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Introduction: Soil salinization is a critical environmental issue affecting
agricultural productivity worldwide, particularly in arid and semi-arid regions.
This study focuses on the Xinjiang region of China, specifically the Xiao Haizi
and Sha Jingzi irrigation areas, to explore the use of remote sensing technology
for surface soil salinity estimation.

Methods: Exhaustive and filter-based feature selectionmethods were employed
by integrating soil salinity datameasured on the groundwith 32 spectral features
derived from Landsat 8 OLI remote sensing images. A 5-fold cross-validation
method was used to identify feature combinations that resulted in higher R2

values. Moreover, the inversion accuracy of soil salinization monitoring models
built using different feature combinations was compared across five machine
learning algorithms: Support Vector Machine (SVM), XGBoost, Decision Tree
(DT), Random Forest (RF), and AdaBoost.

Results: The results revealed that: (1) The AdaBoost and DT algorithms
demonstrated high efficacy and precision in the prediction of soil salinity, with
AdaBoost outperforming other algorithms in the validation set (R2 value of
0.892, MAE of 1.558, RMSE of 2.043), and DT showing the best performance
in the training set (R2 value of 0.917, MAE of 0.838, RMSE of 1.182). (2) Feature
combination 3, consisting of Salinity Index 5, Salinity Index 1, and Salinity Index
8, not only effectively extracted soil salinity information but also significantly
improved the accuracy and efficiency ofmodel estimations, effectively reflecting
the actual situation of soil salinization in the irrigation area.

Discussion: This research provides robust methodological support for using
remote sensing technology for soil salinity monitoring and management.

KEYWORDS

remote sensing, Landsat 8, agricultural sustainability, soil salinity, machine learning,
feature selection
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1 Introduction

Soil salinization is a global environmental issue that severely
impacts human society and natural ecosystems. According to data
from the Food and Agriculture Organization of the United Nations,
over 1.3 billion hectares of soil globally suffer from salinization,
while the area of soil salinization is growing at an annual rate
of 2 million hectares, affecting more than 100 countries (Singh,
2018; Hammam and Mohamed, 2020). This problem is particularly
pronounced in arid and semi-arid regions, such as parts of Asia,
including China, Kazakhstan, and Iran, as well as in certain areas
of Africa (Ivushkin et al., 2019; Cackett et al., 2022). In China,
soil salinization is widespread, with significant implications for
agriculture and environmental conservation. The Xinjiang region,
in particular, is heavily affected, with saline-alkali soils covering an
area of 36.7 million hectares, over 50% of which is concentrated in
this province (Peng et al., 2016; Haj-Amor et al., 2022). Therefore,
improving the accuracy of salinization information acquisition and
monitoring in real-time is crucial for the sustainable development of
agriculture and the protection of ecosystem functions in Xinjiang,
China. Currently, soil salinity content (SSC) is the primary method
for determining soil salinity levels. However, this method requires
traditional soil sampling, processing, and laborious laboratory
analyses, making it challenging to meet the requirements for large-
scale, long-term SSC monitoring (Zhang et al., 2005; Bannari and
Al-Ali, 2020).

Recent studies on remote sensing of soil salinity suggest that this
approach may be more effective over large areas than traditional
methods. This advantage lies in the ability of remote sensing to
monitor the Earth’s surface at different spatial scales and temporal
resolutions (Stavi et al., 2021; Paz et al., 2023). Where multispectral
data are widely utilized in soil salinity and alkalinity studies, this
includes auxiliary information such as vegetation indices, salinity
indices, and band reflectance extracted from satellite images, all
playing crucial roles in soil salinity monitoring (Wang F. et al., 2017;
Stavi et al., 2021; Zhou et al., 2021; Measho et al., 2022). However,
models constructed from original bands (such as the red and near-
infrared bands) and standard vegetation indices (e.g., EVI and
NDVI, etc.) along with salinity indices (SI, SI1) fail to make full use
of the multispectral band information, leading to current research
staying only at the stage of spectral feature construction. With
the increasing number of relevant features, many researchers have
begun to explore the impact of high-dimensional feature modeling
on the accuracy of soil salinization inversion. They have found
that the complexity of feature dimensions could increase model
complexity, thereby reducing predictive performance. Selecting
appropriate features reduces the dimensionality of the input data,
decreases computational load, and also aids in identifying the
most suitable variables for environmental monitoring andmapping.
Understanding the optimal variables can contribute to designing
more efficient remote sensing monitoring programs tailored for
specific applications. Various feature selection methods have been
proposed (Sun and Du, 2019; Kumar et al., 2020; Esmaeili et al.,
2023), with some studies suggesting that combining multiple
approaches can yield superior outcomes. For instance, Bajcsy
and Groves (2004) integrated several feature selection techniques
within their regression model to estimate soil conductivity.
Similarly, Thenkabail et al. (2004) utilized multiple methods,

including Principal Component Analysis (PCA), λ-λ R2 modeling,
and stepwise discriminant analysis, to optimize feature selection
for vegetation classification. Chen et al. (2022) calculated 55
environmental features from Landsat and terrain data, employing a
hybrid TPE-XGBoost model, and selected 19, 11, 25, and 15 features
in four different regions, achieving good performance in predicting
soil salinity (R2 > 0.8). Wang et al. (2023) Using the Mixup-LGBM
model combined with feature importance evaluation, it was found
that among 62 original feature sets in the study area, DEM and
human activities had a high impact on soil salinization.Therefore, it
is necessary to consider different spectral band combinations, as well
as the redundant information generated by various combinations of
spectral bands, and use data dimensionality reduction techniques to
eliminate redundant data and thus improve the estimation accuracy
of the soil salinization monitoring model.

