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Introduction: This work employs a coupled evaluation model that integrates
deterministic coefficients with the Analytic Hierarchy Process to conduct a
comprehensive assessment of geological disaster susceptibility in Shenzhen
Town, Ninghai County.

Methods:Cascading geological disasters induced by typhoons and rainfall in the
southeast coastal area of China are amajor concern and cause huge losses of life
and property every year. To effectively prevent and mitigate such disasters, it is
necessary to evaluate the susceptibility of geological disasters. Taking geological
disasters in Shenzhen Town, Ninghai County as the research object, eight
influencing factors in terms of topographic and geomorphological conditions,
engineering geological conditions, and human activities were selected based on
the geographic information platform (GIS) in this work. The coupling model of
the certainty factor model and analytic hierarchy process method was used to
evaluate the susceptibility of geological hazards in the study area.

Results: The evaluation results illustrate that the coupling model can accurately
and objectively assess the susceptibility of geological hazards in this region, with
a high evaluation accuracy of 80.8%. The susceptibility is greatly affected by
slope, stratigraphic lithology, and human activities. The areas with extraordinarily
high and high susceptibility were identified in the northwestern part of the study,
where the ignimbrite is exposed in the steep topography.

Discussion: The research method provides a reference for evaluating the
susceptibility of geological hazards in the southeastern coastal region of China,
and the evaluation results can provide recommendations for decision-making
on disaster prevention and mitigation in this region.

KEYWORDS

geological hazard, susceptibility assessment, APH-CF model, typhoon and rainfall,
southeast China

1 Introduction

The southeastern coastal areas of China are frequently struck by typhoons every year,
and the ensuing torrential rainfall generally induces cascading geological hazards in this
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region (Li et al., 2021; Han et al., 2022; Chang et al., 2023).The storm
brought by Typhoon Morakot in 2009 led to the average rainfall
reaching 350 mm in the Ninghai mountain area of Ningbo City.
Long-term continuous rainstorms caused more than 100 landslides
in mountainous villages and towns in Ninghai County, such as
Sangzhou, Huangtan, Shenzhen Town, and Chalu Town. In 2023,
Typhoon Dusurei and Typhoon Kanu caused cascading landslides
in Ninghai County, and cascading landslides resulted in severe
traffic tie-ups.

Geological hazard susceptibility assessment is an essential part
of disaster prevention and mitigation and land use, which refers to
the evaluation of the likelihood of geological hazards in a particular
area (Wang et al., 2020; Zhang et al., 2022; Huang et al., 2020;
Huang et al., 2024a; Huang et al., 2024b). In recent years, a series
of studies on evaluation methods of geological hazards have been
conducted by many researchers, including the Analytic Hierarchy
Process, the Information Value Method, the Fuzzy Comprehensive
Evaluation Method, the Certain Factors Method, the Delphi
Method, the Weight of Evidence Method, the Logistic Regression
Model, the Support Vector Machine Method, the Coefficient of
Variation Method, and the Contributing Weight Model (Sun et al.,
2018; Zhao D. et al., 2021; Wen et al., 2022; Jia and Chen, 2024;
Huang et al., 2024c). With the convenience of data acquisition,
the improvement of computing power, and the increasingly
sophisticated model evaluation algorithms, machine learning has
become more widely applied in the evaluation of geological hazard
susceptibility, such as the gradient boosting trees, the artificial neural
networks, the decision trees, the random forests (Huang et al.,
2024d; Shao et al., 2023; Wu et al., 2024; Devkota et al., 2013;
Yang et al., 2024; Catani et al., 2013; Dou et al., 2019; Zhou et al.,
2021; Wu et al., 2021; Chen et al., 2017). In practical applications,
researchers often adopt a combinationweightingmethod to improve
the scientificity and accuracy of geological hazard evaluations due
to the advantage of combining multiple evaluation methods and
avoiding the limitation of the single evaluation method. A coupling
method of the Information Value Model and Scoops 3D was
applied to obtain accurate evaluation results on the susceptibility of
geological hazards along the Guizhou-Chongqing pipeline (Yu et al.,
2024). A detailed susceptibility assessment on a county scale was
conducted, adopting the coupling model of the Analytic Hierarchy
Process and the Coefficient of Determination Method (AHP-CF)
(Zhao et al., 2021b). The geological hazard susceptibility in the
Three Gorges Reservoir area was evaluated through the coupling
model of weighted information value and iterative self-organization
clustering (Chen et al., 2021). A coupling model of the Information
Value Method and the Logistic Regression Model was employed
to evaluate the geological hazard susceptibility in the Manas River
Basin of Xinjiang andWuYuan County in Jiangxi Province (Bi et al.,
2022; Huang et al., 2023). These combination weighting methods
significantly improve the credibility and accuracy of the evaluation
results. However, there are few relevant studies on geological
hazards around the southeastern coastal areas of China. It is
necessary to evaluate the vulnerability of rainfall-induced geological
hazards based on the coupling model. In this study, the coupling
model of the Analytic Hierarchy Process (AHP) and the Certain
Factors Method (CF) was adopted to evaluate the susceptibility
of geological hazards in the Shenzhen Town of Ninghai county,
applying the GIS spatial analysis platform and SPSS software. In this

