions experiencing intense squeezing
deformation, the salt rock thickness tends to be larger. The thicker

salt rock zones are mainly concentrated in the central section of
the study area, which is enclosed by northeast-trending, east-west-
trending, and northwest-trending faults.The study area is situated in
the transitional facies zone, transitioning from gypsum salt lagoon
to muddy lagoon. The overall predicted thickness of the salt rock
is moderate, ranging between 40 and 70 m. When compared to the
inversion results obtained using the traditional Zoeppritz equation,
the salt rock thickness based on the facies-constrained reflectivity
method is in good agreement with the regional depositional facies,
and exhibits a superior planar resolution. This higher resolution
allows for a more detailed representation of geological structures
or features.

Figures 13A, B illustrate the predicted marl reservoir thickness,
derived from the facies-constrained reflectivity method and the
traditional Zoeppritz equation, respectively. Compared to the
reservoir distribution from the inversion method utilizing the
traditional Zoeppritz equation, the planar distribution of marl
reservoir thickness, characterized by facies-constrained reflectivity
inversion method, exhibits notable variability. This distribution
demonstrates a lesser correlation with major faults and is primarily
influenced by sedimentary facies. Generally, the marl reservoirs are
well-developed, with thickness varying between 20 and 60 m. With
a reservoir thickness threshold set at 30 m, the favourable reservoir
development area in the study area covers an extent of 210 km2,
which can be identified as a prospective zone for future exploration
of the marl reservoirs. The implementation of techniques such
as horizontal wells around the favourable area can effectively
achieve the economies of scale in the development of these
marl reservoirs.
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FIGURE 12
Salt thickness map of the Lei3

2 sub-member based on the facies-constrained reflectivity method (A) and on traditional Zoeppritz equation (B). The red
lines in the map represent faults.

FIGURE 13
Marl reservoir thickness map of the Lei3

2 sub-member based on the facies-constrained reflectivity method (A) and on traditional Zoeppritz equation (B).

4 Conclusions and discussion

In this study, we introduce a reflectivity inversion method
for marl reservoirs, utilizing seismic facies constraints. Given the
pronounced lateral variations in marl reservoirs, a seismic facies-
constrained initial model construction method is proposed to
enhance the identification of these reservoirs, which overcomes
the shortcomings of conventional initial model construction that
did not consider lateral features. Furthermore, in light of the
complex geological conditions, thin reservoir layers, and significant
wave propagation effects characteristic of marl reservoirs, we
introduce a Bayesian inversion method based on reflectivity,
along with a modified Cauchy distribution to better handle weak
reflections from marl reservoirs. Compared to traditional inversion
methods based on the Zoeppritz equation, this method is better
suited for predicting marl reservoirs. Practical applications in
the Sichuan Basin demonstrate the effectiveness and advantages
of this method, highlighting its promising potential for marl
reservoir prediction.

The reflectivity method presented in this paper is used to
obtain a one-dimensional analytical solution of the wave equation.
However, this method is based on the assumption of a one-
dimensional layered medium. It is applicable in regions with
relatively simple geological structures. In contrast, when dealing
with complex geological formations where the subsurface media
do not conform to a simple one-dimensional layered structure,

it becomes necessary to use depth migration or reverse-time
migration techniques to correctly position the strata, thereby
making the data more representative of a one-dimensional
layered medium.

The reflectivity inversionmethod studied here originally focused
on single-trace inversion, neglecting the lateral correlation of
subsurface media. However, the phase-controlled inversion strategy
carefully considers the spatial heterogeneity of the subsurface
media and reservoirs during modelling, addressing this limitation.
Additionally, in constraining the initial model, we utilized SOM
technique for waveform clustering analysis. SOM is an unsupervised
learning method that is sensitive to parameters such as learning
rate and neighborhood function, and its clustering results can
be significantly influenced by the network topology, potentially
affecting the outcomes. Therefore, supervised or semi-supervised
clustering methods, such as Gaussian Mixture Models (GMM),
Support VectorMachines (SVM), and K-Nearest Neighbors (KNN),
may serve as new avenues for comparison or improvement of
clustering results.
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