Furthermore, numerous studies (Farifteh et al., 2007;
P. Leone et al., 2012; Yu et al., 2016) have successfully constructed
soil salinity monitoring models using various independent variables
(salinity indices, vegetation indices, original bands) combined with
multiple regression methods to achieve good predictive results.
Among them, Partial Least SquaresRegression (PLSR) iswidely used
in soil salinity inversion modeling, a robust multivariate regression
method particularly suitable for cases where predictor variables
exhibit multicollinearity, with many studies reporting successful
cases of soil salinity assessment using PLSR (Udelhoven et al., 2003;
Zhang et al., 2011; Sawut et al., 2014). However, the relationship
between remote sensing images and soil salinity is nonlinear, and
these regression methods only focus on the relationship between
covariates and soil salinity content, ignoring the fact that the
formation of soil salinity is a complex process controlled bymultiple
factors. Thus, a simple linear summation of various aspects may not
reveal the actual situation, whereas nonlinear models can better fit
the contributions of numerous factors affecting soil salinity.Machine
learning (ML), a branch of artificial intelligence, is particularly
suited to dealingwith the complex, non-linear relationships between
soil salinity and remotely sensed features. Unlike traditional
regression methods, which assume linear relationships, ML models
can automatically detect and analyze intricate patterns in the data,
making them highly effective in dealing with the many factors that
influence soil salinity (Chlingaryan et al., 2018). Currently, machine
learning techniques combined with various remote sensing images
have successfully predicted soil salinity; for example, Wang J. et al.
(2021) used random forest combined with remote sensing data to
successfully predict soil salinity at multiple depths in the Tarim
River Basin in southern Xinjiang, China. Wang J. et al. (2020)
used the Cubist model combined with Sentinel-2 MSI to map
soil salinity in the Abinur Lake Wetland National Nature Reserve
with satisfactory accuracy. However, independent variables often
fall short of fully revealing soil salinization patterns. Applying
multiple features or feature combinations can improve the accuracy
of soil salinization modeling. Notably, no universal feature set is
suitable for salinization monitoring across all environments (Chen
and Seo, 2023). Therefore, adaptively selecting an optimal subset
of features based on local conditions is essential for enhancing
salinity prediction models. Feature selection methods can identify
representative input variables from numerous salinization factors.
Using this refined feature set and various machine learning
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algorithms may improve the accuracy and timeliness of salinization
information retrieval and monitoring at the irrigation district scale.

In this study, five machine learning algorithms, namely
Random Forest (RF), Adaptive Boosting (AdaBoost), Support
Vector Machine (SVM), Extreme Gradient Boosting (XGBoost),
and Decision Tree (DT), were applied to select the spectral
index and the combined spectral index that have the highest
correlation with soil salinity among a total of 32 variables, including
vegetation index, salinity index, and reflectance bands by using an
exhaustive combination of features and a cross-validation method.
The objective is to estimate the soil salinization in the Xiao Haizi
irrigation area using these powerfully explanatory independent
and combined variables, improving the accuracy and speed of
soil salinity estimation. The study also validated and assessed the
accuracy of these five different machine learning algorithms and
selected the best-performing model based on the relationship with
the indices and accuracy assessments, thus enabling the monitoring
and inversion of soil salinization in the Xiao Haizi irrigation
area. To validate the model’s adaptability and generalization ability,
the model inversion results were also validated in the Sha Jingzi
irrigation area (the flowchart of the study is shown in Figure 1). The
results of this study will facilitate the acquisition of soil salinization
information in irrigation districts and help mobilize local farmers,
decision-makers, and environmental managers in this region to
address soil salinity issues.

2 Materials and methods

2.1 Study area

TheXiaoHaizi irrigation area (78°47′–79°34′E, 39°36′–40°4′N)
is situated in Tumxuk City, part of theThird Division of the Xinjiang
Production and Construction Corps in northwest China (Figure 2).
This region lies at a geographically significant junction, bordered
by the Taklamakan Desert to the east, the Pamir Plateau to the
west, the Tianshan Mountains to the north, and the Karakoram
Mountains to the south. It is home to the largest plain reservoir
in northwest China, comprising the Xiao Haizi Reservoir and
Yong’anba Reservoir, which collectively have a total storage capacity
of 700 million cubic meters. This irrigation area is characterized by
a temperate desert climate, marked by extended sunshine durations
and pronounced diurnal temperature variations.The average annual
temperature is 11.6°C, with a frost-free period of approximately
225 days. Annual rainfall is minimal, ranging from 34 to 39 mm,
while evaporation is exceptionally high, reaching 2030–3,318 mm
per year. The region includes 73,370 ha of cultivated land and
50,025 ha of ecological land, with rich natural resources such
as Populus euphratica forests, Tamarisks, natural grasslands, and
various wild plant species, covering an area of 80,040 ha. The
topography varies in altitude from 1,024 to 1,075 m, sloping from
southwest to northeast. However, the combination of low and flat
terrain, arid climatic conditions, and shallow groundwater levels has
resulted in severe soil salinization in this region.

Model inversion validation was conducted in another
challenging area, the Sha Jingzi Irrigation District (79°22′–80°16′E,
40°20′–40°26′N), located in the middle and lower reaches of the
Aksu River Basin, about 60 km southwest of Aksu City (Figure 2).

This region is geographically defined by Aisiman Lake to the east,
flood protection barriers to the west, the Southern Xinjiang Railway
to the north, and Dahalakule to the south, spanning an area of
99,000 ha.The district has a temperate continental arid climate, with
annual precipitation concentrated mainly from June to August and
an average rainfall of 62.9 mm. Like Xiao Haizi, evaporation rates
are extremely high, averaging 1950 mm per year. The landscape is
predominantly composed of forests and farmland, with relatively
regular patterns of land parcels.

Both the Xiao Haizi and Sha Jingzi irrigation areas are located in
southern Xinjiang, between the Tianshan and Kunlun mountains.
Due to its unique geological and climatic conditions, this region is
particularly vulnerable to soil salinization, with salt-affected soils
accounting for 41.21% of the total arable land, well above the
regional average. In addition, intensified land development and
land use changes have altered the type, quantity and distribution
of salt-affected soils in this area, posing a significant threat to the
sustainability of local agriculture. As a result, rapid and accurate
measurement of SSC is critical for managing soil salinization.

