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Land surface temperature (LST) is a crucial factor for reflecting climate
change. High spatial resolution LST is particularly significant for environmental
monitoring in plateau and mountainous areas, which are characterized by
rugged landscapes, diverse ecosystems, and high spatial variability in LST.
Typical plateau mountainous areas in Diqing Tibetan Autonomous Prefecture
and Dali Bai Autonomous Prefecture were selected as study areas. Three
machine learning models, including Back Propagation (BP) Neural Network,
random forest (RF), and extreme gradient boosting (XGBoost), and two classic
single-factor linear regression models (DisTrad and TsHARP) were compared.
Particle SwarmOptimization (PSO) was introduced to optimize hyperparameters
of three machine learning methods. Regression factors suitable for plateau
mountainous areas, including normalized vegetation index (NDVI), normalized
multi-band drought index (NMDI), bare soil index (BSI), normalized difference
snow index (NDSI), elevation, surface roughness (SR), and Hillshade were
selected. The performance of five models was analyzed from the perspective of
different spatial resolutions and land cover types. The results revealed that the
performance of machine learning models is better than traditional linear models
in both study areas. Based on the coefficient of determination (R2), root mean
square error (RMSE), andmean absolute error (MAE), XGBoost demonstrated the
best performance. For study area A, the results were R2 = 0.891, RMSE = 2.67 K,
and MAE = 1.83 K, while for study area B, the values were R2 = 0.832, RMSE
= 1.98 K, and MAE = 1.54 K. In addition, among different land cover types, the
XGBoost model has the best performance in both study areas. Moreover, the
larger the ratio of initial resolution to target resolution, the lower the accuracy

Abbreviations: ASOS, Advanced Surface Observation Satellite; BP, Back Propagation Neural Network;
BSI, Bare soil index, dimensionless; CLCD, China Land Cover Dataset; CLST, Coarse land surface
temperature, K; DLST, Downscaled land surface temperature, K; FVC, Fractional vegetation coverage,
dimensionless; LST, Land surface temperature, K; MAE, Mean absolute error, dimensionless; NDSI,
Normalized difference snow index, dimensionless; NDVI, Normalized vegetation index, dimensionless;
NMDI, Normalized multi-band drought index, dimensionless; PSO, Particle swarm optimization; R2,
Coefficient of determination, dimensionless; RF, Random forest; RLST, Real land surface temperature,
K; RMSE, Root mean square error, dimensionless; SR, Surface roughness, dimensionless; XGBoost,
Extreme gradient boosting.
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of downscaled LST (DLST). In summary, the XGBoost model is more suitable for
downscaling LST in plateau mountainous areas.
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1 Introduction

Land surface temperature (LST) is crucial for driving
energy exchange between the land surface and the atmosphere
(Li Z. L. et al., 2023). In plateaus and mountainous regions
with complex terrain, LST plays a vital role. The scarcity of
high spatial resolution LST data in these areas has significantly
hindered environmental monitoring, fire prevention, long-term
vegetation phenology tracking, and assessment of mountain
vegetation’s impact on the global carbon cycle (He and Tang,
2023; Rao et al., 2019; Bibi et al., 2018). Therefore, obtaining high
spatial resolution LST through downscaling is urgent to enhance
environmental monitoring in plateaus and mountainous regions
(Wang S. et al., 2017; Zhang et al., 2022).

Traditional methods of measuring LST, such as weather station
monitoring, offer intuitive insights but are limited in their ability to
describe LST data over large areas (Weng, 2009). In contrast, remote
sensing satellites provide the latest, extensive, and long-term LST
data (Li et al., 2013; Metz et al., 2014; Zhang et al., 2021; Long et al.,
2020). However, the current methods for thermal infrared band
inversion of LST face the challenge of achieving both high temporal
and spatial resolution simultaneously. For instance, while the LST
products from Moderate Resolution Imaging Spectroradiometer
(MODIS) offer a daily temporal resolution, their spatial resolution
is limited to 1 km (Wan et al., 2002). Similarly, the Landsat satellite’s
thermal infrared band provides a spatial resolution of 100 m, but
its temporal resolution is 16 days (Hough et al., 2020). Therefore,
obtaining high-precision, low-cost LST data with high temporal
and spatial resolution is key to the management and monitoring of
ecological environment in plateau mountainous areas. The spatial
downscaling method for LST has attracted wide attention due to its
high practicality.

Recently, some LST spatial downscaling methods to enhance
the resolution of LST data were proposed, which were classified
into two main categories in terms of the employed algorithms:
(Pu and Bonafoni, 2023) the fusion-based method and the scaling
factor conversion-based method. In the first category, the image
fusion technique is used to establish relationships between LST
images. Although the obtained results are highly accurate and retain
information from the original LST images, they often overlook
explicit physical backgrounds and lack a physical mechanism
(Zhan et al., 2011). In addition, it is essential to consider the
impact of various factors such as sensor noise, LST retrieval
error, and heterogeneous landscapes on high spatiotemporal LST
data and evaluate the uncertainty associated with mixed pixels
of different Land Use/Land Cover (LULC) coverage types (Pu
and Bonafoni, 2023). Methods based on scaling factor conversion
mainly include modulation allocation, spectral mixture model, and
statistical regression (Zhan et al., 2011). The modulation allocation
and spectral mixture methods are based on physical mechanisms
and offer clear physical interpretations. However, due to their

relatively complex implementation, their applications are limited
(Xu and Cheng, 2021). Methods based on statistical regression
establish linear or nonlinear relationships between LST and related
physical parameters at low spatial resolution.These relationships are
then applied to high spatial resolution data based on the principle of
“scale invariance” (Deilami et al., 2018). It offers advantages such as
easy operation and high accuracy, making it widely utilized (Duan
and Li, 2016; Wu and Li, 2019). As a classic statistical regression
model, the DisTrad model (Kustas et al., 2003) downscales LST
by establishing a linear relationship between normalized difference
vegetation index (NDVI) and low spatial resolution LST. Another
classic statistical regression model, namely, the TsHARP model
(Agam et al., 2007; Agam et al., 2008), improved upon the DisTrad
model by using Fraction of Vegetation Cover (FVC) instead of the
vegetation index to establish a regression relationship with LST,
enhancing the downscaling effect. The aforementioned two single-
factor linear regression methods have a straightforward process
and quick execution. However, the relationships between NDVI,
FVC, and LST vary across different land cover types, leading
to complexities in areas with diverse land cover types, sparse
vegetation, and regions lacking vegetation. Therefore, single-factor
linear regression models may not be suitable for areas characterized
by highheterogeneity (Hutengs andVohland, 2016; Li Y. et al., 2023).