process, factors, including geological and environmental conditions,
formation mechanisms of geological hazards, and human activities,
were comprehensively considered (Sun et al., 2024). The results of
this work can provide technical support for land-use planning, social
development strategies, geological disaster prevention, and early
warning systems in the region. Furthermore, they offer theoretical
guidance and technical references (An et al., 2024) for evaluating
geological disaster susceptibility in other township-level areas along
the southeastern coast.

2 Overview of study area

Ningbo City is located northeast of Zhejiang Province, adjacent
to the East China Sea. Geomorphologically, it belongs to the
low mountain and hilly area, with a higher elevation in the
southwest and a lower elevation in the northeast (Figure 1). The
exposed strata comprise the Cretaceous volcanic sedimentary rock
series, with sparsely exposed Lower Jurassic volcanic rocks and
Upper Neogene basalt. Shenzhen Town belongs to the subtropical
monsoon climate, which features abundant rainfall and sunshine.
The average annual precipitation is generally 1,600–1800 mm,
with rainfall mainly concentrated during the plum rain period
from May to June and the typhoon period from August to
October. The precipitation from May to October accounts for
about 70% of annual rainfall. Rivers and streams are densely
distributed (Figure 1).

Controlled by topographic, geological, hydrological and
climatic factors, geological hazards in Ningbo City are generally
characterized by small scale, cascading occurrence and uneven
spatial distribution. They are classified as channelized and hillslope
landslides (Schneider et al., 2008) (Figures 2A, B). The composition
of sliding mass is relatively simple in general, and silty clay or silty
claywith gravel is commonly observed in the sliding area.The sliding
mass in the volcanic rock is mainly composed of fully weathered
layers. The thickness of the landslide mass generally ranges from
1 to 5 m, and the volume is mostly below several thousand cubic
meters, with small ones only tens of cubic meters (Figures 2C, D)
(Han et al., 2023).

Spatially, geological hazards in the study area often occur in
the low mountain and hilly areas in the western and southern
regions. Yuyao City and Fenghua District register the largest
number of geological disasters, with 158 and 112, respectively.
Followed by Yinzhou District, Ninghai County, and Xiangshan
County, the number of l geological hazards is 97, 70, and
66, respectively. The number of geological hazards in Cixi City
and Beilun District was 54 and 51, respectively. Geological
hazards in Haishu District and Jiangbei District are relatively
underdeveloped, with 25 and 10 geological hazards, respectively.
Chronologically, due to the rapid economic development and the
increase in human engineering activities, the impact of artificial
destruction of the geological environment on the development
of geological disasters has become increasingly serious. The
number of geological hazards has shown an increasing trend
from 2006 to 2013, although the phenomenon of anomalous
peaks in interannual variability occurred (mainly in 2005, 2012,
2013, and 2019). Affected by the rainstorms resulting from
Typhoon “Fitter” in 2013 and Typhoon “Lekima” in 2019, cascading
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FIGURE 1
Location of the study area. (A) Location map of Zhejiang Province; (B) Location of the study area.

FIGURE 2
Characteristics of typical geological hazards in Ningbo. (A) Channelized landslide; (B) Hillslope landslide; (C) Exposed scarp due to mass movement; (D)
Shallow sliding mass.
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FIGURE 3
Statistical map of inter-annual and monthly distribution of historical geological hazards in Ningbo City (A) Yearly distribution charts; (B) Monthly
distribution charts.

FIGURE 4
Geological disaster distribution map of Shenzhen Town.
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TABLE 1 Scale of judgment matrix and meaning.

aij Connotation

1 The factor i is equally important as the factor j

3 The factor i is slightly more important than the factor j

5 The factor i is moderately more important than the factor j

7 The factor i is extremely more important than the factor j

9 The factor i is definitely more important than the factor j

2, 4, 6, 8 Scale values corresponding to two intermediate states for
judgment

Reciprocal Contrary to the above impact situation

geological disasters have been triggered by rainstorms in this
region (Figure 3A). In terms of the distribution of geologic hazards
during the year, geological hazards in this area mainly occur
during the flood season from June to September, with a strong
correlation with the cumulative average monthly precipitation
distribution. Among them, the geologic hazards in October and
December are mainly due to the impact of a single extreme
weather event (Figure 3B).