2.2 Data acquisition and preprocessing

2.2.1 Sample collection and measurement
In the Sha Jingzi and Xiao Haizi irrigation districts, spring

brings high evaporation rates, frequent winds, and minimal rainfall,
resulting in the lowest soil moisture levels of the year. The
accumulation of soil salts on the surface due to capillary action
results in a peak in salinization. Furthermore, farmland is typically
unplanted and exposed during this season, making spring an
optimal period for field sampling. In order to ensure that soil
samples are representative and scientifically robust, the sampling
design incorporated two key considerations. Firstly, using Google
Earth imagery and considering local conditions and land use
types, sampling points were systematically spaced every 200 ha to
reconcile the point-scale observations with the spatial resolution of
remote sensing imagery. Secondly, based on the results of previous
inversions, the sampling points were stratified by salinization levels,
including non-salinized, lightly, moderately and heavily salinized,
as well as saline soil. This ensured a balanced representation across
the salinity categories. This integrated approach provides a robust
basis for accurate salinization monitoring and analysis. Of these,
115 soil samples from the 0–20 cm layer were collected in the
Xiao Haizi irrigation area from April 13 to 25, 2021, and 250 soil
samples were collected for soil salinity determination in the Sha
Jingzi irrigation area from March 20 to 30, 2023. The five-point
sampling method was used to collect 0–20 cm soil layer samples,
which were mixed to create a representative composite soil sample.
The geographic locations of these samples were recorded using a
handheld GPS. Before further laboratory analysis, the samples were
air-dried, crushed, and sieved through a 2 mm mesh. Potassium
(K⁺) and sodium (Na⁺) ions were measured using an FP640 flame
photometer, calcium (Ca2⁺) and magnesium (Mg2⁺) ions were
determined with a Z-2000 atomic absorption spectrophotometer,
sulfate (SO₄2⁻) ions were measured by indirect titration with EDTA,
chloride (Cl⁻) ions were determined by silver nitrate titration. The
dual indicator method was used to determine carbonate (CO₃2⁻)
and bicarbonate (HCO₃⁻) ions. The detection limits for each ion
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FIGURE 1
Flowchart of the proposed method for estimating the soil salinity based on machine learning models.

were as follows: 0.05 mg/kg, 0.02 mg/kg, 0.03 mg/kg, 0.005 mg/kg,
0.07 mg/kg, 0.09 mg/kg, 0.07%, and 0.05%. The total soil salinity
was determined by preparing a soil solution with a 1:5 soil-to-
water mass ratio, which was then stirred, settled, precipitated,
and filtered. Fifty ml of clear leachate was drawn and placed in

a glass evaporation dish, which was dried to constant weight at
105°C–110 °C. The leachate was evaporated in a water bath, and
small amounts of hydrogen peroxide were slowly added with a
pipette while swirling the dish to ensure complete contact with
the dried residue, oxidizing all organic matter. The dish was
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FIGURE 2
Location of study areas and sample points, (A) Xinjiang Province and (B) Distribution of Water Resources (C) Xiao Haizi LULC_Classification and Sample
points (D) Sha Jingzi LULC_Classification and Sample points.

then placed in an oven at 105°C–110 °C for 2 hours, cooled in
a desiccator for 30 min, and weighed. The amount of soil water-
soluble salt, i.e., soil salinity content (Equation 1), was calculated as
follows:

SSC(g× kg−1) =
(m2 −m1) × t
(m× k)

× 1000 (1)

where m1, m2, t, m, and k correspond to glass evaporating
dish mass ( g), whole salt plus glass evaporating dish
mass ( g), fractionation times, air-dried soil sample
mass ( g), and moisture conversion coefficients of air-
dried soil samples converted to dried soil samples,
respectively.

2.2.2 Acquisition of multispectral images and
calculation of feature variables

With its 16-day revisit cycle and 30-meter spatial resolution, the
Landsat data provide high-quality geographic data for monitoring
soil salinity. To reduce the uncertainty in predicting soil salinity,
the acquisition dates of the Landsat images (Xiao haizi: Landsat
8 OLI 24 April 2021, Sha Jingzi: Landsat 8 OLI 29 March 2023)
should be close to the sampling dates, and the cloud cover
should be less than 10%. Meanwhile, to enhance monitoring
accuracy, this paper used the RF classification algorithm under
supervised classification to classify the study area into Water,

Flooded, Crops, Built Area, Bare ground, and Poplar Forest
Areas, with a classification accuracy of 92% and a Kappa
coefficient of 0.93. The classification process was completed
using Google Earth Engine (GEE), and the planting areas were
extracted using GIS.

The smooth surface of saline soils typically exhibits a higher
degree of reflectance in the visible and near-infrared spectral regions
than non-saline soils. Specifically, within the visible spectrum
(0.45–0.68 mm), saline soils reflect a higher proportion of incoming
light, thereby providing a clear basis for distinguishing them
from other surface features, such as average soils and vegetation.
Furthermore, the research conducted by Masoud (2014) illustrates
that saline soils subjected to low moisture conditions exhibit
remarkably high reflectance within the blue and red spectral
bands, a crucial attribute for precisely assessing salinization
levels. Alterations in vegetation cover serve as a vital indirect
indicator in salinization monitoring, as saline soils frequently
demonstrate inadequate vegetation growth. Vegetation indices are
an effective means of capturing this condition. Moreover, salinity
index and other specifically developed spectral indices facilitate
the direct detection of salt characteristics, thereby enabling the
precise characterization of soil salinization levels. In order to
gather detailed surface salinity information to build soil salinity
prediction models in the Xiao Haizi and Sha Jingzi irrigation
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TABLE 1 Spectral reflectance bands, vegetation indices, and salinity indices were obtained from Landsat 8 OLI satellite data.

Category Acronym Formulas

Band Reflectivity B, G, R, NIR, SWIR1, SWIR2 Landsat8 OLI

Vegetation index

Normalized difference vegetation index (NDVI) NIR−R
NIR+R

Extended normalized difference vegetation index (ENDVI) NIR+SWIR2−R
NIR+SWIR2+R

Atmospherically resistant vegetation index (ARVI) NIR−(2×R−B)
NIR+(2×R−B)

Generalized difference vegetation index (GDVI) NIR2−R2

NIR2+R2

Non-linear vegetation index (NLI) NIR2−R
NIR2+R

Normalized difference water index (NDWI) G−NIR
G+NIR

Normalized difference infrared index (NDII) NIR−SWIR1
NIR+SWIR1

Optimized soil adjusted vegetation index (OSAVI) 1.5×(NIR−R)
NIR+R+0.16

Enhanced vegetation index (EVI) g×(NIR−R)
NIR+SWIR1+C1×R−C2×B+1

Salinity Index

Salinity index (SI_T) R
NIR

Salinity index (SI) √B×R

Salinity index (SI1) √G×R

Salinity index (SI2) √R2 +G2 +NIR2

Salinity index (SI3) √G2 +R2

Salinity index 1(S1) B
R

Salinity index 2(S2) B−R
B+R

Salinity index 3(S3) G×R
B

Salinity index 4(S4) SWIR1
SWIR2

Salinity index 5(S5) B×R
G

Salinity index 6(S6) NIR×R
G

Salinity index 7(S7) SWIR1−SWIR2
SWIR1+SWIR2

Salinity index 8(S8) R+G
2

Salinity index 9(S9) NIR+R+G

Normalized difference Salinity Index (NDSI) R−NIR
R+NIR

Canopy Response Salinity Index (CRSI) √ NIR×R−G×B
NIR×R+G×B

Underlying surface factor Carbonate index (CarI) SWIR−1−NIR
SWIR−1+NIR

Note: g, C1, and C2 were set to 2.5, 6 and −7.5, respectively.

areas, a total of 32 features were selected from relevant studies.
These features, which are highly correlated with salinization,
serve as input variables for the salinity monitoring model. The
aforementioned features, which included vegetation indices, salinity
indices, and band reflectance values, were calculated using GEE and
exported locally (Table 1).