Many additional regression factors, such as surface albedo,
elevation, slope, solar incidence angle, and land cover type, have
been introduced for LST downscaling, achieving promising results
(Dominguez et al., 2011; Zakšek and Oštir, 2012). In the context
of LST downscaling involving multiple factors, machine learning
regression prediction technology offers significant advantages due to
its high efficiency, ease of operation, and high prediction accuracy.
Consequently, an increasing number of downscaling studies were
conducted utilizing machine learning models, including artificial
neural networks (ANN) (Bindhu et al., 2013; Lemeshewsky and
Schowengerdt, 2001; Yang et al., 2011; Pu, 2021), back propagation
(BP) neural network, support vector machines (SVM) (Ghosh and
Joshi, 2014; Ebrahimy and Azadbakht, 2019), random forest (RF)
(Li et al., 2019; Ebrahimy et al., 2021), and extreme gradient
boosting (XGBoost) (Xu et al., 2021; Tu et al., 2022). These studies
have demonstrated the superiority of machine learning prediction
models in LST downscaling. As a result, they have been widely
applied to downscale LST in mountainous areas with complex
terrain. Wang Z. et al. (2017) proposed a BP-based downscaling
method, utilizing multiple scale factors as input variables. They
demonstrated the robustness of the method in mountainous and
mixed areas. Tu et al. (2022) utilized the TsHARP algorithm,
RF model, and XGBoost model to conduct downscaling in karst
areas. They pointed out that the XGBoost model exhibited superior
performance compared to other methods. Bartkowiak et al. (2019)
used the RF model to predict high-resolution LST, considering
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topographic features and land cover heterogeneity. These studies
demonstrate that in the complex terrain of mountainous regions,
machine learning can better capture the nonlinear relationships
between LST and regression factors, resulting in improved LST
downscaling effects.

Although machine learning models were extensively used
for LST downscaling, there are two main limitations. Firstly,
most experiments focused on downscaling between single-scale
factors, namely, from one low-resolution to one high-resolution
LST. However, evaluating performance at single-scale may not
fully demonstrate the applicability of their methods. Secondly,
different LST downscaling methods perform differently under
various land cover types. Analyzing method performance across
different land cover types can enhance the reliability of the results.
Therefore, the study employed regression factors suitable for LST
downscaling machine learning models in plateau mountainous
areas. Three machine learning models (BP, RF, and XGBoost)
and two classic single-factor linear methods (DisTrad and
TsHARP) were utilized for LST downscaling in two typical plateau
mountainous areas in Diqing Tibetan Autonomous Prefecture and
Dali Bai Autonomous Prefecture. Hyperparameter optimization for
three machine learning models was performed with the particle
swarm optimization (PSO) method. The performance of spatial
downscaling method under different land cover types was studied,
and multi-level downscaling experiments on LST with varying
target resolutions were conducted. The arrangement of the study
is: In Section 2, the study areas and the used data are described. In
Section 3, the used LST downscaling methods are introduced. In
Section 4, the LST downscaling results are analyzed. Sections 5, 6
furnish the discussion and the conclusion of this study, respectively.

2 Study area and datasets

2.1 Study area

Two classical plateau mountainous areas in Yunnan Province,
China were utilized in the study. Figure 1 displays the land covers,
location, and elevation of two study areas.

Study Area A is situated in Deqin County, Diqing Tibetan
Autonomous Prefecture, Yunnan Province. It lies at the confluence
of Yunnan, Sichuan, and Tibet provinces, between the Nujiang
River and Lancang River in the middle section of the Hengduan
Mountains. The terrain of Deqin County is characterized by steep
slopes, encompassing rugged mountains and valleys with varying
elevations and complex geological structures. The longitude and
latitude of study area A range from 98°30′to 99°3′east longitude and
from 28°10′to 28°43′north latitude. The terrain is characterized by
high elevations in the east and west, with a lower central region.The
western part of study area A is the Meili Snow Mountain, which is
covered by snow year-round. The predominant land cover types in
study area A include snow, forests, grasslands, and barren.

Study Area B is situated in Dali Bai Autonomous Prefecture. It
has a low-latitude plateau monsoon climate characterized by mild
summers and winters with no extreme temperatures. Study Area B
is located in the middle of Dali Prefecture and involves Cangshan-
Erhai protected area. The terrain in study area B is undulating and
varies in elevation. The longitude and latitude of study area B range

from 99°35′to 100°8′east longitude and from 25°28′to 26°1′north
latitude. The predominant land cover types of study area B include
forests, shrubs, and grasslands.

The selection of these two study areas is based on several factors.
Firstly, both study areas belong to typical plateaumountainous areas,
making the study more representative. Secondly, the presence of
diverse land cover types in both areas facilitates the verification of
the downscaling model’s applicability to both single and complex
land cover types. Finally, study area A features perennial snow,
while study area B does not, despite both being located at high
altitudes with significantly different elevation ranges. Conducting
experiments in these two distinct areas ensures more sufficient and
comprehensive results.