This study centers on Shenzhen Town, a region notable for
its high incidence of geological hazards, to conduct an in-depth
susceptibility assessment of geological hazards at the town level.
Given its unique geological features and the frequent occurrence
of geological disasters, Shenzhen Town serves as an essential
site for this research. In our assessment, we will consider a
comprehensive range of factors, including topography, climate,
geological characteristics, vegetation cover, and soil types. This
multifaceted approach will enable us to systematically evaluate the
various geological hazards present in the area, ensuring a thorough
understanding of the underlying risk factors. The distribution of
geological hazards within the study area is depicted in Figure 4.
This figure clearly delineates the occurrence of different types
of geological hazards and illustrates their relationships with the
surrounding environment. By visualizing these spatial patterns,
we aim to provide valuable insights into the factors influencing
geological hazard susceptibility in Shenzhen Town, ultimately
contributing to more effective disaster prevention and mitigation
strategies.

3 Evaluation method of geological
hazard susceptibility

Based on field geological surveys and the application of the GIS
platform, the coupling model of certain factors (CF) and analytic
hierarchy process (AHP) was applied to evaluate the susceptibility of
geological hazards in Shenzhen Town,Ninghai County. By reflecting
the degree of contribution of different element sections in the hazard
factors, the certain factors model can solve the sensitivity problem
of different characteristic values within the evaluation factors on
susceptibility. However, it cannot determine the relative weight

among the impact factors (Equation 1). The Analytic Hierarchy
Process (AHP) has advantages in calculating the relative weight
among impact indicators. According to the hierarchical relationship,
the target layer A is constrained by the constraint factor layer
B, and each constraint factor layer Bi is constrained by several
secondary factor layers Ci. The factors in each layer are compared
pairwise based on the pre-set scale of 1–9 (Table 1). According to
the prescribed scale quantification, a judgmentmatrix is constructed
to calculate the weights of each factor. The comprehensive weight
is determined according to the principle of maximum weight
to determine the optimal solution. However, this model cannot
effectively solve the sensitivity problem of different characteristic
values of evaluation factors on susceptibility. Therefore, it can
simultaneously compensate for both models’ shortcomings in
replacing the artificial spatial information quantification process in
the Analytic Hierarchy Process with the probability quantification
values obtained from the specific factor model.

CF =
{{{
{{{
{

PPa− PPs
PPa(1− PPs)

,PPa ≥ PPs

PPa− PPs
PPs(1− PPa)

,PPa < PPs
(1)

In Equation 1, PPa is the conditional probability of geological
hazards occurring in impact factor classification a, which is defined
as the ratio of the number of geological hazard points developed
in impact factor classification a to the area of the impact area
of impact factor classification a. PPS the prior probability of
geological hazard events occurring, which is the ratio of the total
number of geological hazard points in the study area to the total
area of the study area. The value range of CF belongs to [-1,
1], and the positive value or negative value represents the high
certainty or low certainty of geological hazard occurrence in the
study area.

The certain factors (CF) model captures the contribution
of different factor intervals to hazard formation, addressing the
sensitivity of feature values within individual evaluation factors to
susceptibility. However, it cannot determine the relative weights
between factors. In contrast, the Analytic Hierarchy Process (AHP)
excels at calculating relative weights, particularly in areas with
limited samples, but it struggles to account for the influence
of varying feature values within factors on susceptibility. By
replacing the subjective quantification of spatial information in
AHP with the probability values generated by the CF model,
the shortcomings of both methods are mitigated. This approach
resolves challenges related to determining factor weights and
merging heterogeneous data, resulting in more accurate and reliable
susceptibility assessments. The study considers the interactions
between factors, constructs a judgment matrix, and calculates their
weights, integrating them seamlessly. The coupling of the AHP and
CF models will greatly enhance the precision of geological disaster
susceptibility evaluations in the study area.

