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The accurate rockburst prediction is crucial for ensuring the safety of
underground engineering construction. Among the various methods, machine
learning-based rockburst prediction can better solve the nonlinear relationship
between rockbursts and influencing factors and thus has great potential
for engineering applications. However, current research often faces certain
challenges related to the feature selection of prediction indices and poor
model optimization performance. This study compiled 342 rockburst cases from
domestic and international sources to construct an initial database. In order to
determine the relevant prediction indicators, a feature selection method based
on the ReliefF-Kendall model was proposed. The initial database was equalized
and visualized using the Adasyn and t-SNE algorithms. Five rockburst prediction
models [support vector machine (SVM), least-squares support vector machine
(LSSVM), kernel extreme learning machine (KELM), Random Forest (RF), and
XGBoost] were established by employing the Secretary Bird Optimization (SBO)
algorithm and 5-fold cross-validation to optimize performance. The optimal
model was selected based on a comprehensive assessment of generalization
ability (accuracy, kappa, precision, recall, and F1-score) and stability (average
accuracy). The reliability of the proposed feature selection, model optimization,
and data balancing methods was verified by comparing the optimal model with
other methods. The results indicate that the PSO-SVM model demonstrated
superior prediction accuracy and generalization performance; the accuracy
can reach 81.4% (optimal) and 80.1% (average). The main factors affecting the
occurrence of rockburst are Wet, maximum tangential stress (MTS), D, and
uniaxial compressive strength (UCS). Finally, the model was applied to the
domestic rockburst engineering cases, achieving a prediction accuracy of 90%
and verifying its engineering applicability.
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1 Introduction

Rockburst is a dynamic instability disaster occurring in deep
underground engineering under high ground stress, caused by
the release of elastic strain energy within the surrounding rock
during excavation and unloading (Xia et al., 2022; Xue et al.,
2022; Ma et al., 2024). The random suddenness and the strong
destructiveness characterize it. It can delay the construction
period and cause substantial economic losses, posing a severe
threat to construction personnel and equipment safety. Suppose
the potential rockburst risk can be effectively predicted and
evaluated (Esmatkhah Irani et al., 2022) in advance in the early
stage of underground engineering. In that case, the risk of a
rockburst disaster can be reduced by reasonable site selection
and strengthening support measures. A significant issue in the
risk control management of deep underground engineering
construction is the reasonable and accurate rockburst prediction.

The current methods for predicting rockburst can be classified
into three primary categories: 1) the single-criterion methods
based on rockburst mechanisms, 2) the comprehensive prediction
methods considering various factors influencing rockburst, and 3)
the rockburst prediction methods reliant on field monitoring. Most
single-criterion methods have poor engineering applicability and
prediction accuracy, often failing to meet the requirements. Despite
their effectiveness, methods such as microseismic monitoring have
high operational costs, limiting their widespread application. The
comprehensive rockburst prediction methods using mathematical
theory or machine learning are widely adopted owing to their
simplicity, convenience, and high engineering practicality.

The first category is based on the uncertainty theory. It includes
methods such as the fuzzy mathematics method (Wang et al.,
2019), grey theorymethod (Gao, 2008), attribute recognition theory
method (Qu et al., 2022), set pair analysis method (Wang et al.,
2020), efficacy coefficient method (Qiu et al., 2013), matter-
element extension method (Xue et al., 2019), evidence theory
method (Zhang F. et al., 2024) target closeness method (Liu et al.,
2015), fuzzy matter-element theory method (Wang et al., 2015),
cloud model method (Sun et al., 2024a), catastrophe progression
method (Xing et al., 2024), unascertained measure theory method
(Hu et al., 2023), projection pursuit method (Xu and Xu, 2010),
and approximation ideal point method based on distance sorting
theory (Xu et al., 2018a). The second category is based on machine
learning. It involves neural networks (Zhang Q. et al., 2024), deep
neural networks (Zhang et al., 2023), support vector machine
(Pu et al., 2018b) naive Bayes (Zhang S. et al., 2024), logistic
regression (Li and Jimenez, 2018), Knearest neighbor (Kamran et al.,
2022), extreme learning machine (Li et al., 2023b), random forest
(Yang, 2024), gradient boosting decision tree (Liang et al., 2020)
extreme gradient boosting tree (Qiu andZhou, 2023a), light gradient
boosting machine (Qiu and Zhou, 2023b), extreme tree (Li et al.,
2022), and adaptive boosting (Wang et al., 2023). The first category
relies on mathematical theory and requires the determination of
rockburst level thresholds and index weights, which are affected by
human subjectivity.The second category, which is based onmachine
learning, is entirely data-driven, less subjectively affected, and can
continuously update sample libraries. It can be well explained to
deal with the nonlinear action relationship between rockbursts and
influencing factors.

FIGURE 1
Flowchart of Secretary Bird Optimization algorithm.

