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Active fault zones are critical pathways for the migration of deep fluids to
the Earth’s surface, carrying gases such as He, Rn, and CO2 that provide
evidence for the physical and chemical dynamics of the Earth’s interior. This
review examines the geochemical characteristics of fault zone gases and their
implications for understanding fault activity and seismic events. Fault zones
with high activity levels exhibit significant gas release, and variations in soil
and hot spring gas concentrations can serve as indicators of seismic activity.
Changes in gas concentrations and isotopic ratios, particularly before and
after earthquakes, reflect the dynamic interplay between deep-sourced and
shallow-sourced fluids. Seismic-induced stress alterations enhance gas release
along fault zones, leading to observable anomalies that can aid in earthquake
monitoring and prediction. The study underscores the importance of isotope
tracing in deciphering fluid sources, migration pathways, and the evolution of
fault zones, providing valuable information for assessing tectonic activity and
mitigating seismic risks.
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1 Introduction

Fluids play a crucial role in Earth’s system, particularly those migrating along fault
zones, which often carry geochemical signatures indicating the physical and chemical
evolution of Earth’s deep interior.These fluids serve as valuable indicators for studying block
movements, earthquake prediction, fault activity assessment, and related fields (Martinelli,
2020; Zhang et al., 2021). Due to the high permeability and porosity of active faults, these
zones frequently act as conduits for the migration and release of deep-sourced fluids. This
process typically manifests at the surface through elevated soil gas emissions, including
radon (Rn), carbon dioxide (CO2), helium (He), hydrogen (H2), and methane (CH4), as
well as intense degassing from hot springs and increased geothermal heat flow (Weinlich,
2014; Voltattorni et al., 2015; Singh et al., 2016; Bond et al., 2017).

During fluid migration, stable isotope signatures of non-metallic elements frequently
undergo equilibrium or kinetic fractionation. Isotopic analyses, such as 4He/20Ne, 3He/4He,
and δ13CCO2, can elucidate the origins, migration pathways, circulation processes,
formation mechanisms, and evolutionary history of these fluids (Zheng et al., 2013;
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Zhang et al., 2021). Furthermore, the chemical composition of
fluids and isotopes is highly sensitive to variations in regional
tectonic stress. Earthquake-induced stress changes can alter pore
pressure and microcrack density, affecting fluid-rock interactions
and subsequently modifying the surface emission levels of deep
gases (Camarda et al., 2016; Randazzo et al., 2021; Caracausi et al.,
2022). Therefore, analyzing the characteristics of fault zone gases
and isotope sources provides an effective method for studying fluid
migration within fault zones and its relationship to tectonic activity
(Faulkner et al., 2010; Tian et al., 2021; Li et al., 2023).

2 Characteristics and sources of fluids
in fault zones

2.1 Helium and neon

Helium (He) and neon (Ne) are inert noble gases whose isotopic
compositions in various reservoirs make them effective geological
tracers for mantle-derived fluids. Among the eight isotopic forms
of helium, 3He and 4He are stable, while 5He through 10He
are unstable. The ratios 4He/20Ne and 3He/4He are commonly
employed to differentiate crustal from mantle-derived fluids (Sano
andWakita, 1985; Shao et al., 2024).TheR/Ra ratio, representingHe
isotopic characteristics, is defined as the ratio of 3He/4He in a sample
relative to that in the atmosphere.