3.1 Slope unit division

Slope is the primary terrain and landform unit for landslide
occurrence. Compared with traditional grid units, slope units can
comprehensively reflect the influence of terrain conditions such
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FIGURE 5
Flowchart illustrating the process of slope unit delineation.

as slope, aspect, and elevation difference, improving consistency
with actual terrain and landform. The slope structure is the same
as hydrogeological conditions, of which the evaluation factors can
reflect essential characteristics. Slope units can reflect terrain relief,
geological environmental conditions, and the actual development
status of landslides. The evaluation results are more reasonable
and accurate than grid units due to containing a larger number
of geological hazard points in a smaller area (Liu et al., 2018;
Liu et al., 2023; Tian et al., 2019). The evaluation index system
has a significant difference between gully-type debris flow and
slope-type debris flow. The study area was dominated by slope-type
debris flow. Considering the development mechanism of typhoon
storm-type geological hazards in the study area, the slope unit was
selected to evaluate the susceptibility of collapse, landslide, and
slope-type debris flow in Shenzhen Town. Slope unit division was
completed based on the numerical elevationmodel (DEM) using the
hydrological analysis module in ArcGIS software (Figure 5). Ridge
and valley lines were extracted from depression-free positive and
negative terrain. The resulting catchment and inverse catchment
basins were merged, with any unreasonable units manually adjusted
using Digital Orthophoto Map (DOM) data. This process produced
slope units defined by drainage and watershed lines. Ultimately, the
study area was divided into 2,577 slope units, with the smallest

area being 0.01 km2, the largest being 0.56 km2, and the average
being 0.068 km2. In the subsequent susceptibility assessment, we
employed the “To Raster” tool in ArcGIS to convert the defined
slope units into raster data. For each slope unit, the raster values
were derived by calculating the average of all raster cells contained
within that unit. This method ensures that the characteristics
of each slope unit are accurately represented in the resulting
raster dataset.

3.2 Selection and classification of
evaluation factors

According to the background and conditions of geological
hazards in the southeastern coastal areas, eight evaluation factors,
including slope curvature, slope, aspect, terrain relief, distance
to fault, engineering geological groups, normalized difference
vegetation index, and land-use development intensity, were selected
to conduct a susceptibility evaluation of geological hazards
in Shenzhen Town. The quantitative value of the indicator is
determined according to the contribution of the graded indicators
of each evaluation factor to the vulnerability to geologic hazards
(Table 2). The relationship between landslide distribution and
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TABLE 2 CF value of geological hazard impact factor classification.

Evaluation
factor

Classification Number
of

disaster
points

Area
/km2

CF Evaluation
factor

Classification Number
of

disaster
points

Area
/km2

CF

Slope
curvature

concave slope 21 79.95 −0.03

Distance to
fault/m

0–250 9 30.26 0.13

Concave slope 21 87.56 −0.14 250–500 7 27.89 −0.09

Straight slope 5 6.91 0.86 500–750 4 26.29 −0.51

Slope/°

<15 3 10.14 0.12 750–1,000 5 20.87 −0.15

15–20 3 10.22 15–20 1,000–1,250 8 18.54 0.51

20–25 3 23.35 20–25 1,250–1,500 5 11.65 0.51

25–30 15 33.13 25–30 1,500–1750 1 11.57 −0.74

30–35 9 37.14 30–35 1750–2000 0 9.00 −1.00

35–40 12 36.05 35–40 >2000 8 18.34 0.52

40–45 2 18.29 40–45

Engineering
geological
group

Hi 39 113.96 0.29

>45 0 6.09 −1.00 Hs 5 47.88 −0.68

Aspect

N 5 21.91 −0.20 Qg 3 11.93 −0.09

NE 4 23.73 −0.45 Rr 0 0.64 −1

E 7 21.13 0.26

NDVI

50–100 0 0.06 −1.00

SE 12 24.15 0.63 100–150 1 2.33 0.51

S 6 23.19 −0.05 150–200 6 10.54 0.72

SW 7 19.37 0.35 200–250 40 161.49 −0.11

W 4 19.05 −0.28

Land-use
development
intensity

0–0.2 0 13.05 −1.00

NW 2 21.90 −0.73 0.2–0.3 3 53.50 −0.84

Terrain relief
/m

0–20 6 15.37 0.42 0.3–0.4 6 23.88 −0.09

20–40 30 103.22 0.10 0.4–0.5 10 25.80 0.42

40–60 11 54.22 −0.31 0.5–0.6 11 28.54 0.41

60–80 0 1.43 −1.00 0.6–0.7 13 21.68 0.75

>80 0 0.19 −1.00
0.7–0.8 4 5.68 0.85

0.8–0.9 0 2.29 −1.00

different factors is shown in Figure 6, and the grading chart for
each evaluation factor is shown in Figure 7.