Tan et al. (2022) established a fusion method combining
the diversity and accuracy weights of Stacking and Voting
for the rockburst intensity classification prediction, effectively
improving the performance compared to ordinarymachine learning
algorithms. Liu et al. (2022) proposed three Stacking ensemble
algorithms considering multiple rockburst prediction indices,
successfully predicting the rockburst in the vertical shaft of
Zhongnanshan Tunnel. Li et al. (2021) utilized six machine
learning algorithms with cross-validation for rockburst prediction
models, compared the prediction accuracies to select the optimal
model and predicted the rockburst in the Jinping II hydropower
station diversion tunnel. Tang and Xu (2020) established nine
rockburst predictionmodels after preprocessing the original dataset,
achieving better results than the traditional theoretical criteria.
Tan et al. (2021) proposed a data preprocessing method combining
the LOF and improved SMOTE algorithms and established
six machine learning models based on the processed dataset,
significantly improving the prediction accuracy. These studies have
demonstrated that machine-learning-based rockburst prediction
has broad engineering application prospects. However, this method
currently has three main areas for improvement: the algorithm
model optimization, the prediction input index selection, and
the insufficient data quality. Intelligent optimization algorithms
are primarily integrated with prediction algorithms to address or
avoid the issue of models becoming trapped in local optima. The
commonly used optimization algorithms include the particle swarm
optimization algorithm (Yuan et al., 2023), the genetic algorithm
(Wei et al., 2020), the sparrow search algorithm (Xu et al., 2022),
the grey wolf optimization algorithm (Kamran et al., 2024), the
African vulture optimization algorithm (Qiu and Zhou, 2024), the
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FIGURE 2
The principle of commonly used machine learning classification prediction algorithm: (A) SVM; (B) ELM; (C) RF; (D) XGBoost.

differential evolution optimization algorithm (Deng et al., 2024)and
the improved multi-verse optimization algorithm (Xie et al.,
2021). Existing optimization algorithms (e.g., PSO) and others
have several areas for improvement, including a tendency toward
locally optimal solutions, slow convergence, and sensitivity to
parameter settings. Therefore, developing an algorithmic model
with exploration ability, greater adaptability, and higher efficiency
is essential to improve the model’s generalization ability and
predictive performance.

The accuracy of the model predictions is largely contingent
upon the reliability of the input indicators. An insufficient or
excessive number of prediction indicators affects the model’s
performance, and there is no uniform standard for input indicators
in current prediction models. Most indicators are selected
through the qualitative analysis of factors influencing rockbursts
or trial-and-error methods with various feature combinations,
often resulting in solid subjectivity or increased computational
complexity. The existing prediction index determination methods
make it challenging to ensure the efficiency and objectivity of the
prediction model index selection. The data-driven feature selection
method based on real rockburst cases needs further study. The
feature selection, an essential step in the machine learning data

preprocessing phase, aims to extract the most relevant features for
object recognition and classification. There are fewer studies related
to data-driven feature selection for rockburst prediction metrics.
Kidega et al. (2022) developed a gradient boosting (GBM)prediction
model based on decision uncertainty to analyze combinations
of factors affecting rock bursts. The model, combined with a 3-
fold cross-validation optimization approach, found that the most
important factor affecting rock bursts is the maximum tangential
stress. Sun et al. (2024b) selected the microseismic characteristics of
undergroundmines based on the correlation feature selection (CFS)
algorithm and proposed the OFS-Bayes-WPS model for short-term
rockburst intensity prediction.The feature selectionmethods can be
categorized into filtering, wrappers, and embedded (Zhang et al.,
2020). The ReliefF algorithm is a straightforward and effective
filtering method for feature selection. In this study, we selected the
optimal features for the rockburst prediction model by integrating
the ReliefF algorithm with the correlation analysis to ensure the
objectivity and rationality of the choice of indicators for predictive
characterization.Themajor data quality issue is the imbalance of the
data categories. In machine learning, the imbalanced datasets lead
models to overemphasize the majority samples while neglecting the
minority samples, thereby reducing the generalization performance.
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TABLE 1 Part of the rockburst prediction model based on machine learning.

Reference Characteristic parameters Method Reference Characteristic parameters Method

Ge and Feng (2008) σθ, σθ/σc, σc/σt,Wet AdaBoost Pu et al. (2018a) σθ, σt, σc,Wet DT

Chen et al. (2002) σθ, σc, σt,Wet BP Shao and Zhou (2018) σc, σc/σt, σt, σc/σ1, σθ/σc,Wet, Kv KELM

Zhao (2005) σ1, σc, σt,Wet SVM Xu et al. (2018b) σθ/σc, σc/σt,Wet DHNN

Zhu et al. (2008) σθ, σc, σt, σθ/σc, σc/σt,Wet V-SVR Pu et al. (2019a) D, σθ, σc, σt, σθ/σc, σc/σt,Wet, (σc-σt)/(σc+σt) GRNN

Bai et al. (2009) σθ/σc, σc/σt,Wet FDA Wu et al. (2019a) σθ, σc, σt, σθ/σc, σc/σt,Wet LSSVM

Gong et al. (2010) σθ, σc, σt,Wet BDA Pu et al. (2019b) σθ, σc, σt, σθ/σc, σc/σt, (σc-σt)/(σc+σt),Wet SVM