In Earth’s atmosphere, He is predominantly composed of
4He, which constitutes ∼99.99986% of atmospheric He. The
concentration of He in the atmosphere is relatively low, at 5.239
± 0.004 ppm (Walia et al., 2010). The atmospheric 3He/4He (Ra)
value is 1.4×10−6, and the 4He/20Ne value is ∼0.318 (Sano and
Wakita, 1985).Most atmospheric 4He is radiogenic, originating from
the α-decay of radioactive isotopes such as 238U, 235U, and 232Th
(Figure 1). The He abundance in Earth’s crust is estimated at ∼
5.5 × 10−7%. Crustal He typically exhibits an R/Ra value of ∼0.02
and a 4He/20Ne value of 1,000 (Andrews, 1985). Conversely, the
3He isotope, thought to originate from the solar nebula or solar
wind radiation present during Earth’s formation, has accumulated in
the mantle throughout Earth’s history. Mantle-derived He generally
displays an R/Ra value exceeding 5 (Lupton, 1983), with mid-
ocean ridge basalt (MORB) inclusions showing an R/Ra value of
8.0 and a 4He/20Ne value of 1,000 (Graham, 2002). R/Ra values
between 5 and 50 are indicative of He from the lower mantle
(White, 1957). The highest recorded R/Ra value of 67.2 ± 1.8
was found in olivine from 62 Ma-old lava flows on Baffin Island,
suggesting a possible origin from Earth’s core (Horton et al., 2023).
Due to He’s chemical inertness, stable physical properties, and
low solubility in water, gases such as N2 and CO2, along with
groundwater, often act as carriers for He migration (Hong et al.,
2010; Walia et al., 2010; Lee et al., 2019). He typically accumulates
in sedimentary basins and is released to the surface via faults or
fractures (Gao et al., 2024).

2.2 Radon

Radon (Rn) is the only naturally occurring radioactive noble gas,
existing in 34 unstable isotopic forms, ranging from 215Rn to 242Rn.

In nature, radon is found primarily in three isotopes: 219Rn (with
a half-life of 3.96 s), 220Rn (half-life of 55 s), and 222Rn (half-life of
3.82 days) (Audi et al., 2003). Of these, 222Rn is a decay product of
226Ra in the 238U decay chain (Figure 1), with the longest half-life,
and its concentration in the atmosphere is typically ranging from 10
to 100 Bq·m-3 (Porstendörfer, 1994).

Uranium (U) and radium (Ra), naturally occurring radioactive
elements, are widely distributed across the lithosphere, hydrosphere,
and atmosphere. Uranium, which has 28 unstable isotopes (215U to
242U), is found in concentrations of ∼3 ×10−4% in the lithosphere
and ∼1 × 10−4% in soil. Radium, with 33 unstable isotopes
(202Ra to 234Ra), has lithospheric and soil concentrations of ∼1
× 10−4% and ∼8×10−11%, respectively (Cheng et al., 2005). The
levels of U and Ra in soil or rock directly influence Rn release
in soil gas (Pereira et al., 2017). Experimental studies on rock gas
emissions have demonstrated that granite, which is rich in U and
Ra, releases significantly higher Rn concentrations than limestone
or sandstone (King, 1978; El-Arabi et al., 2006). Consequently,
regions with extensive granite outcrops typically exhibit elevated
Rn levels (Pereira et al., 2017).

Within mineral particles, radium undergoes α-decay, releasing
α-particles (4He) and enabling Rn to escape. The fraction of Rn
atoms generated from the decay of 226Ra that escape into rock
pores is defined as the Rn emanation coefficient (Martinelli et al.,
1995; Miklyaev et al., 2020; Phong Thu et al., 2020). Rn recoil can
take three paths: 1) remaining within the same particle, 2) passing
through a pore and embedding in adjacent particles, or 3) escaping
into an open pore (Sakoda et al., 2011). Only Rn escaping into
pore space is considered emanated (A, B, E, and F in Figure 2);
otherwise, it is non-emanated (C, D, and G). The recoil range of
Rn is 77 nm in water and 53 mm in the atmosphere, with the
latter being 688 times greater (Sakoda et al., 2011). This difference
indicates that rainfall and moisture content can significantly impact
Rn diffusion.

Gas transport through porous media often occurs via two
primary processes: diffusion and convection. Diffusion, driven by
concentration gradients, involves the movement of substances from
areas of high concentration to low concentration due to random
molecular motion (Flügge and Zimens, 1939). Convection, also
known as advection, mass transport, or viscous flow, is driven by
pressure gradients (Ciotoli et al., 2007). In natural environments,
gas transport typically results from a combination of these two
mechanisms.