2.2 Data acquisition and processing

2.2.1 LANDSAT 9 satellite data
The study utilized various data products from the U.S. Geological

Survey website https://earthexplorer.usgs.gov/, including Landsat 9
LSTproducts, surface reflectancedata, surfacedownwellingshortwave
radiation products, and emissivity products. The spatial resolutions
of them are 30 m. These datasets underwent systematic processing,
including radiometric measurements and geometric corrections.
Radiation calibration was performed based on the calibration
coefficients provided in the documentation for each product. The
Landsat 9 LST product served as the reference LST (RLST) and
was also used to generate the upscaled low-resolution LST. Surface
downwelling shortwave radiation products and emissivity products
were incorporated as parameters in the radiative transfer equation for
LST upscaling. Surface reflectance data were employed to calculate
remote sensing indices essential for the study, including the NDVI
which reflects vegetation coverage, Normalized Multi-band Drought
Index (NMDI) which reflects the moisture content of soil and
vegetation, Bare Soil Index (BSI) which reflects the bareness of the
surface, andNormalizedDifferenceSnowIndex (NDSI)which reflects
the snowcover.Given the requirement for remote sensing indiceswith
varyingresolutions, the studyadopted theaverageaggregationmethod
to upscale the surface reflectance to different spatial resolutions,
followed by individual factor calculation. Detail information of each
study area is shown in Table 1.

2.2.2 DEM data
Considering that the study area is a typical plateau mountainous

area with complex terrain, and terrain factors significantly affect LST,
the Advanced Surface Observation Satellite (ALOS) World 3D 30-
m global digital ground model dataset (version 2.1) was adopted.
These data are freely available from the website https://www.eorc.
jaxa.jp/ALOS/en/aw3d30/.The DEM data was used to extract terrain
factors, including altitude, surface roughness (SR), and Hillshade.
DEM data of different resolutions was obtained through average
aggregation, and then these terrain factors (i.e., altitude, SR,Hillshade)
of different resolutions were calculated separately.

2.2.3 Land cover dataset
The land use data utilized is sourced from the CLCD dataset

provided by Yang and Huang (Yang and Huang, 2021), which is
based on Landsat’s annual China Land Cover Dataset (CLCD). The
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FIGURE 1
Overview of the study areas A and B, including location, land cover types, and surface elevation from ALOS World 3D-30 m elevation data (version 2.1).

TABLE 1 Detail information of study areas.

Study area Altitude range Latitude Longitude Acquisition time

Diqing (Study Area A) 1888–6,644 m 98°30′to 99°03′E 28°10′to 28°43′N
2021.11.16

2023.05.31

Dali (Study Area B) 1,268–4,115 m 99°35′to 100°8′E 25°28′to 26°01′N
2022.11.29

2023.02.01

CLCD dataset is freely accessible at https://doi.org/10.5281/zenodo.
4417810. It offers a spatial resolution of 30 m and has been updated
up to the year 2022. This data was utilized to evaluate the accuracy
of each downscaling approach under different land cover types.

3 Methodology

3.1 Multi-resolution upscaling of LST

To explore variations in LST downscaling results across different
scales in plateau mountainous areas, four downscaling schemes
were devised (see Figure 3). It is necessary to downscale LST

to different target resolutions and adjust regressors to different
resolutions. For regressors, remote sensing indices are upscaled to
various spatial resolutions using the average aggregation method
applied to Landsat 9 OLI data, and then computed individually.
Similarly, terrain factors are obtained by averaging and aggregating
ALOS data to each resolution, followed by the extraction of terrain
factors at each resolution. In contrast, for LST, previous studies
have utilized simple averaging aggregation methods (Guo et al.,
2022), which neglect the physical mechanisms influencing LST.
Notably, sensors observe that surface canopy radiance undergoes
attenuation by the atmosphere, influencing the captured signal.
Traditional spatial aggregation methods of LST do not account for
the energy distribution across different scales. Directly aggregating
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LST can introduce uncertainty into the results and lack physical
significance. Therefore, the direct averaging approach may not
accurately reflect the true surface temperature. In order to obtain
LSTs at different resolution levels, high-resolution LST products
are used. Considering the atmospheric downward radiation, the
average aggregation method is applied to estimate brightness of
corresponding coarse-resolution pixels.Then, the Planck function is
used to convert coarse-resolution pixels into LST. Calculation details
are shown in Equations 1–3:

εcB(Tc,λ) =
1
n
{

n

∑
i=1
[εiB(Ti,λ) + (1− εi)Ratm,i

↓]} (1)

B(Tc,λ) =
c1λ
−5

exp( c2
λTc
)
−1 (2)

Tc =
c2

λ ln[ c1
B(Tc,λ)λ5
+ 1]

c2 (3)

where B(Tc, λ) is the radiance; εc and Tc are the emissivity
and LST corresponding to each pixel of the low spatial resolution
image, respectively; εi and T i stand for the emissivity and LST
corresponding to the high spatial resolution image, respectively.
n indicates the number of high spatial resolution image pixels
corresponding to each ground spatial resolution pixel. Ratm,i

↓

represents the atmospheric downward radiation corresponding to
each high spatial resolution pixel. λ is the effective central wavelength,
c1 and c2 are spectral constants (c1 = 1.191 × 108 W μm4·m-2·sr−1,
c2 = 1.43877 × 104 μm K). Tc at each resolution can be derived
from the above formula.

3.2 LST downscaling model

3.2.1 Classic downscaling model
To assess the performance of subsequent machine learning

LST downscaling approaches, two widely used classic single-factor
regression models (i.e., DisTrad and TsHARP) for LST downscaling
were selected.

3.2.1.1 DisTrad
The DisTrad downscaling model, proposed by Kustas et al.

(2003), relies on the observation that the NDVI and LST exhibit
similar correlations across multiple spatial scales. This correlation
is leveraged to construct a regression equation model between LST
and vegetation index at low spatial resolution, which can then be
extrapolated to construct a similar regression model at high spatial
resolution. Any spatial variability in LST that is not captured by
the fitting process is addressed by examining the residuals and
adjusting accordingly. The downscaling process of the DisTrad
method typically follows Equations 4–6:

LSTc = ac ∗NDVIc + bc (4)

∆T = LST− LSTc (5)

LST f = ac ∗NDVI f + bc +∆T (6)

where LSTC and NDVIC are low spatial resolution LST and
NDVI, respectively. ac and bc are regression coefficients. ΔT is the
error caused by soil moisture.