3.2.1 Slope curvature
The slope curvature plays a crucial role in influencing surface

water convergence, infiltration, groundwater movement, and the
gravitational distribution within the slope’s rock and soil layers.This
makes slope morphology a key indicator in assessing susceptibility

to geological hazards. Concave slopes tend to collect rainwater,
promoting significant deep infiltration, which can weaken the
strength of the underlying rock and soil. This process increases
the risk of landslides and mudflows. Conversely, convex slopes
usually have a gentler gradient at the rear, facilitating greater
water infiltration, while the steep front section provides limited
resistance to sliding. This combination elevates the likelihood
of collapses and landslides. Linear slopes allow rainwater to
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FIGURE 6
The relationship between landslide distribution and different factors.
LN is landslide number, LND is landslide number density, LA is
landslide area, LAP is land-slide area percentage, CA is classification
area and CF is certainty coefficient. (A) Slope curvature; (B) Slope; (C)
Aspect; (D) Terrain relief; (E) Distance to fault; (F) Engineering
geological groups; (G) NDVI; (H) Land-use development intensity.

predominantly drain as surface runoff. Under moderate gradients,
these slopes tend to maintain relative stability, as the runoff reduces
water retention and infiltration, thereby decreasing the risk of
geological hazards.

The DEM was processed through the GIS platform to extract
surface curvature and obtain slope curvature value. The slope
curvature was reflected by the curvature value of the slope, where
−0.1<curvature<0.1 was a straight slope; Curvature<−0.1 was a
concave slope; If the curvature was greater than 0.1, it was a convex
slope. The con-vex slope had the largest area in the research area,
followed by the concave slope, and the straight slope had the
smallest area. Their areas were 87.56 km2, 79.95 km2, and 6.91 km2,

FIGURE 7
Evaluation factor Classification of geological disasters (A)
Classification of slope curvature; (B) Classification of slope; (C)
Classification of aspects; (D) Classification of terrain relief; (E)
Classification of distance to fault; (F) Classification of engineering
geological groups; (G) Classification of NDVI; (H) Classification of
land-use development intensity.

respectively. Convex slopes had the highest CF value and were more
prone to geological disasters (Figure 6A). The distribution of slope
curvature is shown in Figure 7A.

3.2.2 Slope
The slope (gradient) plays a critical role in determining the

types and mechanisms of slope failure. It primarily influences the
occurrence of geological hazards by affecting internal seepage and
stress distribution within the slope. Statistical data indicate that
landslides predominantly occur on slopes with gradients between
20° and 45°. In contrast, slopes steeper than 45° are more prone
to collapses rather than landslides, while slopes with gradients less
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TABLE 3 Utilization types and development intensity index of land.

Utilization
types

Construction
land

Paddy
fields

Dry land Grassland Garden
land

Bamboo
forest
land

Shrub
forest
land

Tree
forest
land

Land-use
development
intensity

0.9 0.9 0.8 0.7 0.6 0.6 0.3 0.2

FIGURE 8
Hierarchical structure of vulnerability evaluation factor of disaster.

FIGURE 9
The result of Spearman rank analysis of the factors.
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TABLE 4 Calculation results of geological hazards influencing factors weight.

Slope
curvature

Slope Aspect Terrain
relief

Distance
to fault

Engineering
geological

group

NDVI Land-use
development
intensity

Weight

Slope curvature 1 1/3 2 2 1/2 1/4 3 1/2 0.090

Slope 3 1 7 4 3 2 5 3 0.263

Aspect 1/2 1/7 1 1/2 1/4 1/8 1/2 1/3 0.032

Terrain relief 1/2 1/4 2 1 1/2 1/4 1/2 1/3 0.050

Distance to
fault

2 1/3 4 2 1 1/3 3 1/2 0.124

Engineering
geological
group

4 1/2 8 4 3 1 3 2 0.240

NDVI 1/3 1/5 2 2 1/3 1/3 1 1/3 0.061

Land-use
development
intensity

2 1/3 3 3 2 1/2 3 1 0.140

FIGURE 10
Results of vulnerability evaluation of geological hazards in Shenzhen Town.
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TABLE 5 Rationality test results of geological hazard zoning.