Due to Rn’s relatively large atomic mass and chemical
inertness, deep-source gases such as CO2, N2, and CH4 often
serve as carrier gases that facilitate its migration to the surface
(Yuce et al., 2017). CO2, the most prevalent component of
Earth’s interior, frequently acts as the carrier gas for Rn as it
migrates along fault zones. Consequently, increased soil gas Rn
concentrations are often observed in conjunction with rising
CO2 levels in fault zones (Li et al., 2013). In rock fractures
and pores, typically ranging from 10–2 to 101 mm in size at
depths of several hundred to several thousand meters (Etiope
and Martinelli, 2002; Girault and Perrier, 2014), Rn convection
velocities can reach up to 100 to 104 m·d-1(Etiope and Martinelli,
2002; Muto et al., 2021). For example, convection velocities of
Rn in the Osaka Basin, Baikal Rift, and North Caucasus are
estimated at 340 m·d-1, 5.2 m·d-1, and 28 m·d-1, respectively
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FIGURE 1
The α-decay chains of 219Rn (A), 220Rn (B), and 222Rn (C), adapted from Soddy (1913) and Tan (2016).

(Miklyaev et al., 2020; Muto et al., 2021). When CO2 acts as the
carrier gas, Rn may originate from depths of several hundred to
several thousand meters in areas of high permeability (Girault and
Perrier, 2014). Moreover, groundwater transport and deposition
also contribute to the movement of Rn’s parent elements, uranium,
and radium (Chen et al., 2018).

2.3 Carbon dioxide

Data from the Mauna Loa Observatory in Hawaii proves that
the CO2 concentration in the atmosphere continues to increase,
rising from 315.70 ppm inMarch 1958 to 422.80 ppm on 5 February
2024 (http://www.co2.earth). CO2 primarily originates from three
sources: the decomposition of organic material, the breakdown of
carbonate rocks, and mantle degassing (Barnes et al., 1978). The
origin of CO2 can generally be determined using δ13CCO2 values
and CO2 concentrations, which identify three distinct end-member
sources: 1) Deep-source CO2, derived from magmatic degassing
and the decarbonation of carbonate rocks, typically exhibits
concentrations near 100% with δ13CCO2 values ∼0‰ (Parks et al.,
2013); 2) Biogenic CO2, usually characterized by concentrations of
∼4% and δ13CCO2 values ∼ −23‰ (Di Martino et al., 2016); and 3)
Atmospheric CO2, currently at 422.80 ppm, with δ13CCO2 values ∼
−8‰ (Keeling et al., 2005).

The range of δ13CCO2 from different sources can overlap each
other, such as those from Mid-Ocean Ridge Basalts (MORB) and
carbonate rocks (Bergfeld et al., 2001). CO2 also serves as the
primary carrier gas for He migration in the crust (Hong et al.,
2010; Walia et al., 2010; Lee et al., 2019). Therefore, the He-CO2
system is often utilized to further deduce the source of CO2
(Tian et al., 2021; Shao et al., 2024). Analysis of CO2 origins
can be conducted using R/Ra ratios and δ13CCO2 values, which
help distinguish between contributions from organic material,
carbonate rock metamorphism, and mantle magma degassing
(Barnes et al., 1978).

The decomposition of carbonate rocks involves processes
such as water-rock interactions, mechanical grinding by faults,
thermal metamorphism, and weathering (Rovira and Vallejo,
2008; Tamir et al., 2011). These processes can lead to the release
of substantial amounts of CO2, which then becomes a crustal
fluid, potentially contaminating mantle-derived volatiles. Typically,
thermalmetamorphismof carbonate rocks occurs∼400°C; however,
CO2 release can begin at temperatures above 70°C when water is
involved (Pankina G et al., 1979). Extensive fracture networks and
fluid interactions can enhance water-rock reactions within the rock,
producing significant quantities of CO2 (Randazzo et al., 2021).
Additionally, in regions of significant tectonic uplift, carbon stored
in carbonate rocks for millions of years can be released through
weathering (Zondervan et al., 2023).
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FIGURE 2
A schematic of Rn atom α-recoil, adapted from Sakoda et al. (2011). Arrows indicate diffusion processes, and the carrier gas is illustrative and does not
represent actual behavior. (A, B, E, F) represent Rn emanated; (C, D, G) are non-emanated.