3.2.1.2 TsHARP
The TsHARP model proposed by Agam et al. (2007) is an

improvement on the Distrad model. The basic principle of TsHARP
model and DisTrad model is the same. Both of them improve the
spatial resolution of LST through surface vegetation parameters
related to LST, but the vegetation index used is different.

The TsHARP model shows superior performance compared to
the DisTrad model. In other words, the TsHARP model’s predictive
ability of the relationship between LST and fractional vegetation
coverage (FVC) is superior to the DisTrad model’s predictive ability
of the relationship between LST and NDVI (Norman et al., 1995).
The vegetation coverage is calculated by the Equation 7:

FVC = 1− (1−NDVI)0.625 (7)

3.2.2 Machine learning predictive models
3.2.2.1 Back propagation (BP)

The BP neural network model is a type of multi-layer
feedforward network trained via error backpropagation algorithm.
It’s one of the most popular neural network models in various fields
(Li et al., 2012). The hyperparameters of the BP neural network
include the size and number of hidden layers, learning rate, number
of iterations, regularization parameters, etc. During training, it
adjusts the connection weights by the backpropagation algorithm
to reduce the error between the network’s output and the actual
target values, thus improving the accuracy of the model. It has been
widely recognized that the BP neural network has good regression
and prediction performance (Zhu et al., 2021).

3.2.2.2 Random forest (RF)
The RF model was introduced by Breiman (2001). It operates

as an ensemble learning model comprising decision trees as the
fundamental classifiers. During training, various hyperparameters,
including the number of trees, maximum tree depth, and minimum
samples required for node splitting, can be adjusted to optimize
performance. In regression tasks, the RF model computes the
final output by averaging the predictions of individual trees.
The RF model is robust against multicollinearity and effectively
mitigates the risk of overfitting, making it widely utilized in
multivariate regression prediction research (Wu and Li, 2019; Zhao
and Duan, 2020).

3.2.2.3 Extreme gradient boosting algorithm (XGBoost)
The XGBoost model, introduced by Chen and Guestrin

(2016), is built upon the gradient boosting decision tree model.
Unlike the RF model, which averages the predictions of weak
learners, the XGBoost model combines the weighted sum of
each learner’s results to generate the final output. It leads
to results with smaller deviations in most cases. Traditional
boosting models, such as Gradient Boosting Machine (GBM),
are susceptible to overfitting. To address this issue, the XGBoost
model incorporates regularization parameters to regulate model
complexity. Additionally, it employs first-order and second-order
Taylor expansions to approximate the objective function. Moreover,

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2024.1488711
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2024.1488711

theXGBoostmodel supports parallel computing,which significantly
accelerates the training process. As a result, the XGBoost model
has emerged as one of the state-of-the-art techniques in modern
machine learning. Currently, the XGBoost model is widely
used in LST downscaling simulation studies (Xu et al., 2021;
Tu et al., 2022).

3.3 Particle swarm optimization (PSO)

Setting appropriate hyperparameters in machine learning
prediction models is crucial for achieving high-quality results.
However, manual adjustment of hyperparameters for each model
is time-consuming, necessitating a faster method. The Particle
Swarm Optimization (PSO) algorithm, known for its simplicity,
ease of implementation, and strong global optimization capabilities,
efficiently optimizes parameters in machine learning models.
Therefore, the study employs the PSO algorithm to optimize the
hyperparameters of machine learning models. It enables the study
to concentrate on results rather than spending excessive time on
determining optimal hyperparameters for each model.

Introduced by Eberhart andKennedy (1995), the PSO algorithm
operates by iteratively updating the velocity and position of particles,
driving the particle swarm towards the global optimal solution. Each
particle calculates new velocity and position based on its current
state, historical experience, and information from global optimal
solutions. Through continuous iteration, particle swarms can often
discover improved solutions within the search space. Assuming
there areN particles in aD-dimensional space, in which the position
of particle i is represented as Xi = (xi1, xi2,.xiD), and substituting
xi into the adaptation function f (xi) yields the fitness value. The
velocity of particle i is denoted as V i = (vi1, vi2,.viD), with the best
position experienced by the individual particle i as pbesti = (pi1, pi2,.
piD), and the best position experienced by the entire group as gbesti
= ( g i1, g i2,. g iD). Each particle updates its velocity and position based
on Equations 8, 9:

vkid = wv
k−1
id + ca1r1(pbestid − x

k−1
id ) + ca2r2(gbestd − x

k−1
id ) (8)

xkid = x
k−1
id + v

k−1
id (9)

where xkid represents the D-dimensional component of the flight
velocity vector of particle i in the kth iteration; xkid denotes the D-
dimensional component of the position vector of particle i in the
kth iteration; ca1 and ca2 are acceleration constants that adjust the
maximum learning step; r1 and r2 represent two random functions,
with values ranging from [0,1] to rise the randomness; w is the
inertia weight, which adjusts the search range of the solution space.
The inertia weight w denotes the extent to which particles retain
their original speed. If w is high, the global convergence ability is
strong while the local convergence ability is weak. When combining
three machine learning models, the hyperparameters of each model
are treated as the position of the particles. The update process
of particle velocity and position is then utilized to update these
parameters. The position vector diagram of particle motion and the
optimization process are summarized in Figure 2:

3.4 Simulation schemes and technical
route

All five LST downscaling models in the study employ regression
techniques to achieve LST downscaling. By employing “scale
invariance”, these models establish the relationship between LST
and regression factors at low spatial resolutions. Specifically, three
machine learning models establish the nonlinear relationship
betweenLST andmultiple regression factors at low resolution,which
is then applied to high spatial resolution.