2.3 Feature selection

It should be noted that not all features contribute equally
to the prediction of soil salinity in the context of modelling
soil salinization monitoring and prediction. The application of
feature selection techniques enables the identification of the most
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TABLE 2 Feature combination selection based on Landsat 8 OLI imagery.

Satellite Characteristic waveband Coefficient of determination (R2) Feature variable

Landsat8 OLI

SI 0.60 Feature a

S5 0.71 Feature b

SI3 0.67 Feature c

S5, SI3, SI1 0.74 Feature combination 1

S5, SI3, S8 0.70 Feature combination 2

S5, SI1, S8 0.68 Feature combination 3

valuable feature subset, the optimization of model performance,
the reduction of dimensionality and the lowering of computational
costs. This process reduces redundancy and noise and mitigates the
‘curse of dimensionality’, enhancing the model’s generalization and
interpretability. This study introduces an innovative approach to
feature selection by employing a multi-stage combination of filter-
based selection and exhaustive search methods, ensuring scientific
rigor, thoroughness and efficiency in the feature selection process.

The filter-based feature selection method employs statistical
correlations to identify essential features prior to model training.
This is achieved by analyzing the relationships between features and
the target variable. Given the multitude of factors that influence
soil salinity, including soil properties, climate conditions, and
topographical features, the filter-based method effectively excludes
variables that are not directly related to salinity. This reduces
the feature space and enhances the efficiency and stability of the
modelling process. In this study, Pearson correlation coefficients
were selected as the primary measure of feature relevance. The
absolute value of the Pearson coefficient ranges from 0 to 1, with
values closer to 1 indicating a stronger linear correlation with soil
salinity content. By calculating the Pearson correlation between each
feature and SSC, we reduced the initial 32 features to 16, which
showed a significant correlation with SSC (|p| > 0.1). This process
excluded non-significant features, enhancing the effectiveness and
computational efficiency of subsequent modelling.

The 16 features selected through filter-based methods will serve
as the original dataset, which will then be divided into training
and testing sets at a ratio of 5:1. Subsequently, five-fold cross-
validation and exhaustive search are applied to the training set to
determine the optimal model parameters.The fundamental concept
of cross-validation entails the further partitioning the training set
into five subsets, with four subsets employed iteratively for training
and one for validation. An exhaustive search is conducted for
each training subset to test various model parameter combinations.
The performance of each combination is evaluated against the
validation data to identify the optimal parameters. As a brute-force
approach, an exhaustive search systematically assesses all possible
combinations, making it suitable for achieving precision on small-
scale features or parameter sets. Ultimately, only feature sets with
an average R2 more significant than 0.6 are retained for each
study area (see Table 2).

2.4 Construction of soil salinity inversion
model

Five machine learning algorithms were employed to address the
nonlinear relationships and multivariate characteristics inherent in
soil salinization modelling: SVM, XGBoost, DT, RF, and AdaBoost.
The selection of each algorithmwas based on its specific advantages,
with parameters fine-tuned to enhance robustness and efficiency.

SVM was selected for its nonlinear mapping capability in
high-dimensional spaces, rendering it an appropriate choice for
complex multidimensional data. The RBF kernel was employed,
with a C value 10 set to balance margin maximization, and
error minimization, and gamma set to 5 to control the scope
of nonlinear transformations, enhancing fine-grained feature
detection. However, SVM can be computationally intensive for
large datasets and is sensitive to hyperparameter selection (such as
C and gamma), which may lead to overfitting. Cross-validation was
applied to optimize these parameters to mitigate this risk, thereby
improving generalization.

XGBoost, as a gradient boosting framework, leverages
efficient residual learning and refined loss function optimization,
maintaining high predictive accuracy and computational efficiency
for large, complex datasets (Mantena et al., 2023). The key
parameters were optimized through 5-fold cross-validation, with
grounds set at 100, max_depth at 4, and eta at 0.2.This approach was
employed to capture complex patterns while avoiding overfitting.
However, it should be noted that XGBoost is sensitive to data noise,
particularly in small or unbalanced datasets. This can result in a
tendency for overfitting. To counteract this, training iterations and
model complexity were carefully controlled, enhancing robustness.

DTwas selected for its interpretability and clear visual structure,
which reveals the layered relationships between input features
and the response variable, making it suitable for identifying key
drivers. Although DT effectively models hierarchical associations,
a single tree is susceptible to sample fluctuations, leading to high
variance and limited generalization. To improve model robustness,
we employed ensemble strategies, specifically RF and AdaBoost.

RF utilizes Bagging to construct multiple decision trees,
reducing variance through random sampling and feature selection,
thereby enhancing generalization (Wang N. et al., 2020). In this
study, we set 100 trees and randomly selected nine features at each
split to maintain feature diversity while limiting node size to control
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complexity. However, RF may be influenced by irrelevant features in
high-dimensional data, increasing computational load. We adjusted
feature selection and parameter settings to ensure efficiency and
precision.

AdaBoost, employing Boosting, incrementally adjusts error
weights to aggregate weak classifiers (DT in this study), making
it better suited for capturing data details and outliers (Haq et al.,
2023). The maximum tree depth was set to 15 to identify complex
patterns, while the random state was fixed to enhance repeatability
and consistency. However, AdaBoost is sensitive to noise and may
overfit when outliers are present. In order to mitigate this risk, the
maximumdepth and the number of weak classifiers were controlled.

2.5 Model accuracy evaluation parameters

It is crucial to assess the discrepancies between the predicted and
actual values to evaluate the model’s accuracy and performance. In
order to ascertain the most appropriate model for the prediction
of soil salinity, this study employs three principal metrics: The
metrics employed areR2, RMSE, andMAE.TheR2 statisticmeasures
the overall fit of the model, with a high R2 value indicating an
effective capture of the data trends. However, R2 does not provide
information regarding the specific magnitude of errors; therefore,
its exclusive use may obscure essential details regarding the nature
of these errors. The RMSE is a statistical measure that evaluates the
magnitude of prediction errors. It is susceptible to outliers, data
points that deviate significantly from the rest of the data set. By
amplifying more significant errors, RMSE highlights the model’s
performance in cases with substantial deviations. MAE quantifies
the average absolute difference between predicted and actual values,
indicating the model’s overall error magnitude. Unlike RMSE, MAE
is less influenced by outliers, offering a balanced view of average
prediction errors. The combination of these three metrics addresses
the limitations of any single measure, creating a more thorough
model evaluation. This balanced approach ensures the chosen soil
salinity inversion model is accurate and reliable.