3 Application of fault zone gases in
tectonic activity

The Earth is an open system where fluids, especially gaseous
components, play a crucial role in material and energy exchange
across different layers. Active fault systems, characterized by
higher permeability and porosity, facilitate the migration of
deep-seated fluids (such as CO2 and He) toward the surface.
These fault systems act as conduits extending to the mantle,
allowing mantle-derived fluids to reach the Earth’s surface.
The geochemical signatures of these fluids provide valuable
insights into the physicochemical evolution of the Earth’s deep
interior (Ciotoli et al., 2007; Yuce et al., 2017; Zhang et al., 2021),
which constructed the major direction of gas geochemistry
(Zheng et al., 2022). Therefore, in tectonically active regions,
analyzing changes in fluid geochemical characteristics has become
an essential method for studying block movements, earthquake
prediction, revealing hidden faults, evaluating fault activity,
and assessing atmospheric contributions (Zheng et al., 2018;
Martinelli, 2020; Zhang et al., 2021).

3.1 Relationship between fault zone gases
and tectonic activity

The exploration of soil gases, referred to as “geogas”, dates
back to 1913 (Klusman, 1993). Globally, regions of strong
gas release often overlap with tectonic suture zones, volcanic

belts, geothermal areas, and seismic zones (Barnes et al., 1978;
Tamburello et al., 2018). Regionally, the intensity of fluid release
and the geochemical characteristics within fault zones are
closely related to fault activity. Significant anomalies in soil gas
concentrations (such as Rn, CO2, He, H2, and CH4) have been
observed in various fault zones, including the Stivos Fault in
Greece (Papastefanou, 2010), the Khlong Marui Fault in Thailand
(Bhongsuwan et al., 2011), the Kütahya Simav Fault in Turkey
(Manisa et al., 2022), and the Mat Fault in India (Jaishi et al., 2014).
Field observations suggest that stronger fault activity correlates
with increased soil gas release, making soil gas concentrations
a useful metric for assessing fault activity (Seminsky et al.,
2013; Capaccioni et al., 2015). Additionally, different fault types
(normal, reverse, and strike-slip) exhibit distinct concentrations
and flux characteristics (Annunziatellis et al., 2008; Sun et al.,
2018). Therefore, tectonic zones with significant gas release are
valuable for reconstructing regional geodynamic processes and
monitoring subsurface tectonic activity (Faulkner et al., 2010;
Tian et al., 2021; Li et al., 2023).

At a global scale, crustal permeability exhibits significant
stratification, influenced by both internal and external forces.
In the deeper crust, internal processes such as metamorphism
and magmatism are dominant, while in the shallow crust,
external factors, particularly the hydrologic cycle, play a more
crucial role in shaping permeability (Rojstaczer et al., 2008). The
difference in permeability of the crust determines the different
distribution patterns of fluids underground. Rock deformation
experiments indicate that when differential stress exceeds rock shear
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FIGURE 3
Comparison of the CO2 output in the arcuate structure zone and other regions of the world. Data from: the East African Rift (EAR) (Lee et al., 2016); the
Tan-Lu Fault Belt, China (Aulbach et al., 2020); the Himalayas tectonic region (Becker et al., 2008); the present-day active rifts (Brune et al., 2017); the
eastern Ethiopian rift (Hunt et al., 2017); the Mount Amiata, Italy (Sbrana et al., 2020); the Mineral spring, Slovakia (Kucharič et al., 2015); the Nyiragongo
volcanoe, the East African Rift (Sawyer et al., 2008); the Oldoinyo Lengai volcanoe, the East African Rift (Brantley and Koepenick, 1995); the Icelandic
geothermal systems (Ármannsson et al., 2005); the arcuate structure zone, the northeastern Tibetan Plateau (NETP) (Liu et al., 2024); the Magadi fault
zone, the East African Rift (Lee et al., 2016); the western Ordos Basin, China (Liu et al., 2023a); the Wenchuan MS 8.0 earthquake rupture (Zhou et al.,
2016); the Ustica volcanic island, Italy (Etiope et al., 1999); the Natron fault zone, the East African Rift (Lee et al., 2016); the Mount
Changbai, China (Sun et al., 2021).