Zhou et al. (2012) D, σθ, σc, σt, σθ/σc, σc/σt,Wet SVM Wu et al. (2019b) σθ, σc, σt, σθ/σc, σc/σt,Wet PNN

Zhang et al. (2012) σc, σc/σt, σc/σ1, σθ/σc,Wet, Kv, D SVM Zhao et al. (2019) σc, σθ/σc, σc/σt,Wet, Kv OPF

Dong et al. (2013) σθ, σθ/σc, σc/σt,Wet RF Liu et al. (2019) σθ/σc, σc/σt,Wet ELM

Jia et al. (2013) σθ, σc, σt,Wet GRNN Zhou et al. (2021) σθ, σc, σt, σθ/σc, σc/σt,Wet ANN

Lan et al. (2014) σθ/σc, σc/σt,Wet ELM Xie et al. (2020) σθ, σθ/σc, σc/σt,Wet XGBoost

Gao (2015) D, σθ/σc, σc/σt,Wet AACC Tian et al. (2020) σθ, σc, σt,Wet DNN

Li et al. (2017) D, σθ, σt, σc,Wet BN Li et al. (2023a) σθ, σc, σt,Wet, σθ/σc, σc/σt CNN

Note: σθ is the maximum tangential stress (MPa), σc is the uniaxial compressive strength (MPa), σ t is the uniaxial tensile strength (MPa), σθ/σc is referred to as the stress concentration factor,
(σc-σ t)/(σc+σ t) is the rock brittleness index,Wet is the elastic energy index, σc/σ t is another rock brittleness index, σ1 is the maximum principal stress (MPa), D represents the buried depth
reflecting the levels of in situ stresses (m), σc/σ1 represents the stress condition factor, Kv represents the index of integrality of rock mass. AdaBoost denotes Adaptive Boosting algorithm, BP,
denotes Error BackPropagation algorithm, SVM, denotes Support Vector Machine algorithm, V-SVR, denotes an algorithm in SVM, FDA, denotes Fisher Discriminant Analysis algorithm;
BDA, denotes Bayesian Discriminant Analysis algorithm; RF, denotes Random Forest algorithm; GRNN, denotes Generalized Regression Neural Networks algorithm; ELM, denotes Extreme
Learning Machine algorithm; AACC, denotes Abstraction Ant Colony Clustering algorithm; BN, denotes Bayesian Networks algorithm; DT, denotes Decision Tree algorithm; KELM, denotes
Kernel Based Extreme Learning Machine algorithm; DHNN, denotes Dynamic Hypergraph Neural Networks algorithm; LSSVM, denotes Least Squares Support Vector Machine algorithm;
PNN, denotes Product-based Neural Networks algorithm; OPF, denotes Optimal Power Flow algorithm; ANN, denotes Artificial Neural Networks algorithm, XGBoost denotes Extreme
Gradient Boosting algorithm, DNN, denotes Deep Neural Networks algorithm; CNN, denotes Convolutional Neural Networks algorithm.

FIGURE 3
Number of times the rockburst prediction indices used.

Selecting an appropriate data balancing method is crucial for
improving the predictive accuracy of the models.

Based on the shortcomings of previous research, this study
initially selected the rockburst prediction index set through

literature reviews and analyses of the rockburst influencing
factors. A total of 342 groups of rockburst engineering cases
were collected from domestic and international sources. The
prediction indices were determined using the established ReliefF-
Kendall feature selection method. The initial database was
balanced and visualized using the Adasyn oversampling and
t-SNE algorithms. An optimization method combining the
Secretary Bird Optimization (SBO) algorithm and 5-fold cross-
validation was proposed, establishing five rockburst prediction
models. The optimal prediction model was selected based on
its generalization ability and stability. The reliability of feature
selection, the SBO algorithm, and the Adasyn data processing
algorithm were compared and analyzed using the optimal
model and other methods. Finally, the engineering applicability
of the model was verified through rockburst engineering
cases in China.

2 Methodology

2.1 SBO algorithm

The SBO algorithm is a swarm intelligence optimization
method inspired by the survival behavior of the secretary bird
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FIGURE 4
Scatter matrix diagram of rockburst prediction indices.

in nature, which involves constant hunting and predator evasion.
The algorithm consists of three primary stages: initialization,
exploration (hunting behavior), and development (escape behavior).
During the exploration stage, the algorithm simulates the secretary
bird hunting snakes (Fu et al., 2024). In the developmental
stage, it mimics the bird escaping predators and finding the
safest route to a haven. These stages are iteratively repeated
until the model attains the maximum number of iterations,
ultimately identifying the optimal solution to the optimization
problem. When applied to model optimization, it shows excellent
global search ability and adaptability, effectively alleviates the
risk of converging to the local optimum, and the calculation
efficiency is more efficient, which improves the overall optimization
performance.

2.1.1 Initialization stage
This stage involves constructing and randomly initializing the

positions of the secretary birdswithin the population space (Fu et al.,
2024). Each bird’s position in the search space corresponds to the

value of the decision variable. The initial positions are generated
randomly according to Equation 1.