To evaluate the performance of the five downscaling methods,
we implemented Scheme 1, which downscales the original LST from
960 m to 30 m. We assessed each method by comparing spatial
details and analyzing performance indicators (R2, RMAE, MAE),
while also magnifying different land cover types for comparison.
To examine the consistency of downscaling results across various
scales, we introduced three additional schemes: downscaling to 60 m
(Scheme 2), 120 m (Scheme 3), and 240 m (Scheme 4). All four
schemes followed the same principle, utilizing identical technical
procedures to reduce the size from 960 m to 30 m. The original
30 m LST, along with the upgraded 60 m, 120 m, and 240 m LSTs,
served as reference values for accuracy evaluation at their respective
scales, representing the actual LST. The entire experimental process
is illustrated in Figure 3.

4 Results

4.1 Spatial distribution of downscaling
result

The XGBoost, RF, BP, DisTrad, and TsHARPmodels are applied
to conduct Scheme 1 experiment, downscaling 960 m coarse LST
(CLST) to the target resolution (30 m), with the Landsat 9 LST
product serving as the RLST. Figures 4, 5 illustrate the spatial
distribution of downscaling results for study areas A and B on 16
November 2021 and 1 February 2023, respectively. In each figure,
(A) and (B) represent the spatial distribution of Landsat 9 LST
with an upscaling of 960 m and 30 m RLST, respectively. (C) to (G)
depict the LST downscaling results of DisTrad, TsHARP, BP, RF, and
XGBoost models, respectively. The five DLST plots in both study
areas closely resemble the RLSTplots, exhibiting the same numerical
range as the 30 m RLST and displaying similar spatial distribution
patterns. However, the two classical downscaling methods both
encounter challenges in accurately restoring LST spatial details with
sufficient accuracy. While the temperature distribution with high
spatial resolution can generally be captured, there are noticeable
inaccuracies in certain areas. Particularly in the spatial distribution
of study area A, noise is evident at the boundaries of water bodies
along the river. The two classic downscaling methods experience
significant overestimation in these regions. The three machine
learning downscaling methods exhibit superior performance in
terms of the spatial distribution of the downscaled results. They
accurately capture the temperature distribution of LST at high spatial
resolution and restore the spatial details of LST. The downscaled
LST images depict features such as rivers and mountain edges.
However, it’s evident that the BP neural network model shows
notable overestimation at high temperatures and underestimation
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FIGURE 2
Particle motion position vector diagram (A) and particle swarm optimization hyperparameter process diagram (B).

at low temperatures in the downscaled results. In comparison,
the downscaled results of RF model and XGBoost model better
represent the LST. Compared to machine learning models like BP
neural network, RF, andXGBoost, theDisTrad andTsHARPmodels,
as single-factor regression models, offer quicker and more concise
results. However, they fall short in terms of spatial detail recovery
compared to the aforementioned machine learning models.

4.2 Quantitative analysis of accuracy of
downscaling methods

To further assess the performance of the five downscaling
methods, RMSE,R2 andMAEare utilized for quantitative evaluation
in Scheme 1. In addition, the distribution and anomalies of the
downscaled data are observed by plotting DLST and RLST scatter
plots. Similarly, the downscaling results of the images from study
areas A and B on 16 November 2021 and 1 February 2023,
respectively, are selected for detailed analysis.

Table 2 displays accuracy evaluation index of downscaling
results at different dates in the two study areas. It clearly
demonstrates that across study areas A and B, as well as
different observation dates, the performance of machine learning
models surpasses that of traditional single-factor regressionmodels.
Specifically, the XGBoost model exhibits the lowest RMSE, highest
R2, and minimal MAE, indicating that this approach not only
enhances the spatial resolution of downscaled LST but also improves
the accuracy of the downscaling process. For study area A, the
RMSE of XGBoost model is 2.67 K, which is reduced by 0.10–0.40 K
compared to the RF model (2.77 K) and BP neural network
model (3.07 K). Similarly, compared to the DisTrad model (5.17K)
and the TsHARP model (5.12 K), it is reduced by 2.45–2.50 K.
The MAE values for the five models are 3.81 K, 3.77 K, 2.26 K,
2.18 K, and 1.83 K, respectively. The XGBoost model exhibits the
smallest MAE values, reduced by 51.97%, 51.46%, 19.03%, and
16.06%, respectively. For study area B, the RMSE of the XGBoost
downscaling model result is 1.98 K, reduced by 0.11–0.23 K
compared to the RF model (2.09 K) and BP neural network model
(2.21 K). Similarly, compared to the DisTradmodel (2.78 K) and the
TsHARP model (2.74 K), it is reduced by 0.76–0.80 K. The MAE

values for the five models are 2.18 K, 2.13 K, 1.89 K, 1.61 K, and
1.54 K, respectively. The XGBoost model exhibits the smallest MAE
values, reduced by 29.36%, 27.77%, 18.52%, and 4.35%, respectively.
In addition, the coefficients of determination between the results
of XGBoost model and RLST in the study areas A and B are 0.891
and 0.832 respectively, which are higher than the other four models,
indicating that the XGBoost model has the highest correlation with
the true value.

Figure 6 displays the scatter plots of downscaling results andRST
of the two study areas on 2021/11/16 and 2023/02/01. From a visual
perspective, most of the scatter distributions for the five models
follow a 1:1 relationship. However, in study area A, there are a large
number of scattered points in the DisTrad and TsHARP models
located both above and below the 1:1 reference line, indicating
both overestimation and underestimation in the downscaled LST
values. Although the scatter plot distribution of the two methods
in study area B is better than that in study area A, there are
still varying degrees of overestimation and underestimation. Due
to the weak correlation between NDVI and LST in barren and
snow-covered areas, accurate prediction of high-resolution LST is
challenging. However, the extensive snow-covered areas in study
area A significantly influence the overall results. Compared with
the two classic methods, the scatter points corresponding to the
three machine learning models are roughly distributed on both
sides of the reference line in the two research areas. The three
machine learning models generally exhibit better downscaling
effects from the scatter plot. However, the BP neural network model
also shows varying degrees of overestimation and underestimation,
while the XGBoost model has the fewest outliers in the
scatter plot.