3 Results and analysis

3.1 Characteristics of salt-based ion
distribution in soils of Xiao Haizi irrigation
district

This article utilizes descriptive statistical analysis to investigate
the variability characteristics of salt ions in the soil of the Xiao Haizi
irrigation district. Table 3 shows that in the 0–20 cm soil layer of the
study area, cations including K⁺, Na2⁺, Ca⁺, and Mg2⁺ are present.
Among them, Na⁺ has the highest content with a mean value of
1.93 g·kg⁻1, followed by Ca⁺ with a mean value of 1.03 g·kg⁻1. The
mean values for K⁺ and Mg2⁺ are 0.29 g·kg⁻1 and 20.17 mg·kg⁻1,
respectively. The main anions are SO₄2⁻ and Cl⁻, with mean ion
contents of 3.53 g·kg⁻1 and 1.34 g·kg⁻1, respectively. The content of
CO₃2⁻ ions is almost zero. The ion content of salt indicates that
sodium ions and sulfate ions are essential components of the local
soil, and the salinization type of the study area belongs to the
chloride sulfate type, with a mean total salt content of 7.84 g·kg⁻1.

Additionally, there is a significant difference between the maximum
and minimum values of salt ion content, reflecting the region’s
uneven spatial distribution of salt ions. Moreover, the study area’s
total salt content and the variation coefficients of salt ions (K⁺,
Na⁺, Ca2⁺, Mg2⁺, SO₄2⁻, Cl⁻) exceed 100%, indicating substantial
variability. The variation coefficient of HCO₃⁻ is between 10% and
100%, indicating moderate variability. Salt ions can affect the pH
value of soil. Analysis of soil pH in the Xiao Haizi irrigation district
reveals that the pH values of cultivated land soil range from 7.94
to 8.72, with a coefficient of variation of 2.79%. This indicates that
the soil in the study area is mainly alkaline, with a small portion
strongly alkaline. The variability of soil pH is low, indicating that
the soil acidity and alkalinity distribution in cultivated land in the
irrigation district is relatively consistent, with no significant spatial
heterogeneity.

3.2 Results of spatial interpolation of soil
salinity in irrigation district

SSC is a commonly used index to assess the degree of soil
salinization (Taghizadeh-Mehrjardi et al., 2021). However, each
region has classification standards (Nabiollahi et al., 2021). This
study, based on the standards published by the Xinjiang Agricultural
and Rural Department (Wu et al., 2018; Yu et al., 2018; Chi et al.,
2019; Peng et al., 2019; Gharaibeh et al., 2021), soil salinity values
were divided into five categories: non-salinized (SSC < 3 g/kg),
slightly saline (3 g/kg < SSC < 6 g/kg), moderately saline (6 g/kg <
SSC<10 g/kg), intensely saline (10 g/kg < SSC<20 g/kg), and highly
saline (SSC > 20 g/kg).

The spatial characteristics of soil properties make them
particularly amenable to geostatistical analysis, thereby rendering
Geostatitics a valuable tool for the study of soil distribution
patterns and spatial variability. Geostatistics elucidates the spatial
distribution patterns of soil properties and establishes a correlation
between these patterns and ecological processes, thereby facilitating
amore comprehensive comprehension of soil distribution dynamics.
It is a widely used tool in salt accumulation research, particularly
for interpolating salt buildup from soil sample analysis. Kriging, a
term encompassing generalized least-squares regression methods,
is an effective approach, providing linear, unbiased estimates while
accounting for clustering by weighting nearby sample points. SK
represents the most basic form of Kriging and is designed to
extend the technique to multivariate data sets, including auxiliary
information, to enhance predictive performance. SK is particularly
well-suited to situations where only a limited number of auxiliary
variables are available and only cover some sample points. Given
the markedly elevated and depressed soil salinity values observed
in the samples, utilizing the mean as a predictor could potentially
introduce bias. Consequently, this study employs the median soil
salinity values for the Sha Jingzi and Xiao Haizi irrigation districts
as the anticipated values within the SK model, thereby enhancing
the representation of the data’s central tendency, with median values
of 3.79 g/kg and 3.44 g/kg, respectively. This approach allows for
the direct visualization of soil salinization distribution patterns by
comparing the spatial interpolation results derived from ground
sampling monitoring data with the inversion results of five machine
learning models. This allows for an assessment of the accuracy of
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each model, thereby further enhancing our understanding of soil
salinization dynamics across the study areas.

The results of the interpolation analysis indicate that the soil
salinity in the Xiao Haizi irrigation district (Figure 3) displays
notable banded and patchy distribution patterns. The highest
salinity levels are concentrated in the northern and eastern regions,
represented by prominent red and orange areas, indicating marked
spatial heterogeneity. The elevated salinity in these areas suggests
severe soil degradation, significantly impacting crop growth. In
contrast, non-saline regions, characterized by lower salinity levels
and relatively favorable soil conditions, are primarily located in the
south and southwest.Moderate salinity regions are scattered, mainly
in the north and east, where larger patches of moderate salinization
create an observable clustering effect.

By contrast, the Sha Jingzi irrigation district (Figure 4) exhibits
a distinct spatial configuration, characterized by elevated salinity
levels in a non-uniform distribution, predominantly concentrated
in the central and southern regions. This observation suggests the
existence of localized instances of severe salinization. The non-
saline areas, representing better soil conditions, are primarily located
along the eastern edge and northwest corner. The low-salinity areas,
predominantly indicated by the color green, are concentrated in the
northern and central regions, reflecting a minor salt accumulation.
The moderately saline areas, indicated by yellow, are concentrated
in the central part, where soil salinity is relatively high. The areas
of high salt accumulation are indicated by red and orange in
the southern and central parts, underscoring an urgent need for
remediation, such as desalinization projects, salt-tolerant crops, or
land-use adjustments to mitigate soil salinization risks.

3.3 Model accuracy evaluation analysis

This study selected 32 variables, including vegetation indices,
salinity indices, and reflectance bands. Six key input variables
with strong explanatory power were identified using a multi-stage
combination of filter-based feature selection and exhaustive search
methods (see Section 2.3). These include three individual variables
(Feature a, Feature b, Feature c) and three combined variables
(Combination 1, Combination 2, Combination 3). These variables
were then applied as inputs for fivemachine learning algorithms (RF,
AdaBoost, SVM, XGBoost, DT) to predict soil salinity in the Xiao
Haizi irrigation district.