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

xij = lbj + r× (ubj − lbj), i = 1,2,…,N, j = 1,2,…,M

X = (xij) =

[[[[[[[[[[[[[

[

x11 x12 ⋯ x1j ⋯ x1M
x21 x22 ⋯ x2j ⋯ x2M
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

xi1 xi2 ⋯ xij ⋯ xiM
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

xN1 xN2 ⋯ xNj ⋯ xNM

]]]]]]]]]]]]]

]N×M

(1)

where ubj and lbj are the upper and lower bounds; r denotes a
random number between 0 and 1; X denotes the population of
the secretary bird; xi denotes the ith secretary bird; xij denotes
the jth problem variable value of the ith secretary bird; N denotes
the number of individuals in the population; and m denotes the
dimension of the problem variable (Fu et al., 2024).
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TABLE 2 Statistical parameters of indices of rockburst data.

Rockburst level Statistical parameters Characteristic parameters

MTS/MPa UCS/MPa UTS/MPa SCF B Wet D/m

N

Max 77.69 241 17.66 1.05 47.93 7.80 1,373

Min 2.60 20 0.40 0.05 5.38 0.81 100

Mean 25.85 102.26 6.20 0.31 19.81 2.84 529.72

Med 23.16 97.49 5.23 0.23 15.5 2.11 510

Std 16.61 50.83 3.91 0.25 11.88 1.99 267.36

CV 0.64 0.50 0.63 0.81 0.60 0.70 0.50

L

Max 126.72 263 22.6 0.90 69.69 9 2,372

Min 10.90 30 1.90 0.09 2.52 0.85 194

Mean 44.51 117.3 6.76 0.41 21.46 3.80 780.60

Med 43.62 116 5.90 0.38 23.60 3.20 764

Std 21.20 40.25 3.95 0.19 10.25 1.61 337.64

CV 0.48 0.34 0.58 0.46 0.48 0.42 0.43

M

Max 118.77 237.20 17.66 1.27 80 21 1,606

Min 13.02 30 1.30 0.10 0.15 1.20 150

Mean 52.49 120.12 6.21 0.47 25.19 5.24 686.81

Med 51.79 113.30 5.30 0.46 21.70 5 691

Std 23.20 45.87 3.77 0.20 16 2.69 197.34

CV 0.44 0.38 0.61 0.43 0.64 0.51 0.29

S

Max 297.80 304.20 22.6 4.87 80 30 1,170

Min 16.43 30 1.50 0.10 5.53 2.03 203

Mean 106.05 133.37 9.28 1 18.84 8.22 735.11

Med 80.04 127.37 8.30 0.65 14.43 6.60 689

Std 77.20 50.66 4.65 1.07 15.02 5.45 192.41

CV 0.73 0.38 0.50 1.07 0.80 0.66 0.26

2.1.2 Exploration stage
The hunting behavior of secretary birds is generally categorized

into three stages: searching for prey, consuming prey, and
attacking prey (Fu et al., 2024). The time intervals define these
stages: the first stage (t < 1/3 T), the second stage (1/3 T < t < 2/3
T), and the third stage (2/3 T < t < T).

2.1.2.1 Searching for prey
This stage employs the difference between individuals and uses

the differential evolution strategy to iteratively update the position

of the secretary bird through Equation 2.

xnewP1ij = xij + (xrandom_1 − xrandom_2) ×R1, t <
1
3
T (2)

Where xij
newP1 denotes the value of dimension j; t denotes the

current number of iterations; T denotes the maximum number of
iterations; xrandom_1 and xrandom_2 denote the randomly generated
candidate solutions during the initial iteration phase; R1 is the array
of 1 × M randomly generated in the interval [0,1]; and M is the
dimension of the solution space.
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TABLE 3 Classification standard and accuracy of rockburst
prediction indexs.

Index Rockburst level Accuracy/%

N L M S

MTS/MPa <24 24∼60 60∼126 >126 43

UCS/MPa <80 80∼120 120∼180 >180 31

UTS/MPa <8.0 8∼8.6 8.6∼10 >10 24

SCF <0.3 0.3∼0.5 0.5∼0.7 >0.7 44

B <10 10∼14 14∼18 >18 19

Wet <2.0 2.0∼3.5 3.5∼5.0 >5.0 52

D/m <50 50∼200 200∼700 >700 31

2.1.2.2 Consuming prey
The secretary bird delays its attack upon detecting prey,

opting to observe the snake’s movements closely instead.
By circling and jumping, the bird aims to deplete its
snake stamina. Consequently, the snake’s random motion
trajectory was simulated using Brownian motion during
this phase, as shown in Equation 3. The position of
the secretary bird in the Consuming Prey stage can be

updated using Equation 4.

RB = randn(1,M) (3)

xnewP1ij = xbest + exp((t/T)
4) × (RB− 0.5) × (xbest − xij),

1
3
T < t < 2

3
T

(4)

Where randn (1,M) denotes an array of dimensions 1 ×M generated
randomly from the standard normal distribution; and xbest denotes
the current optimal value.

2.1.2.3 Attacking prey
Once the prey is exhausted, the secretary bird discerns the

optimal moment to initiate an attack. At this stage, the location
of the secretary bird is updated using the Lévy flight strategy,
as shown in Equation 5.