strength, pre-existing fractures close, forming new microcracks
and pores. Continued stress can link these microcracks into
macroscopic fractures, providing new pathways for fluid migration
(Tuccimei et al., 2010). Under tectonic stress, the number of
microcracks in fault zones increases (Li et al., 2013; Hansberry et al.,
2021), accelerating the migration and release of deep gases, which
can cause anomalies in gas concentrations and fluxes in shallow soils
(Martinelli, 2020; Miklyaev et al., 2020). Research has shown that
high sliding rates increase the permeability of sandstone and granite
by three orders of magnitude, indicating that high sliding rates
can sustain high permeability in fault zones (Tanikawa et al., 2010).
Consequently, variations in soil gas release are primarily influenced
by changes in fault zone permeability.

Active faults and fractures generally exhibit higher permeability
and porosity than surrounding hard rock, resulting in greater deep-
sourced gas release in fault zones compared to non-active tectonic
areas (Annunziatellis et al., 2008; Giammanco et al., 2009;Weinlich,
2014; Voltattorni et al., 2015; Singh et al., 2016; Bond et al., 2017).
In regions outside fault zones with lower permeability, the
correlation between Rn and CO2 concentrations is weak. In
contrast, well-connected faults show a stronger positive correlation
between Rn and CO2 (Padrón et al., 2013; Ciotoli et al., 2014).
Extensional structures with high permeability are more conducive
to deep fluid release than thrust or strike-slip faults, with the
scale of extensional faults directly influencing CO2 emissions
(Tamburello et al., 2018). For example, CO2 emissions from the
East African Rift are ∼71 Mt·yr-1 (Lee et al., 2016), from active rifts

∼40 Mt·yr-1 (Brune et al., 2017), and from the eastern Ethiopian
Rift ∼20 Mt·yr-1 (Hunt et al., 2017) (Figure 3). Although active
faults are key pathways for the release of mantle-derived and
crust-derived gases (Caracausi et al., 2022), atmospheric gases can
also enter the Earth’s interior through high-permeability fractures,
with diffusion rates reaching 10 m·d-1 and maximum depths of
300 m (Arai et al., 2001; Giammanco et al., 2009). Additionally,
thick sedimentary layers can obstruct gas migration, influencing
atmospheric mixing and the release of deep-sourced gases, while
shallow organic gases may mix with rising fluids (Liu, 2006).
Therefore, the connectivity of fault zones significantly affects
underground gas release, with surface gases reflecting a mix of
various sources.

Deep and large active fault zones act as links across different
Earth layers. Stable isotopes of deep fluids may undergo equilibrium
or kinetic fractionation during geological processes, and fluid
isotope tracers can provide important information on fluid
sources and migration in active fault zones (Zheng et al., 2013;
Zhang et al., 2021). For instance, (Hernández Perez et al., 2003)
identified mantle-derived CO2 in soil gases of the Hakkoda
Fault zone in northern Japan, with a contribution of up to
6.7%. Kulongoski et al. (2013) detected high 3He/4He ratios and
CO2 concentrations in hot spring gases from the San Andreas
Fault zone, with mantle-derived He contributing up to 44%.
Shao et al. (2024) analyzed hot spring gases in the southern
segment of the eastern boundary of the Sichuan-Yunnan rhombic
block, finding no intersection between the Red River Fault and
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FIGURE 4
Global earthquake precursor statistics from 1967 to 2014, adapted from Woith (2015).