4.3 Analysis of downscaling accuracy for
different land cover types

In areas where the natural landscape surface coverage type is
uniform and the spatial heterogeneity is small, traditional single-
factor downscaling methods (such as DisTrad and TsHARP) can be
used to effectively achieve spatial downscaling of LST (Bisquert et al.,
2016). However, for areas with diverse land cover types, complex
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FIGURE 3
The research framework of the study.

topography, and patches, traditional methods may not achieve
satisfactory downscaling effects. The study areas in the experiment
feature various land cover types and complex terrain environments.
Therefore, to further explore the accuracy of various methods used
to restore high-spatial LST and delve into the performance of
downscaled LST and RLST in different land cover types, we examine
the differences in spatial distribution characteristics by selecting
areas of interest based on different land cover types in two study
areas for detailed analysis. Five rectangular areas of interest are
selected in both study areas, as shown in Figures 7A and Figures 8A.
In Figures 7A, these areas correspond to the following land cover
types: Area (I), where barren is widely distributed; Area (II), where

water is widely distributed; and Area (III), where grassland are
widely distributed; Area (IV), where snow are widely distributed;
and Area (V), where forest are widely distributed. In Figures 8–a,
the corresponding areas are: Area (I), where cropland are widely
distributed; Area (II), where grassland are widely distributed; Area
(III), where impervious are widely distributed; Area (IV), where
forests are widely distributed; and Area (V), where shrubs are widely
distributed. In Figures 7, 8, (d) is the standard false-color composite
diagram corresponding to the rectangular region of interest (I)-(V);
(c), (e), (f), (g), (h) and (i) are the downscaling results of RLST,
DisTrad, TsHARP, BP, RF andXGBoostmodels corresponding to the
rectangular region of interest, respectively.
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FIGURE 4
Comparisons of TsHARP, DisTrad-based, BP-based, RF-based, and proposed XGBoost-based algorithms for Study Area A (A) Landsat-9 LST (960 m), (B)
Landsat-9 LST (30 m), (C) DisTrad downscaled LST (30 m), (D) TsHARP downscaled LST (30 m), (E) BP downscaled LST (30 m), (F) RF downscaled LST
(30 m) and (G) XGBoost downscaled LST (30 m).

As can be seen in Figures 7, 8, the machine learning model
consistently outperforms the two classical downscaling methods
for different land cover types. In study area A, the results of the
two classical downscaling models only approximate the distribution
of temperature, while lacking in detail, and in some cases there
are obvious misestimates. In region (I), where the main vegetation
cover is barren, the downscaling results of the two traditional
models, TsHARP and DisTrad, perform poorly, while the machine

learning model adds effective spatial information. This is related
to the fact that the machine learning model takes into account
the regressor BSI and is able to better model the relationship
between barren and LST. In region (IV), the conventional model
predicted the general contours of the snow and ice regions,
while the machine learning model depicted the boundaries of
snow and ice and non-snow regions more clearly. In region
(II) (III) (V), the machine learning model takes into account
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FIGURE 5
Comparisons of TsHARP, DisTrad-based, BP-based, RF-based, and proposed XGBoost-based algorithms for Study Area B (A) Landsat-9 LST (960 m), (B)
Landsat-9 LST (30 m), (C) DisTrad downscaled LST (30 m), (D) TsHARP downscaled LST (30 m), (E) BP downscaled LST (30 m), (F) RF downscaled LST
(30 m) and (G) XGBoost downscaled LST (30 m).

the influence of topographic factors, which not only clearly and
effectively represents the temperature difference between different
features, but also the internal spatial details are closer to the
actual surface conditions. In study area B, the three machine
learning models still outperform the two traditional methods.
In study area (I), the traditional models showed significant
overestimation, especially in the edge areas of cropland and
grassland. In addition, the traditional model also showed significant

underestimation in the high temperature region in the middle
of region (IV). In other regions of interest, it was also observed
that the traditional model overestimated at high temperatures
and underestimated at low temperatures. This is due to the fact
that the traditional model considers only a single regressor and
is unable to accurately capture the relationship between different
land cover types and LST. The spatial distribution of downscaled
temperatures realized by the machine learning model in different
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TABLE 2 Statistics of R2, RMSE and MAE values between downscaled LST the Landsat-9 LST for study areas A and B.

Method Study area A Study area B

2021.11.16 2022.05.31 2023.02.01 2022.11.29

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

DisTrad 0.614 5.17 3.81 0.798 4.31 2.93 0.680 2.78 2.18 0.678 2.46 1.90

TsHARP 0.621 5.12 3.77 0.783 4.21 2.92 0.688 2.74 2.13 0.688 2.42 1.87

BP 0.863 3.07 2.26 0.870 3.39 2.42 0.797 2.21 1.89 0.810 1.82 1.42

RF 0.885 2.77 2.18 0.885 3.21 2.23 0.818 2.09 1.61 0.816 1.80 1.41

XGBoost 0.891 2.67 1.83 0.902 2.95 2.13 0.832 1.98 1.54 0.833 1.77 1.34

FIGURE 6
Density plots of the regression relationship between downscaled LST and Landsat 9 LST in Study Area A (first row) and B (second row); From left to
right: DisTrad, TsHARP, BP, RF and XGBoost.

areas, both in study area A and B, is very similar to that of the
RLST. The downscaled LST results from machine learning models
are more consistent with changes in topography and are able to
portray changes in LST at a much higher resolution, in line with
natural patterns.

To further determine the accuracy of the five downscaling
results, the RMSE, MAE, and R2 of the downscaling results for
each region are given in Tables 3, 4. The results further confirm
that both the DisTrad and TsHARP methods perform poorly in
areas with sparse vegetation. For example, in the study area A,
where barrens are widely distributed, the R2 values   are only 0.249
and 0.250, the RMSEs are 5.57 and 5.57, and the MAEs are 4.43
and 4.42, respectively. Similarly, in the study area B, the results
obtained by the DisTrad and TsHARP methods in area C, which
is dominated by impervious, and area E, which is characterized by
widespread distribution of shrubs, are also unsatisfactory. Further
analysis can confirm that the three machine learning models
consistently outperform the two classical methods in different
regions and corresponding areas of interest. It is worth noting that

the XGBoost model achieves the highest R2 and the lowest RMSE
and MAE values.