{{
{{
{

xnewP1ij = xbest +((1−
t
T
)
2× t

T)× xij ×RL, t >
2
3
T

RL = 0.5× Levy(M)
(5)

Where (1− t
T
)2×

t
T denotes nonlinear perturbation factor; and RL

denotes the weighted Levy flight coefficient.
Levy (M) denotes the Levy flight distribution function, it is

calculated as Equation 6.

Levy(M) = s× u× σ
|ν|−1

(6)

Where s is a constant valued at 0.01; n is a constant equal to 1.5; and
u and v are random numbers in the interval [0,1].

FIGURE 5
Feature selection flowchart.
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FIGURE 6
Weight of rockburst prediction indices.

FIGURE 7
Spearman correlation coefficient of rockburst prediction indices.

2.1.3 Development stage
When a secretary bird encounters danger, it employs two escape

strategies: camouflage (C1) and flight (C2). It is assumed that
both strategies occur with equal probabilities. Upon detecting
a threat, the bird initially seeks an appropriate environment
for camouflage. Without nearby safe concealment, it resorts to
flight or rapid movement to evade the danger. The individual
positions corresponding to these two escape strategies are

FIGURE 8
Data distribution after t-SNE dimensionality reduction.

TABLE 4 Optimized hyperparameters and corresponding sampling
ranges required by different models.

Model Hyper parameters Empirical scope

SVM
c [2−10, 210]

g [2−10, 210]

LSSVM
c [10−3, 103]

g [10−2, 102]

KELM
C [10−3, 103]

g [10−3, 103]

RF

N_estimators [20, 800]

Max_depth [1, 20]

Min_samples_split [1, 10]

XGBoost

N_estimators [100, 400]

Max_depth (0, 15)

Learning_rate (0, 1)

Subsample (0, 1)

Note: c denotes the penalty coefficient, g denotes the kernel function parameter, and C
denotes the regularization coefficient.

expressed in Equation 7.

xnew,P2ij =

{{{{{
{{{{{
{

C1:xbest + (2×RB− 1) × (1−
t
T
)
2
× xij, r < ri

C2:xij +R2 × (xrandom −K× xij),else

K = round(1+ rand(1,1))

(7)
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TABLE 5 The calculation formula and significance of performance evaluation metrics.

Evaluation metrics Equation Significance

Accuracy ACC = (NN+ LL+MM+ SS)/Q The proportion of correct samples in the total number
of samples predicted

Kappa coefficient
{{{
{{{
{

Kappa = ACC−Pe
1−Pe

Pe =
(a1×b1+a2×b2+a3×b3+a4×b4)

Q2

The proportion of errors produced by classification
and completely random classification is reduced

Precision

{{{{{{
{{{{{{
{

N:RN =
NN

NN+NL+NM+NS
L:RL =

LL
LN+LL+LM+LS

M:RM =
MM

MN+ML+MM+MS
S:RS =

SS
SN+SL+SM+SS

REC = RN+RL+RM+RS

4

The proportion of samples whose predicted labels are
positive and whose actual labels are also positive in the
samples whose predicted labels are positive

Recall

{{{{{{
{{{{{{
{

N:RN =
NN

NN+NL+NM+NS
L:RL =

LL
LN+LL+LM+LS

M:RM =
MM

MN+ML+MM+MS
 S:RS =

SS
SN+SL+SM+SS

REC = RN+RL+RM+RS

4

The proportion of samples with positive predicted
labels and positive actual labels in the actual positive
samples

F1-sorce F1 = 2× (PRE×REC)/(PRE+REC) Harmonic mean of precision and recall

Note: a1, a2, a3, and a4 represent the total number of real rockburst categories respectively; b1, b2, b3, and b4 represent the total number of predicted rockburst categories respectively.

Where r = 0.5, R2 denotes an array with a dimension of (1 × M)
randomly generated from the normal distribution; xrandom denotes
the random candidate solution for the current iteration; and k
denotes a randomly selected integer, either 1 or 2.

Figure 1 shows the optimization search process based on the
SBO algorithm.

2.2 Machine learning algorithms

2.2.1 Support vector machine
The support vector machine (SVM) is a supervised machine

learning algorithm recognized for its strong generalization
ability with minor-to-medium data samples and in addressing
nonlinear and high-dimensional classification problems. The
fundamental concept involves the application of a kernel function
to execute a nonlinear transformation, thereby mapping the
original data space into a higher-dimensional space to elucidate the
nonlinear relationships between inputs and outputs. This process
facilitates the identification of the optimal classification surface.
Given the complex nonlinear relationship between influencing
factors and rockbursts, this study employed a nonlinear SVM
classification model based on the Gaussian radial basis kernel
function. The principle of SVM algorithm is shown in Figure 2A.
The optimal classification decision function of the SVM is
expressed as Equation 8.

f(x) = sgn[
n

∑
i=1

ai
∗yiK(xi ⋅ x) + b

∗] (8)

Where sgn [ ] is the sign function; ai
∗
is the optimal solution; and

b
∗
is the classification threshold.