Classification Area/km2 Number
of

disaster
points

Number
of slopes

Area
proportion

Si/%

Proportion
of

disaster
points
Gi/%

Slope
proportion

Mi/%

Gi/Si Gi/Si

Most high
susceptibility

51.09 35 685 29.29% 74.47% 26.58% 2.542 2.802

High-
susceptibility

56.46 8 849 32.37% 17.02% 32.95% 0.526 0.517

Mid-
susceptibility

44.45 1 677 25.48% 2.13% 26.27% 0.083 0.081

Low-
susceptibility

22.42 3 366 12.86% 6.38% 14.20% 0.496 0.449

FIGURE 11
ROC curve of geological hazard susceptibility evaluation with
coupling model.

than 20° seldom experience landslides. A 10 m × 10 m grid was
generated from the DEM, and the average slope within the slope
unit was taken as the slope value. To reduce subjective influence, the
slope was divided into eight levels: <15°, 15°–20°, 20°–25°, 25°–30°,
30°–35°, 35°–40°, 40°–45°, and >45°. According to statistical analysis
and certain factormethods, the slope rangewasmainly concentrated
in steep slopes of 30°–40°, accounting for 41.96% of the total area.
TheCF values were relatively high in the slope ranges of 30°–35° and
35°–40° (Figure 6B).The distribution of slope is shown in Figure 7B.

3.2.3 Aspect
The slope aspect leads to differences in weathering degree,

affecting the thickness and distribution of weathered layers and
significantly impacting slope stability. During the typhoon season,

the southeastern coastal regions are primarily affected bywinds from
the east and southeast, which have a considerable impact on the
windward slopes. A grid layer was generated by dividing the slope
direction into eight directions: N (337.5°–22.5°), NE (22.5°–67.5°),
E (67.5°–1,125°), SE (112.5°–157.5°), S (157.5°–202.5°), SW
(202.5°–247.5°), W (247.5°–292.5°), and NW (292.5°–337.5°).
According to statistical data analysis, the distribution of aspects
in the region was relatively uniform, and geological hazards mainly
developed in four aspects: E, SE, S, and SW, accounting for 68.09%.
This was related to the geographical location along the coast of the
area, which was the direction of typhoon landfall and was more
conducive to geological disasters, resulting in the CF value being
higher than other intervals (Figure 6C). The distribution of aspects
is shown in Figure 7C.

3.2.4 Terrain relief
The terrain relief is the difference between the extreme elevation

values of slope units, which determines the intensity and impact
range of geological hazards (Wu et al., 2022). In areas of significant
topographic relief, the presence of numerous cutting surfaces
enhances the likelihood of landslides. These local terrain features
create optimal conditions for the acceleration and deceleration
of landslide events, exerting a considerable influence on their
dynamics. Consequently, in regions characterized by substantial
elevation changes, both the distance traveled and the speed of
landslide movement can be significantly affected. To reduce the
influence of subjective factors, the elevation difference was divided
into five levels of equal spacing: 0–20 m, 20–40 m, 40–60 m,
60–80 m, and >80 m. The maximum CF value was 0.42 between 0
and 20 m; Next is 20–40 m, with a CF value of 0.10 (Figure 6D).The
distribution of terrain relief is shown in Figure 7D.

3.2.5 Distance to fault
Fault structures are closely related to the development of

geological hazards. Rock masses within fault zones become highly
fragmented due to tectonic activity, establishing essential conditions
that facilitate the occurrence of landslides. This fragmentation
is particularly pronounced in active fault zones, where frequent
historical tectonic movements have weakened the rock, significantly
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reducing itsmechanical strength. Consequently, regions along active
fault zones are especially susceptible to geological disasters. The
shortest distance between the slope unit and the fault was used as
the evaluation index, and the equidistant intervals were divided
into nine levels: 0–250 m, 250–500 m, 500–750 m, 750–1,000 m,
1,000–1,250 m, 1,250–1,500 m, 1,500–1,750 m, 1,750–2,000 m,
and>2,000 m. Most slopes were less than 1,000 m away from the
fault, and geological hazards were most developed within a range of
25 m from the fault (Figure 6E). The distribution of distance to fault
is shown in Figure 7E.

3.2.6 Engineering geology groups
Engineering geological groups are the carriers of geological

hazard development, determining the intensity of geological hazard
development (Lara and Sepúlveda, 2010). Loose accumulation
layers and highly weathered strata possess a loose structure,
limited resistance to weathering, and reduced mechanical strength.
When influenced by water, their properties can undergo significant
changes, rendering them particularly vulnerable to landslides.There
were four engineering geological groups developed in the area,
namely the rock formation dominated by hard blocky fused tuff
(Hi), the rock formation dominated by relatively hard blocky-
layered tuffaceous sedimentary clastic rocks (Hs), the acidic rock
formation dominated by hard blocky granite (Qg), and the acidic
rock formation dominated by hard blocky rhyolite (Rr). The slope
unit rock groups mainly comprised Hi and Hs, accounting for
65.34% and 27.45% of the total area; 23 and 24 disaster points
existed, respectively. The CF value showed that Qg was most prone
to geological disasters, with a CF value of 0.343. Next was Hif, with a
CF value of 0.23 (Figure 6F).Thedistribution of engineering geology
groups is shown in Figure 7F.