4.4 Analysis of downscaling results at
different resolution

To investigate whether the performance of the five downscaling
methods varies across different target resolutions, we analyzed the
experimental results of Schemes 2, 3 and 4. Figures 9, 10 illustrate
the downscaling scatter density map and accuracy evaluation of the
two regions under different schemes. As the downscaling spatial
resolution and the spatial resolution of the reference temperature
data increase for each method, both the RMSE and MAE of the
LST downscaling results show a gradual increase, while R2 exhibits
a gradual decrease. This indicates that this outcome is associated
with the increase in the number of pixels and the complexity of
their temperature variations with the rise in resolution. Across
different schemes in the two study areas, the XGBoost model
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FIGURE 7
Enlarged view of downscaling results for different land cover types in selected areas of interest in study area A (A) land cover type map, (B) false color
image, (C) enlargement of the five areas of interest RLST, (D) false color images in five areas of interest, (E)–(I) are the magnification of the downscaling
results of the five region-of-interest models of DisTrad, TsHARP, BP, RF, and XGBoost, respectively.

FIGURE 8
Enlarged view of downscaling results for different land cover types in selected areas of interest in study area B (A) land cover type map, (B) false color
image, (C) enlargement of the five areas of interest RLST, (D) false color images in five areas of interest, (E)–(I) are the magnification of the downscaling
results of the five region-of-interest models of DisTrad, TsHARP, BP, RF, and XGBoost, respectively.

consistently maintains higher R2 values and lower RMSE and
MAE values. Despite the good performance of the BP neural
network model and RF model in various evaluation metrics,
their downscaling effect still lags behind that of the XGBoost

model. The DisTrad and TsHARP models continue to exhibit
overestimation in low-temperature areas in study area A and
underestimation in high-surface temperature areas. Similarly, in
study area B, they display underestimation in high-temperature
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FIGURE 9
Scatter density plots depicting Landsat 9 LST products and downscaled LST for study area A, under Scheme 2, Scheme 3, and Scheme 4. From left to
right are Scheme 2, Scheme 3, and Scheme 4, and from top to bottom are DisTrad, TsHARP, BP, RF, and XGBoost, respectively.

areas. This performance is consistent with that observed in Scheme
1.Across each downscaling scheme, theXGBoostmodel consistently
outperforms the other four models and demonstrates strong
robustness.

4.5 Regression factor importance score
analysis

In this study, five models were used to conduct LST
downscaling in two typical plateau mountainous areas. The
regression factors used in the three machine learning models
are consistent. However, whether the importance of these factors
is the same in different study areas requires further analysis.
The RF model can evaluate the importance of its regression
factors by calculating the Gini. the XGBoost model evaluates
the importance of its regression factors through the built-in
“weight”. The BP neural network does not inherently include a
feature selection function. Regression factors were individually
scrambled 1,000 times each to reduce uncertainty regarding their
importance. This involved randomly rearranging one factor at a
time. LST downscaling calculations were then performed. If a
particular factor significantly influences the performance of the
model, the performance will noticeably decline after the factor is
replaced. Conversely, if the impact is minimal, it indicates lesser
importance. This process helps determine the relative importance

of variables in the BP neural network model. The importance
score of regressors in the three machine learning models is
illustrated in Figure 11.

Although NDVI demonstrated a certain degree of importance
in each model, it was not the most crucial factor in the two study
areas. This indicates that relying solely on NDVI to characterize
vegetation is not suitable for plateau and mountainous regions with
complex terrain. In addition, this explains why the DisTrad and
TsHARP models, which consider only the single factor of NDVI,
show poor fits in these two study areas. In the two study areas,
topographic factors, particularly elevation, play the most significant
role, surpassing other variables.This indicates that topographic have
a substantial impact on the spatial variation of LST. In study area A,
the importance of elevation factor corresponding to the RFmodel is
obviously higher than that of the other two models, indicating that
the elevation in the RF model is more sensitive. Different models
calculate the importance of regression factors in different ways, so
the relative importance of factors ultimately obtained is different. In
study area A, NDSI showed a certain level of importance, whereas
in study area B, NDSI was almost negligible across all three models.
This discrepancy is due to the fact that in study area B, snow is
not present year-round. During the selected study period, snow was
confined to the higher altitudes of Cangshan Mountain, resulting
in a very small snow-covered area. This underscores the necessity
of considering NDSI in LST downscaling studies for plateau and
mountainous areas with perennial snow cover.
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FIGURE 10
Same as Figure 9 for study area B.

FIGURE 11
Comparison of the importance of regression factors for machine learning models in (A) study area A and (B) study area B.

Under the complex terrain conditions of plateau mountainous
areas, altitude is a crucial surface parameter that influences the
correlation characteristics between LST and terrain factors in the
study area. To clarify the impact of altitude on LST, the elevations of
the two study areas were divided into 200-m intervals, and the mean
and standard deviation of LST for each interval were calculated.The
elevation range of study area A is between 1888 m and 6,444 m.
The study divides the study area A into 24 intervals, with pixels
below 2000 m grouped into the 2000 m interval and those above

6,600 m grouped into the 6,600 m interval. For study area B, with
elevations ranging from 1,268 m to 4,115 m, the study area B is
divided into 14 intervals. Pixels below 1,400 m are grouped into
the 1,400 m interval, while pixels above 4,000 m are merged into
the 4,000 m interval. The statistical results for both study areas are
presented in Figure 12.

Overall, the average LST in each interval exhibits a clear
downward trend as altitude increases, with study area A showing
a more pronounced trend. Linear fitting of elevation and LST
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FIGURE 12
Relationship between LST and elevation in (A) study area A and (B) study area B.

within these intervals reveals a determination coefficient of 0.970
for study area A and 0.878 for study area B, indicating that
altitude has a significant impact on LST in plateau mountainous
areas. The standard deviations in both study areas exceed 2 K,
following a trend of initially increasing and then decreasing
with altitude. In study area A, within the 4,200–5,000 m altitude
range, there is a distinct “bulge” in the relationship between
LST and altitude, where the standard deviation of LST is
notably higher than in other intervals. Further analysis shows
that the predominant land cover types at this altitude are
grassland and farmland. Similarly, in study area B, within the
2,200–2,600 m altitude range, a “bulge” is also observed in the
LST-altitude relationship, with a relatively large standard deviation.
The main land cover types in this area are built-up land and
farmland, suggesting that other factors influence LST within this
altitude range.