2.2.2 Least squares support vector machine
The least-squares support vector machine (LSSVM) is an

improved SVM algorithm that substitutes the inequality constraint

in the original SVM loss function with a linear least-squares
criterion. This adjustment transforms the parameter optimization
problem from a convex quadratic programming problem into
a linear one. Consequently, the computational complexity is
significantly reduced while the accuracy is preserved, enhancing the
model’s generalization ability.

2.2.3 Kernel based extreme learning machine
The kernel extreme learning machine (KELM) enhances the

extreme learning machine (ELM) algorithm by using a kernel
function instead of random mapping. The principle of ELM
algorithm is shown in Figure 2B. This improvement involves
generating connectionweights and bias terms from the input layer to
the hidden layer randomly and then applying the kernel function to
map the input sample’s low-dimensional data to a high-dimensional
feature space. The model was trained by solving the weights of
the output layer. This approach provides increased robustness
and generalization capabilities for nonlinear classification and
regression problems. The optimization function of the KELM
algorithm is as Equation 9.

F(x) =
[[[[

[

K(x,x1)

⋮

K(x,xn)

]]]]

]

( I
C
+ΩEIM)

−1
L (9)

Where K is the kernel function; (x1, x2, xn) denotes the given
training samples; n is the number of samples; and C represents the
regularization coefficient.

2.2.4 Random forest algorithm
Random Forest (RF) is an ensemble learning algorithm that is

founded on decision tree methodologies. It creates multiple training
sets through random sampling and constructs the decision trees
by randomly splitting node features. The final classification result
is obtained by aggregating the outcomes of all terminal nodes of
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FIGURE 9
Flowchart of rockburst prediction based on the machine learning model.

the decision trees through a voting mechanism. The principle of
RF algorithm is shown in Figure 2C. RF is known for its strong
generalization ability and adaptability to various data types. The
classification function is as Equation 10.

f(xm) = p{hi(xm)}
NT
i=1 (10)

Where p is the majority vote; and NT is the number of trees in a
random forest.

2.2.5 Extreme gradient boosting
Gradient Boosting Decision Tree (XGBoost) is an ensemble

algorithm that employs the regression trees as the base learners.
It iteratively optimizes each base learner using a gradient-
boosting approach. Compared with the traditional boosting

methods, XGBoost integrates regularization terms into the
objective function to reduce overfitting and employs the second-
order Taylor expansion of the loss function to improve both
model efficiency and accuracy. The principle of XGBoost
algorithm is shown in Figure 2D. The XGBoost objective
function is as Equation 11.

̂yi = ϕ(xi) =
K

∑
k=1

fk(xi)( fk ∈ F) (11)

Where yi is the output result; fk is the kth base model classifier,
with each fk is related to an independent tree structure q and
leaf fraction w; and F is the space of the classification and
regression tree.
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TABLE 6 Hyperparameter optimization results of different models based
on the SBO algorithm.

Model Hyper parameters Value Accuracy/%

SVM
c 40.59

81.4
g 1.86

LSSVM
c 54.97

82.1
g 0.16

KELM
C 55.01

80.7
g 1

RF

N_estimators 138

82.8Max_depth 10

Min_samples_split 3.43

XGBoost

N_estimators 29

67.3
Max_depth 12

Learning_rate 0.16

Subsample 0.83

2.3 Feature selection

ReliefF is a multi-class filtering feature selection method
that assesses the correlation between features and categories by
evaluating the capacity of each feature to distinguish between similar
samples. The process involves the following steps: First, a sample
(Ri) is randomly selected from the training set (Zhang et al., 2022).
Then, the k-nearest neighbour samples of the same class [denoted
as (Pj)] and of different classes [denoted as (Qj)] are identified
within the training set. Finally, the weight for each feature was
updated iteratively using the weight update (Tian et al., 2022)
Equation 12 over n iterations, resulting in the final feature weights
after processing all samples.

ω1
l = ω

i(Al) −
k

∑
j=1

diff(Al,Ri,Pj)
nk

+ ∑
C∉class(Ri)

[ P(C)
1−P(class(Ri))

·
k

∑
j=1

diff(Al,Ri,Qj(C))]

nk
(12)

Where ωi (Al) is the weight of the lth featureA in the ith sample; Pj (j
= 1, 2, …, k) is the jth sample of the k nearest neighbors of the same
class as (Ri); P(C) is the proportion of samples belonging to category
C in the training samples; P [class (Ri)) is the ratio of samples with
the same type of Ri to the total sample; class (Ri) is the label category
of Ri; Qj(C) (j = 1, 2, … , k) is the jth sample of k nearest neighbor
samples of different classes with Ri (label category is C); and n is the
number of cycles (Tian et al., 2022; Zhang et al., 2022).

The Kendall correlation coefficient τ evaluates the correlation
between the features and categories. Let the feature set be

represented as X = {x1, x2, …, xM}, and the corresponding category
set as Y = {y1, y2, …, yM}.The combination of each feature sequence
X and its corresponding category sequence Y is denoted as Z. The
calculation formula is as Equation 13.