3.2.7 Normalized difference vegetation index
(NDVI)

TheVegetation plays a vital role in the development of geological
hazards. When a typhoon rainstorm occurs in the southeast coastal
area, the wind acts on the slope through shrubs such as bamboo
and provides sliding force for the hill through “lever-age”, thus
increasing the frequency of geological disasters (Sun et al., 2022). In
the study area, regions lacking vegetation cover are predominantly
composed of hard rock formations, which significantly reduces their
susceptibility to geological hazards. According to the NDVI value
in the research area, the value was divided into four intervals of
50–100, 100–150, 150–200, and 200–250. The NDVI was mainly
between 200 and 250, with the most geological hazards (Figure 6G).
The distribution of NDVI is shown in Figure 7G.

3.2.8 Land-use development intensity
Geological hazards are closely related to irrational human

engineering activities. Human activities, such as slope cutting
and road construction, often create steep, exposed surfaces that
significantly enhance the risk of landslides. Construction on
slopes adds weight to the slope mass, increasing downslope
forces and further elevating the potential for geological hazards.
Additionally, agricultural irrigation promotes water infiltration into
the soil, weakening the slope’s internal structure and amplifying
its instability, thereby increasing the likelihood of slope failure.
According to the current land application situation in Shenzhen

Town, Ninghai County, the land application was divided into eight
categories: construction land, paddy fields, dry land, grassland,
garden land, bamboo forest land, shrub forest land, and tree forest
land. Based on the intensity of human engineering activities, each
land-use type was assigned a corresponding development intensity
index (Table 3). Among them, the development intensity index with
a larger CF value was 0.7–0.8 and 0.6–0.7, which were 0.85 and 0.75,
respectively (Figure 6H). The distribution of land-use development
intensity is shown in Figure 7H.

4 Susceptibility analysis of geological
hazard

4.1 Evaluation result

A hierarchical structure was constructed based on the AHP
principles and impact fac-tors of geological hazard (Figure 8).

To ensure the efficiency and accuracy of model construction,
it is essential to conduct a correlation analysis of the eight factors.
The Spearman’s correlation analysis was used to assign weights to
evaluation factors. This method ranks two variable data and solves
the correlation coefficient using rank difference. The larger the
absolute value, the greater the correlation. The calculation formula
is as follows (Equation 2):

ρ = 1−
6

n

∑
i=1

d2i

n(n− 1)
(2)

In this equation, ρ is the Spearman rank correlation coefficient,
di is the rank difference of the sorted variables, and n is the number
of samples.

The Spearman correlation results of eight evaluation factors
(Figure 9) indicate that the correlation between slope gradient
and terrain undulation is 0.95, indicating a strong positive
correlation between these two factors. The correlation between
terrain undulation andhuman activity intensity is −0.56, indicating a
strong negative correlation between the two factors. The correlation
between the slope gradient and normalized vegetation index was
0.54, indicating a strong positive correlation between the two factors.

Based on the correlation analysis of eight evaluation factors,
a judgment matrix was established to solve the weights of each
factor (Table 4) and organically combine each factor to evaluate
its susceptibility. The mathematical model for comprehensive
evaluation based on the AHP-CF model is (Equation 3):

CFevaluation = CFcurvature × 0.09+CFslope × 0.263+CFaspect × 0.032
+CFrelif × 0.05+CFfault−distance × 0.124
+CFrock−group × 0.24+CFNDVI × 0.061+CFintensity × 0.14

(3)

According to the comprehensive evaluation model, the CF
values of 8 layers were superimposed to obtain the total CF
value of each slope unit, namely the slope geological hazard
susceptibility index. The natural interruption method was used
to divide the susceptibility of slope geological hazards into four
levels: the most-high susceptibility zone, high susceptibility zone,
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medium susceptibility zone, and low susceptibility zone (Figure 10).
The highly susceptible area covers an area of 51.09 km2, mainly
distributed in the northwest of Shenzhen Town, including Chiao
Village, Zhekengzhang Village, Zhekengdai Village, Lingxu Village,
accounting for 29.29% of the total area. There are 35 geological
hazard points, accounting for 74.47% of the total quantity. The
high-risk area covers an area of 56.46 km2, mainly distributed in
villages such as Dacai Village, Qingtan Village, and Konghengshan
Village, accounting for 32.37% of the total area. Eight geological
hazard points account for 17.02% of the total quantity. The mid-
susceptibility area covers an area of 44.45 km2, mainly distributed on
the west and south sides of ShenzhenVillage, the north side of Nanxi
Village, and the southeast side of Changyang Village, accounting
for 25.48% of the total area. One geological hazard point accounts
for 2.13% of the total quantity. The low-risk area covers an area of
22.42 km2, mainly distributed on the northeast side of Shenzhen
Village, the south side of Longgong Village, Nanxi Forest Farm, and
other areas, accounting for 12.86% of the total area.Three geological
hazard points have been identified, accounting for 6.38% of the
total quantity.