FIGURE 5
Schematic diagram of satellite hyperspectral sensors and continuous monitoring station.
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Xiaojiang Fault. Zhang et al. (2021) studied the southeasternmargin
of the Tibetan Plateau using theHe-CO2-N2 system in hydrothermal
fluids, finding that He isotopes provided evidence for the lateral
expansion and localized surface uplift of the Tibetan Plateau. These
studies demonstrate that surface-emitted gases and isotopes in hot
springs or soil gases are effective indicators of tectonic activity and
fluid dynamics.

3.2 Relationship between fault zone gases
and seismic activity

Stress changes induced by earthquakes can trigger variations
in pore pressure and the number of micro-cracks within fault
zones, affecting the interaction between fluids and rocks and
altering the release of deep gases at the surface (Camarda et al.,
2016; Randazzo et al., 2021; Zhao et al., 2021; Caracausi et al.,
2022). These processes can enhance fluid migration along active
faults and modify the contribution of different fluid sources
to soil gases and hot spring emissions, leading to observable
pre-seismic anomalies or post-seismic responses (Martinelli and
Dadomo, 2017). Between 1967 and 2014, analysis of 134 global
seismic cases revealed that 69% showed anomalies in soil and
groundwater Rn, 20% in geochemical parameters of soil and
groundwater gases, and 10% in physical groundwater parameters
(Woith, 2015) (Figure 4).

Recent studies have increasingly applied geochemical methods
for analyzing soil gases to understand seismic activity trends
and to develop earthquake monitoring and prediction theories.
In tectonically active regions, stress accumulation from seismic
activity enhances the release of deep-sourced gases like Rn,
CO2, and He, which accumulate in rock fractures along fault
zones (Ciotoli et al., 2014; Yuce et al., 2017; Chen et al., 2015).
The correlation between Rn and CO2 concentrations tends to
increase before earthquakes (Fu et al., 2017). The vibroseis truck
(Gresse et al., 2016) and active seismic source (Liu et al., 2023b)
experiments have demonstrated that seismic waves can boost
the release of gases trapped in rock and soil pores. Moreover,
low-magnitude earthquakes (M < 4) can release crustal He into
the atmosphere, with the He release amount being quantitatively
related to the fault zone volume (Caracausi et al., 2022). Periodic
monitoring of soil gases in Italy’s Emilia region revealed significant
increases in CO2, CH4, and H2 concentrations before and
after the 2012 Emilia-Romagna earthquake swarm (Sciarra et al.,
2017). In Gujarat, India, continuous Rn monitoring successfully
detected significant increases in Rn concentrations days to weeks
before four earthquakes with magnitudes ranging from 4.0 to
4.1 (Sahoo et al., 2020; Torkar et al., 2010) used soil gas Rn to
predict 10 out of 13 earthquake events using an artificial neural
network with a backpropagation algorithm.These findings highlight
that seismic activity induces the release of deep-sourced gases
along fault zones, leading to changes in soil gas concentrations
that can serve as indicators for seismic activity and earthquake
monitoring.

Hot spring gas geochemistry also shows potential as an
indicator of seismic activity. Before the 2008 Tibet M 6.3
earthquake in China, significant anomalies in He and Rn
concentrations were observed in hot springs at Bakreswar

and Tatta Pani in India (Chaudhuri et al., 2011). Prior to the
1955 Kobe MW 6.9 earthquake in Japan, Rn release rates in
groundwater and atmospheric Rn concentrations significantly
increased, correlatingwith crustal strain fluctuations (Yasuoka et al.,
2009). During the 2016 Kumamoto M 7.3 earthquake in Japan,
He concentration changes in deep groundwater correlated
with volumetric strain changes (Sano et al., 2016). Thus, hot
spring gas concentrations can be crucial for earthquake
monitoring.