The training results (Table 4) indicate that the DT model
outperformed the other algorithms, achieving R2 values above 0.857
for all six input variables. For Features c, Combinations 1, 2, and
3, R2 values exceeded 0.908, with corresponding MAE and RMSE
values of 0.854, 0.838, 0.903, 0.849 forMAE, and 1.186, 1.182, 1.332,
1.19 for RMSE, respectively. Among these, Combination 1 yielded
the highest R2 (0.917) along with the lowestMAE (0.838) and RMSE
(1.182), suggesting that the DT model with Combination 1 was the
most effective for extracting soil salinity information. The training
accuracy ranking across models was DT > AdaBoost > RF > SVM
> XGBoost.

Validation results (Figures 5–9) revealed that the AdaBoost
algorithm outperformed other models, achieving R2 values above
0.7 for all six input variables. For Combinations 1, 2, and 3, R2

values were above 0.870, with MAE values below 1.667 and RMSE
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FIGURE 3
Spatial distribution of soil salinity in the 0–20 cm soil layer of Xiao Haizi Irrigation Area.

FIGURE 4
Spatial distribution of soil salinity in the 0–20 cm soil layer of Sha
Jingzi Irrigation Area.

values below 2.170. Notably, Combination 3 achieved an R2 of
0.892, an MAE of 1.558, and an RMSE of 2.043. These results
demonstrate that AdaBoost, combined with Feature Combination
3, has a strong potential for accurate soil salinity extraction with

acceptable accuracy.The validation accuracy ranking was AdaBoost
> DT > RF > SVM > XGBoost.

In summary, both AdaBoost and DTmodels demonstrated high
learning capacity and accuracy for soil salinity inversion. AdaBoost
performed superior in the validation, andDT performed best on the
training set. Elnaggar and Noller (2009) similar results in salinity
mapping with decision trees (DTs) were observed, attributing it
to DT’s ability to incorporate diverse predictive factors during
modeling. However, DTs are prone to overfitting, meaning they
perform well on training data but poorly on untrained data.
In contrast, AdaBoost mitigates noise by weighting, combining
multiple weak learners into a robust predictor, and enhancing
stability on new samples like the validation set. Compared to
single models like decision trees or SVM, AdaBoost has a greater
tolerance for complex data, effectively reducing overfitting in
the validation set. AdaBoost’s strong classification performance
has led to applications in ensemble learning, including image
recognition, fruit biochemical parameter estimation, and complex
change prediction models.

3.4 Spatial mapping results of salt
distribution in the Xiao Haizi and Sha Jingzi
irrigation districts

The appropriate machine learning algorithm enhances the
accuracy and robustness of capturing soil salinization patterns.
It effectively reduces model bias across diverse regional conditions,
supporting efficient analysis and decision-making in salinization
monitoring. As shown in Section 3.3, the AdaBoost model
demonstrated excellent fit and low error on training and validation
sets, indicating a strong ability to learn and represent soil salinity
data. Each feature variable may offer unique spatial information or
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FIGURE 5
The scatter plot of measured soil salinity values versus predicted values in the RF model.

capture distinct salinity distribution characteristics. Thus, mapping
with all selected features (see Table 2) provides a comprehensive
view of soil salinization distribution across the study area. As shown
in Figure 10, non-saline areas are widely distributed in the western
and southeastern Xiao Haizi irrigation districts. At the same time,
slightly saline soils are primarily found in the eastern and central
regions, typically forming a blue transitional band along the edges
of non-saline areas. This pattern is particularly pronounced in the
model built with a salinity index of S5, indicating that the S5 index,
constructed from blue, red, and green bands, effectively identifies
slightly saline soils. Moderately saline soils are scattered across the
central and southeastern regions, often adjacent to slightly saline
areas. In contrast, intensely saline soils are primarily distributed in
the eastern, northern, and parts of the central region. Extremely
saline soils are concentrated in specific areas in the north and
east, typically within or along the edges of intensely saline zones.
Notably, models built with single features show limited ability to
identify these two soil types. Figure 11 shows the distribution of soil
salinity in the validation area, the Sha Jingzi irrigation district.
Non-saline areas are extensively distributed across all models,
predominantly in the west and south of the region. Slightly saline
soils are more concentrated in the east, north, and parts of the
central region. Moderately saline soils cluster in the central and
southeastern areas, while intensely and extremely saline soils are
sparse. Highly saline soils occur in small clusters in the eastern
and northern central regions, while extremely saline soils occur
sporadically in the north and east. Models with multiple feature
combinations show higher accuracy in identifying high salinity

areas, suggesting that multi-feature combinations may improve
model prediction accuracy.

4 Discussion

4.1 The soil salinity spatial distribution
characteristics and influencing factors in
the Xiao Haizi irrigation district

This study focuses on the Xiao Haizi irrigation district,
analyzing the spatial distribution characteristics of soil salinity and
its influencing factors using Geostatistics technology. The results
indicate an overall trend of lower salinity in the southwest and higher
salinity in the northeast of the study area, which is related to factors
such as topography, groundwater, and climate. Specifically, the study
area is located in the middle and lower reaches of the Yarkand River
andKashgarRiver basins, with a terrain characterized by a southwest
high to northeast low trend (Jiang et al., 2022). The rivers flow west
to east, with the southern part near the two major reservoirs. As
the altitude decreases, soil salinization becomes more severe, with
higher soil salinity content observed in the northeast and lower in
the southwest.

The groundwater depth gradually increases from south to
north in the study area, ranging from less than 1 m near the
watershed to 36 m in the south and exceeding 10 m in the
northernmost part. Cong et al. (2023) also found that the surface
water mineralization of Xiao Haizi Reservoir and Yong’anba
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FIGURE 6
The scatter plot of measured soil salinity values versus predicted values in the AdaBoost model.

FIGURE 7
The scatter plot of measured soil salinity values versus predicted values in the SVM model.
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FIGURE 8
The scatter plot of measured soil salinity values versus predicted values in the XGBoost model.

Reservoir ranges from 0.56 to 0.74 g·L⁻1, classified as fresh
water. In comparison, the average groundwater mineralization is
4.15 g·L⁻1, falling within the range of salty water. The increase
in ground-water mineralization leads to increased salt content
in the soil, with higher soil salinity observed in areas with
shallower groundwater and lower soil salinity in areas with deeper
groundwater.