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

τ = C−D

√(M0 −M1)(M0 −M2)

M0 = [M(M− 1)]/2

M1 =
s1
∑
i=1

1
2
Ui(Ui − 1)

M2 =
s2
∑
i=1

1
2
Vi(Vi − 1)

(13)

Where C and D denote the number of consistent element pairs and
inconsistent element pairs in set Z, respectively; M represents the
total number of samples; s1 and s2 denote the number of recurring
element types in X and Y, respectively; and U i and V i denote the
number of elements in the ith set composed of the same elements in
X and Y.

The obtained correlation coefficient τ is calculated using
Equation 14 to obtain the index weight ω2

l:

ω2
l =
|τl|
o

∑
l=1
|τl|

(14)

Where τ l is the correlation coefficient of the nth index; and o is
the number of indexes.

3 Indices and data

3.1 Rockburst classification

The first step in predicting rockbursts is to classify their levels.
Based on Chinese standards (Ministry of Housing and Urban-
Rural Development of the People’s Republic of China, 2015),
rockbursts are categorized according to the degree of damage and
acoustic deformation resulting from surrounding rock ruptures.
The classifications were as follows: no rockburst (None, N), light
rockburst (Light, L), moderate rockburst (Moderate, M), and strong
rockburst (Strong, S).

3.2 Selection of prediction indices

Owing to the complex mechanism underlying rockburst,
which involves multiple influencing factors, their causes can be
classified into internal and external aspects. The internal causes
refer to the lithological characteristics of the surrounding rock,
whereas the external causes include factors such as the project’s
burial depth, excavation size and shape, and construction methods.
Although excavation parameters and methods can influence the
rockburst occurrences, they are not essential prerequisites owing
to the project variability. Engineering practices indicate that the
rockburst typically occurs in the intact brittle surrounding rocks
under high-ground stress conditions. The primary conditions for
rockbursts are the lithology of the surrounding rock and stress
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FIGURE 10
Comparison of performance evaluation indices of different models based on the SBO algorithm: (A) Best prediction confusion matrix diagram of
different models; (B) Local evaluation; (C) Global evaluation.

conditions. The hard, brittle rock stores elastic strain energy,
whereas high-stress environments supply sufficient energy. This
study selected the prediction indices based on two aspects:
the lithology of the surrounding rock (including strength,
brittleness, and energy storage) and stress conditions. This study
summarized the rockburst prediction indices based on machine
learning from the literature. Table 1 presents the selected indices
from various sources, and Figure 3 shows the frequency of use
for each index.

As shown in Figure 3, the prediction indices include burial
depth D, maximum tangential stress σθ, maximum principal stress
σ1, uniaxial compressive strength σc, uniaxial tensile strength σ t,
stress concentration coefficient σθ/σc, strength-to-stress ratio σc/σ1,
brittleness coefficients σc/σ t and σc-σ t/σc + σ t, elastic energy index
Wet, and surrounding rock integrity coefficient Kv. Among these,
σ1, σc/σ1, Kv, σc-σ t/σc + σ t, and D are predicted to be used less
frequently. In order to avoid the redundancy of specific indices,
such as σθ and σ1 representing the ground stress levels, σθ/σc and

σc/σ1 indicating the ratio of strength to stress, and σc/σ t and σc-
σ t/σc + σ t reflecting the rock brittleness, the indices with similar
meanings were consolidated. Obtaining the integrity coefficient Kv
can be challenging in practical engineering applications. Therefore,
the following indices were selected as the predictive indicators for
rockbursts, includingmaximum tangential stress σθ (MTS), uniaxial
compressive strength σc (UCS), uniaxial tensile strength σ t (UTS),
stress concentration coefficient σθ/σc (SCF), brittleness coefficient
σc/σ t (B), elastic energy index (Wet), and burial depth (D).

3.3 Data sources and analysis

The data from typical rockburst engineering cases, both
domestic and international, were collected through a literature
investigation (Pu et al., 2019b; Xue et al., 2022). After excluding
the missing and duplicate samples, a rockburst dataset comprising
342 samples was compiled. The scatter matrix for this dataset is
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TABLE 7 Optimization results of different algorithms.

Algorithms Accuracy/% Value of change in
accuracy/%

SBO-SVM 81.4
+2.1

SVM 79.3

SBO-LSSVM 82.1
+3.5

LLSVM 78.6

SBO-KELM 80.7
+4.0

KELM 76.7

SBO-RF 82.8
+3.7

RF 79.1

SBO-XGBoost 67.3
+1.6

XGBoost 65.7

shown in Figure 4. The dataset consisted of 50 samples with no
rockburst (14.6%), 97 samples with light rockburst (28.4%), 122
samples with moderate rockburst (35.7%), and 73 samples with
strong rockburst (21.3%). The statistical characteristics of the data
are presented in Table 2. Based on the analysis of the median and
mean values, it is evident that the MTS, SCF, and Wet exhibit a
gradual increase corresponding to the escalation of rockburst grades.
In contrast, the rest of the statistical indicators have noticeable
change rules. Furthermore, the standard deviation and coefficient
of variation indicate a higher degree of data dispersion. Although
most machine-learning-based rockburst prediction studies exclude
outliers, this study included the abnormal data in the rockburst
database to account for the variability in actual rockburst projects
for training and prediction purposes.