4.2 Verification of geological hazard
vulnerability assessment results

The evaluation results were inspected from two aspects:
rationality and accuracy. The rationality of evaluation results was
verified by the distribution of geological hazard points in various
prone areas, and the receiver operating characteristic curve (ROC)
was used to verify the accuracy of evaluation results.

According to the inspection results of the geological hazard-
prone zones in Shenzhen Town (Table 5), the disaster points in
the highest susceptibility areas have the highest proportion; the
percentage of disaster points in each level of the prone regions (Gi)
and the percentage of the area of each prone areas to the total area
of the study area (Si) decreased with the decrease of susceptibility
levels. The ratio of slopes in each susceptibility level to the total
quantity of slopes in the study area (Mi) decreases with the decrease
in susceptibility levels. Applying the coupling model to Shenzhen’s
geological hazard-prone zoning results is reasonable.

In the accuracy verification of geological hazard susceptibility
evaluation, the receiver operating characteristic curve (ROC)
verification method was mainly used (Yang et al., 2024). The ROC
curve is a graphical method for evaluating the effectiveness of
classification, where the horizontal axis represents the false positive
rate (also known as 1-specificity), and the vertical axis represents
the true positive rate (also known as sensitivity). The area under
the curve (AUC) is often used to evaluate the accuracy of the
model, and the larger the AUC value, the higher the accuracy of
the model. The evaluation index was normalized and imported into
SPSS 27 software to draw the ROC curve (Figure 11), where the
vertical axis sensitivity was the proportion of correctly predicted
units with geological hazards, and the horizontal axis specificity
was the proportion of correctly predicted units without geological
hazards. The AUC value calculated using SPSS software was 0.808,
indicating that the CF and AHP coupling model can accurately
and objectively evaluate the susceptibility of geological hazards in
Shenzhen Town, Ninghai County.

5 Conclusion

(1) Comprehensively considering the formation mechanism of
typhoon-rainfall-induced geological disasters, based on the CF
value of 8 impacted factors, including slope curvature, slope,
aspect, terrain relief, distance to fault, engineering geological
groups, NDVI, and land-use development intensity, the slope,
engineering geological groups, and land-use development
intensity had a greater impact on the susceptibility of geological
hazards in the study area. Under the effect of rainfall, geo-
logical hazards were more likely to occur in the melting tuff
area with larger slopes and frequent human activities.

(2) The evaluation results indicated that most high-susceptibility
zones and high-susceptibility zones in Shenzhen were
distributed in a northeast-southwest direction, and are
significantly affected by the lithology and slope of the strata.
They were mainly distributed in the northwest of the study
area, including Chi’ao Village, Zhek-eng Zhang Village,
Zhekeng Dai Village, and Lingxu Village, accounting for
61.7% of the total area; The low- susceptibility zones were
mainly distributed in the middle and low mountain areas
in the northeast and south, accounting for 12.9% of the
total area. The evaluation results indicated that most high-
susceptibility zones and high-susceptibility zones in Shenzhen
were distributed in a northeast-southwest direction and are
significantly affected by the lithology and slope of the strata.
They were mainly distributed northwest of the study area,
including Chiao Village, Zhekengzhang Village, Zhekengdai
Village, Lingxu Village, accounting for 61.7% of the total area.
The low-susceptibility zones were mainly distributed in the
middle and low mountain areas in the northeast and south,
accounting for 12.9% of the total area.

(3) The CF model can solve the sensitivity of different
characteristic values to susceptibility in evaluating factors.
The AHP model can combine expert experience to determine
the weight of influencing factors. It can effectively solve the
problem of determining the weight of geological hazard
influencing factors by combining the deterministic coefficient
model with the analytic hierarchy process model. The results
of rationality and accuracy tests showed that the evaluation
results of the coupling model were consistent with the actual
occurrence of geological hazards, with a model accuracy of
80.8%, and can accurately, objectively, and reasonably evaluate
the susceptibility of geological hazards in the study area.
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