The study area has a warm, temperate, extremely arid climate,
with an average annual precipitation of only 34.1–38.8 mm and an
average yearly evaporation of 2030.8–3318.26 mm, far exceeding
precipitation. This results in severe water shortage in the soil, and
intense evaporation promotes the migration of water in the soil to
the surface layer, leading to the dissolution and accumulation of salts
in the surface soil layer and higher soil salinity content in cultivated
land within the irrigation district (Yu et al., 2018). Moreover, the
presence of shallow groundwater facilitates the transport of salts to
the surface, while evaporation intensifies the concentration of salts
at the topsoil.The increase in shallow groundwater and the high rate
of evaporation contribute to the accumulation of salts in the surface
soil in the study area.

Furthermore, this study found that the soil’s total salt and
various salt ions exhibit highly uneven spatial distribution, showing
solid or moderate spatial heterogeneity. This may be related to
the distribution of artificial water canals, as irrigation by artificial
canals can alter the water-salt balance of the soil and affect
the distribution of soil salinity. Additionally, Cong et al. (2023)
measured the concentration of significant surface water components
in the Yarkand River basin and found that the highest average

values of significant cations in reservoir water were K⁺ and
Na⁺, followed by Ca2⁺, and the lowest content was Mg2⁺. The
average concentrations of the main anions ranged from high to
low and were as follows: SO₄2⁻, Cl⁻, HCO₃⁻, which is consistent
with the pattern of salt ion content in the soil observed in
this study.

4.2 The key role of multi-variable
combinations in enhancing the accuracy of
soil salinization inversion

Soil salinization is the result of a combination of natural
and human factors. The use of auxiliary information extracted
from remote sensing images, such as vegetation indices,
salinity indices, and reflectance bands, improves the accuracy
of soil salinity monitoring. Furthermore, terrain factors,
such as elevation, slope, and surface roughness, which affect
groundwater flow and salt migration, can be extracted from
digital elevation models (DEMs) to support the spatial analysis
of soil salinity.

The integration of multiple influencing factors has been
demonstrated to markedly enhance the accuracy of soil
salinity prediction. To illustrate, Xu et al. (2020) selected
25, 16, and 24 variables for quantitative salinity assessment
in the Wei-Ku Oasis, Qitai Oasis, and Sangeng River Basin,
respectively. Their findings revealed that specific variables exerted
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FIGURE 9
The scatter plot of measured soil salinity values versus predicted values in the DT model.

FIGURE 10
Inversion of soil salinity distribution in Xiao Haizi irrigation area by different models.
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FIGURE 11
Inversion of soil salinity distribution in Sha Jingzi irrigation area by different models.

significant impacts on salinization across regions. In the Wei-
Ku Oasis, surface temperature was identified as a key factor,
while soil texture, irrigation methods, and livestock carrying
capacity were identified as necessary in the Qitai Oasis and
Sangeng Basin. Similarly, another study employed 46 variables
in machine learning models to estimate soil salinity in the
Eshtehard Salt River, demonstrating that the integration of
multi-source remote sensing and field data markedly enhances
prediction accuracy (Zarei et al., 2021).

The findings of this study are in alignment with those of the
aforementioned study. A comparison of multi-feature combinations
(Combinations 1, 2, 3) with single-feature variables (Feature a,
Feature b, Feature c) demonstrated that multi-feature combinations
markedly enhanced model fit and predictive robustness. During
the construction of the model and the subsequent spatial mapping
(see Table 5; Figures 5–11), themulti-feature combinations achieved
an average R2 of 0.836 on the test set, which is notably
higher than the 0.783 achieved by single features. The MAE
was reduced to 1.214 (from 1.393 with single features), and
the RMSE was decreased to 1.746 (from 2.007). Similarly, the
multi-feature combinations demonstrated superior performance
on the validation set, with an average R2 of 0.758 (compared
to 0.712 for single features), MAE reduced to 2.013 (from
2.572), and RMSE to 1.9006 (from 2.222). Furthermore, models
constructed with single features (e.g., Adaboost-SI, Adaboost-SI3,
Adaboost-S5) exhibited high sensitivity and consistent performance
in identifying non-saline lands. However, they demonstrated
limited capacity to accurately identify intensely saline and highly
saline soils. This indicates that integrating spectral features with

a stronger correlation to soil salinity can markedly enhance
prediction precision. In particular, the Adaboost-S5-SI1-S8 model,
constructed with a combination of S5, SI1, and S8, precisely
delineated soil salinity distribution in the Xiao Haizi irrigation
district, facilitating real-time salinity monitoring and providing
invaluable insights for regional management and improvement
initiatives.

Although vegetation indices are commonly employed in the
monitoring of soil salinity (Zhang et al., 2011; Allbed et al., 2014;
Ramos et al., 2020), this study did not utilize salinity-related
vegetation indices and reflectance bands as final features. This
may be attributed to the sampling period, as the accuracy of
satellite image classification is contingent upon seasonal timing.
The optimal monitoring period is typically during the dry season
(March to April), whereas high vegetation cover during the
wet or hot season can impede the detection of salinity signals.
(Khan et al., 2005; Peng et al., 2019; Stavi et al., 2021). During
the feature selection process in this study, salinity indices were
retained, thereby validating their efficacy under bare soil conditions.
Previous studies have demonstrated that the integration of field-
measured and spectral data enhances the accuracy of soil salinity
monitoring (Gorji et al., 2017).

Future research will further explore how higher-dimensional
multi-variable combinations impact model accuracy, particularly
addressing potential data redundancy issues among variables
such as sensor data types, soil moisture, vegetation types, and
climate factors (Sahbeni et al., 2023). This approach aims to
improve the temporal and spatial adaptability of soil salinity
monitoring.
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TABLE 5 Area proportions of different salinization types under various models in the Xiao Haizi irrigation district (%).

Salinization
Type

Spatial
interpolation

Adaboost-
SI

Adaboost-
SI3

Adaboost-
S5

Adaboost-
S5-SI3-SI1

Adaboost-
S5-SI3-S8

Adaboost-
S5-SI1-S8

Non-salinized 19.38 27.94 25.05 29.42 21.36 15.84 19.95

Slightly saline 43.53 29.49 33.50 38.73 42.05 47.16 42.85

Moderately saline 20.53 17.07 19.56 14.00 20.20 20.31 18.91

Intensely saline 14.78 23.29 19.90 17.03 15.32 15.41 16.91

Extremely saline 1.78 2.21 1.99 0.82 1.07 1.28 1.38

4.3 Effectiveness of AdaBoost in soil
salinization monitoring

In addition to the utilization of multivariate combinations to
enhance the precision of soil salinity monitoring, advancements in
computer science have yielded novel methodologies for soil salinity
monitoring. The advent of ensemble learning methodologies has
effectively addressed the issue of the limited generalization capacity
of individual learners.