Throughout different stages of earthquake preparation and
occurrence, the contribution of deep-sourced and shallow-sourced
fluids dynamically evolves. For instance, before and after the 2011
Van MW 7.2 earthquake in Turkey (Aydın et al., 2015) and the
2013 Lushan MS 7.0 earthquake in China (Chen et al., 2015),
significant increases in 3He/4He and δ13CCO2 values were observed
in hot spring gases in fault zones. As aftershock activity waned,
the supply of mantle-derived gases decreased, leading to a decline
in 3He/4He and δ13CCO2 values. Following the 2008 Iwate-Miyagi
M 7.2 earthquake in Japan, the ascent of mantle-derived fluids
caused a maximum 85% increase in the 3He/4He value in hot spring
gases near the epicenter within a week (Horiguchi and Matsuda,
2008). After 2 M 6.0 earthquakes in the Emilia, Italy in 2012, the
δ13CCO2 and δ13CCH4 values of gases released from fault zones in
the epicentral area significantly decreased, likely due to the seismic-
induced release of shallow biogenic CH4 and CO2, overshadowing
deep thermogenic gases (Sciarra et al., 2017). These changes in He
and C isotopes in hot spring gases near fault zones before and after
earthquakes underscore how seismic activity promotes the mixing
of gases from various sources, particularly the ascent of mantle-
derived fluids.

Atmospheric gas variations induced by seismic activity are
integral to understanding the lithosphere-atmosphere coupling
mechanism (Veefkind et al., 2012; Jing et al., 2019). Advances in
hyperspectral sensors with atmospheric detection capabilities
have enabled extensive studies on gas changes associated with
seismic and volcanic events (Tramutoli et al., 2013) (Figure 5).
Notable anomalies in gases such as CH4, CO, CO2 and O3
have been documented before and after significant earthquakes,
such as the 2004 Sumatra-Andaman MW 9.1 earthquake and
the 2005 Sumatra-Nias MW 8.6 earthquake (Cui et al., 2023), the
2008 Wenchuan MS 8.0 earthquake and 2013 Lushan MS 7.0
earthquake in China (Cui et al., 2017), and the 2015 Gorkha M 7.8
earthquake and Dolakha M 7.3 earthquake in Nepal (Jing et al.,
2019). Furthermore, a statistical analysis using the Adaboost
machine learning algorithm examined infrared and hyperspectral
gas parameters among 10 different variables before and after
1,371 global earthquakes of magnitude ≥6 from 2006 to 2013,
identifying O3 and CO2 as significant contributors to earthquake
prediction (Xiong et al., 2021).

4 Conclusion

Active fault zones are vital conduits for deep fluids migrating
to the Earth’s surface. The gases released (such as CO2, Rn, and
He) contain valuable information about the physical and chemical
evolution of the Earth’s interior and further reveal fault activity
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and seismic events. Isotope tracing is essential for identifying fluid
sources, migration pathways, circulation processes, and formation
mechanisms.

Gas release in fault zones is closely related to fault activity, and
higher fault activity corresponds to higher soil gas release. Different
fault types exhibit distinct geochemical fluid characteristics. Fault
zones with strong gas release are preferred locations for studying
regional geodynamics andmonitoring subsurface tectonic activities.

Seismic activity alters stress states, which promotes the release
of deep-sourced gases along fault zones and leads to anomalies in
concentrations of soil gas and hot spring gas. These anomalies can
serve as indicators of seismic activity, providing crucial information
for earthquake monitoring. Isotopic changes in hot spring gases
before and after earthquakes further demonstrate that seismic
activity promotes the mixing of gases from different sources,
especially the ascent of crustal or mantle-derived fluids.

In summary, fault zones are crucial for deep fluid migration and
as research subjects for monitoring tectonic activity and earthquake
prediction. Analyzing fault zone gas geochemistry enhances our
understanding of the material cycle and energy exchange processes
in the Earth’s interior, providing a scientific basis for disaster
prevention and mitigation.
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