5 Discussion

There are various methods available for LST downscaling.
Compared to complex models based on physical mechanisms, such
as modulation allocation and spectrum mixing models, statistical
regression models offer a simpler implementation. Additionally,
thesemodels require fewer auxiliary parameters, which are generally

easier to obtain while still providing high accuracy (Xu and
Cheng, 2021; Li et al., 2022). Therefore, in this study, five statistical
regression models—DisTrad, TIARP, BP, RF, and XGBoost—were
used to perform LST downscaling experiments in Diqing and
Dali. Machine learning prediction models utilized regression
factors NDVI, NMDI, BSI, SR, DEM, Hillshade, and NDSI as
downscaling variables tailored for plateau mountainous areas.
Multi-scheme experiments were conducted to establish a LST
downscaling model suitable for the complex terrain of plateau
mountainous areas.

The downscaling results from the two study areas were analyzed
and evaluated based on three indicators: R2, RMSE, MAE, and
visual inspection of spatial distribution. The findings indicate
that machine learning models predict LST more accurately than
the DisTrad and TsHARP models. While the downscaling results
from all five methods closely approximate the spatial distribution
of RLST, the DisTrad and TsHARP models, which rely solely on
NDVI as a single explanatory variable, overlook terrain variations
and fail to capture the complex spatial characteristics of LST. This
highlights that traditional nonlinear methods do not achieve the
accuracy required for LST downscaling in plateau mountainous
areas. The machine learning model incorporates various terrain
factors such as altitude, surface roughness, and mountain shadow
specific to plateau mountain conditions. Additionally, it considers
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NDVI, NMDI, BSI, and NDSI to account for diverse land
cover types and perennial snow presence in the study area. By
utilizing these more appropriate factors, the model achieves
more accurate LST downscaling results. Moreover, the machine
learning model aligns better with terrain change patterns and
exhibits sensitivity in predicting extreme temperature areas,
thereby effectively enhancing spatial resolution. Among them, the
XGBoost model demonstrates the most effective performance,
achieving significantly higher accuracy in DLST compared to
other models.

The downscaling results of the machine learning model
in study area A generally outperform those in study area
B, influenced by the respective land cover types. The LST
downscaling results across different land cover types weremagnified
and analyzed. In densely vegetated areas of both study areas,
the two traditional linear models showed better effectiveness
compared to sparse areas but still fell short in capturing spatial
changes accurately. Complex terrain and varied land cover
types contribute to more mixed pixels. The advantage of the
machine learning model lies in its ability to comprehensively
learn the nonlinear relationship between different factors and
LST, enabling adaptation to diverse land cover types. Notably, the
XGBoost model exhibits superior adaptability and consistently
achieves the best LST downscaling results across all areas
of interest.

The results of LST downscaling using five methods across
different schemes demonstrate that the accuracy of downscaled LST
is closely tied to the ratio of initial resolution to target resolution.
This relationship arises from the varying probability distributions
of LST and its pixel values at different resolutions, contributing to
scale dependence in the downscaling process. Essentially, higher
ratios between initial and target resolutions yield more detailed
information. Previous study (Zhou et al., 2016) indicated that
efforts to mitigate scale effects marginally enhance the accuracy of
downscaled LST, contingent upon errors inherent in the original
data and downscaling process. Nonetheless, across various schemes,
the XGBoost model consistently outperforms the other fourmodels.

In the process of model building, we obtained the importance
order of factors in different models in different study areas. The
results show that the altitude is a very important factor in the LST
downscaling study in the plateau mountain area. And it is necessary
to consider NDSI as a factor in the plateaumountains with perennial
snow cover.

In addition to prioritizing accuracy, minimizing time costs is
also essential. Achieving higher accuracy in less time represents
an ideal approach. Therefore, the PSO algorithm was applied to
optimize hyperparameters of the three machine learning prediction
models, eliminating the need for manual parameter adjustments.
With optimized models, one can focus solely on interpreting results
without the distraction of fine-tuning hyperparameters. Among the
three machine learning models used, XGBoost was found to run the
fastest following PSO, making it a more efficient and accurate choice
compared to RF and BP.

These findings are significant for advancing environmental
monitoring in plateau mountainous areas. Due to limited data
availability in the study area, only four scene imageswere selected for
training the downscaling models. The consistency of downscaling
performance among the five models across different seasons in the

study area was not considered. Additionally, the impact of varying
study area sizes on the downscaling effectiveness of each method
was not assessed. Future study should include supplementary
experiments to address these limitations.

6 Conclusion

The research on LST downscaling in plateau mountainous areas
remains a significant challenge in thermal infrared remote sensing.
In the study, the LST downscaling effects of three machine learning
models (BP, RF, and XGBoost) and two classic linear regression
models (DisTrad and TsHARP) in plateau mountainous regions
were compared. It is found that compared to traditional single-
factor linear regression methods, the machine learning methods
demonstrated higher accuracy in LST downscaling. Specifically, the
XGBoost model outperformed others across different land cover
types and resolutions, achieving the lowest RMSE andMAE and the
highestR2.This indicates that XGBoost is particularlywell-suited for
LST downscaling in plateau mountainous areas.

By upscaling the Landsat 9 LST product and conducting
downscaling simulations at various resolutions, it was found that
the downscaling results are influenced by the disparity between
the original and target LST resolutions. The XGBoost model
demonstrates more stable performance across different resolutions.
The PSO algorithm was employed to optimize hyperparameters
of three machine learning prediction models, resulting in reduced
experimental time and enhanced efficiency.
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