In this study, two ensemble learning models, AdaBoost and
RF, exhibited superior estimation results, exceeding those of the
single learner SVM. Previous scholars have successfully applied
RF to soil salinity monitoring research, achieving higher accuracy
than SVR and MLR (Wang F. et al., 2021; Suleymanov et al., 2023).
This can be attributed to the capacity of ensemble learning to
integrate base learners with disparate hypothesis spaces, thereby
expanding the overall model’s hypothesis space and enhancing its
resilience to unknown data distributions. Nevertheless, despite RF’s
satisfactory performance in this study, AdaBoost demonstrated
superior outcomes. This discrepancy may be attributed to RF’s
constraints in managing data beyond the training set, resulting
in diminished accuracy when validating samples with specific noise
(Wang et al., 2019; Shi et al., 2021). In contrast, AdaBoost exhibited
superior generalization and stability as a boosting ensemble learning
algorithm. By employing an iterative training process involving
a series of weak learners and adjusting the weights of high-error
samples, AdaBoost effectively shifts the focus in each iteration to
poorly performing samples. (Zhao et al., 2023). This mechanism
provides robust noise resistance and enhances its capacity to
model intricate data. Ultimately, AdaBoost attains final estimates
through a weighted average of each weak learner’s predictions.
Despite a constrained training set in this experiment, AdaBoost
demonstrated remarkable adaptability and noise resistance,
attaining the most accurate estimation performance. These findings
further substantiate the potential and advantages of AdaBoost in
soil salinization monitoring (Jiang et al., 2024b).

4.4 Study significance and limitations in soil
salinization monitoring and management

This study employed a multi-stage strategy combining filter-
based feature selection and exhaustive search in order to identify

the most representative features from a set of candidate variables.
The integration of these features into machine learning models
resulted in a notable enhancement in the accuracy of soil salinization
estimation. Similarly, Wang N. et al. (2020) demonstrated the
effectiveness of integrating remote sensing data, landscape
characteristics, and machine learning models for soil salinity
measurement and monitoring in arid and semi-arid regions,
highlighting the importance of feature selection and data integration
for improving model performance.

In the comparative analysis of machine learning models, the
AdaBoost algorithm outperformed DT, RF, SVM, and XGBoost,
demonstrating superior accuracy and adaptability under varying
conditions. A practical application in the Sha Jingzi irrigation
district validated the models’ performance. All six models
effectively captured the spatial distribution of soil salinity, with
the AdaBoost-S5-SI1-S8 model achieving the highest accuracy.
Notably, the estimated areas of intensely and extremely saline
soils by the models were 5.09%–12.2% and 2.65%–8.34% higher
(Table 6), respectively, than those derived from spatial interpolation,
highlighting the limitations of sparse sampling in interpolation-
based methods (Wang Y. et al., 2017). For non-saline, slightly, and
moderately saline soils, the models’ estimates closely aligned with
the interpolation results.

The findings provide a robust framework for precise soil
salinization monitoring, facilitating agricultural managers in
promptly implementing measures, such as crop rotation and
targeted irrigation, to effectively prevent or mitigate soil salinization
(Hussain et al., 2020). This study also underscores the potential
of machine learning techniques to enhance the precision and
reliability of salinity monitoring, particularly in arid and semi-
arid regions (Jiang et al., 2024a).

However, this study focused solely on soil salinization
monitoring under bare soil conditions, limiting the comprehensive
utilization of the potential offered by multisource and
multidimensional remote sensing data. Future research should
incorporate more diverse features to better reflect the mechanisms
of salinization, such as data from various sensors (including
SAR), vegetation types, climatic factors, soil types, soil moisture,
site-specific management practices, and multi-year spectral
indices (Pôças et al., 2020). Additionally, the exploration of more
advanced machine learning algorithms (e.g., deep learning) and the
optimization of model parameters could further enhance prediction
accuracy and model generalizability (Xiao et al., 2023).
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TABLE 6 Area proportions of different salinization types under various models in the Sha Jingzi irrigation district (%).

Salinization
Type

Spatial
interpolation

Adaboost-
SI

Adaboost-
SI3

Adaboost-
S5

Adaboost-
S5-SI3-SI1

Adaboost-
S5-SI3-S8

Adaboost-
S5-SI1-S8

Non-salinized 15.56 25.52 21.43 25.87 17.29 12.51 13.77

Slightly saline 55.32 39.11 39.03 34.65 41.44 44.12 51.45

Moderately saline 26.13 17.87 23.36 22.05 20.60 18.74 24.05

Intensely saline 2.61 12.46 9.93 6.17 12.66 14.67 7.7

Extremely saline 0.38 5.04 6.25 11.26 8.01 9.96 3.03

5 Conclusion

This study employs the integration of remote sensing technology
and machine learning algorithms to achieve the rapid and accurate
inversion of soil salinity in the Xiao Haizi irrigation district. It
examines the spatial distribution patterns and critical influencing
factors, thereby providing a scientific basis for the monitoring
and management of soil salinization. A multi-stage strategy of
filter-based feature selection and exhaustive search was employed
to identify six highly explanatory input variables. The selected
variables demonstrated efficacy in soil salinity prediction, with an R2

value exceeding 0.614. The optimal model attained an R2 of 0.828,
markedly enhancing the precision and efficiency of the inversion
process. The principal conclusions are as follows:

1. The combination of multiple variables led to a notable
enhancement in the accuracy and generalizability of soil
salinity estimates, particularly in heterogeneous environments,
thereby demonstrating a high degree of adaptability.

2. Among the five machine learning algorithms that were the
subject of comparison, the AdaBoost model demonstrated the
highest learning capacity and predictive accuracy, indicating
that it has strong potential for application.

3. The validation results demonstrate that the model constructed
with Feature Combination 3 (S5, SI1, and S8) exhibited an
exceptional capacity for extracting soil salinity information in
the Sha Jingzi irrigation district. The inversion results were
found to be in close alignment with the outcomes of spatial
interpolation, thereby confirming the accuracy and reliability
of the model.

This study proposes a data-driven framework for soil salinity
monitoring based on multi-variable combinations. This framework
provides a valuable reference for soil salinity inversion in similar
regions, meeting the high precision and efficiency demands of
salinization monitoring and showing promising potential for
broader applications.
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