A single index criterion was employed to evaluate the accuracy
of the original dataset, and the grading criteria and accuracy
for the index are detailed in Table 3 (Kidybiński, 1981; Xu and
Wang, 1999; Zhang et al., 2010). Table 3 demonstrates that the
prediction accuracy of rockbursts using a single index was generally
low, with the Wet criterion achieving the highest prediction
accuracy at 52%.

4 Establishment of prediction model

4.1 Model feature selection

To determine the input indices for the model more effectively,
this study implemented the ReliefF-Kendall model to identify the
feature set for the input indices (Figure 5). The process involved the
following steps.

Step 1: The weights of the feature indexes relative to the rockburst
level were calculated using the ReliefF algorithm and
Kendall correlation coefficient.

Step 2: These weights were averaged to obtain the combined weight.
Step 3: A weight threshold was established to exclude the indices

with weights below this threshold.
Step 4: The Spearman correlation coefficient was applied to

retain the indices with the highest correlation to the
rockburst level.

The calculation parameters for the ReliefF algorithm included
the number of nearest neighbor samples set to 10 with 50 datasets
used in each iteration and the weighted mean calculated after 20
repetitions. The weights of the rockburst prediction indices are
shown in Figure 6 in the following order: Wet (0.26) > MTS (0.18)
> D (0.16) > SCF (0.15) > UCS (0.13) > UTS (0.10) > B (0.04).
With a feature selection weight threshold of 0.10, the UTS and B
indexes were excluded. Figure 7 presents the Spearman correlation
coefficients for the prediction indices, which revealed a strong
correlation between MTS and SCF, leading to the retention of the
MTS index. Consequently, the final selected rockburst prediction
indices wereWet,MTS, D, and UCS.

4.2 Data balancing and visualization

Most current machine learning-based rockburst prediction
models effectively address the data category imbalance using
the Synthetic Minority Over-sampling Technique (SMOTE).
This method generates the additional samples for the minority
categories through linear interpolation, often without considering
the distribution characteristics between sample categories, which
may result in category overlap. The adaptive synthetic sampling
(Adasyn) algorithm designed to address the data imbalance
adaptively can calculate the density distribution characteristics
based on the “complexity” of each minority class sample. This
information guides the synthesis of new samples and updates
the class boundaries, gradually reducing the class imbalance.
The core concept of Adasyn is to dynamically generate synthetic
samples based on the distribution of samples within each category.
For each minority class sample, the proportion of majority
class samples among its nearest neighbours is first calculated
(a higher proportion indicates more incredible difficulty in
classifying the sample, leading to a more significant number
of synthesized samples). New samples are then generated
through linear interpolation between the minority class samples
and their nearest neighbours. This study applied the Adasyn
adaptive oversampling algorithm to expand the original dataset
from 342 to 485 samples. The dataset consists of 121 samples
of no, light, strong, and 122 moderate rockbursts. To better
understand the rockburst data distribution, the t-SNE algorithm
was employed for dimensionality reduction of the balanced dataset,
as illustrated in Figure 8.

4.3 Dataset partitioning and algorithm
selection

This study established five rockburst prediction models
using MATLAB 2021b, divided into two categories: conventional
algorithms (SVM, LSSVM, and KELM) and ensemble algorithms

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2024.1487968
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yang et al. 10.3389/feart.2024.1487968

FIGURE 11
Prediction accuracy of different models based on the SBO algorithm: (A) Prediction accuracy of each training test set; (B) Average accuracy.

FIGURE 12
Fitness iterative curves.

(RF and XGBoost). To ensure the consistent model performance
between the training and test sets, the balanced rockburst dataset
was randomly divided into a training set comprising 340 samples
and a test set comprising 145 samples, adhering to a 7:3 ratio.
The proportion of samples in each category of the two data sets
is consistent with the total data set.

4.4 Hyperparameter optimization

In order to improve the model’s generalization ability and
performance while preventing overfitting, this study used a
combination of the SBO algorithm and 5-fold cross-validation
to identify the optimal model parameters. The training set was
divided into five equal parts, with four parts used for training

based on a specific combination of sampled parameters and the
remaining part serving as the validation set. This process was
repeated five times, ensuring that each data point was validated
once. The parameters that achieved the highest prediction accuracy
were selected as optimal. Table 4 lists the parameters and their
respective ranges for optimization across different machine learning
classification models. The basic parameters of the SBO algorithm
were set as follows: population size set as 20; maximum number of
iterations set as 100.

4.5 Model performance evaluation

To assess the generalization ability of the established
classification prediction model, precision (PRE), recall (REC),
and F1-score (F1) were used to evaluate local classification
performance. Additionally, the accuracy (ACC) and Kappa
coefficient were employed to assess the global classification
performance. Table 5 includes the calculation formulas and
significance of the performance evaluation metrics. The total
number of samples in the test set is represented by Q, where
NN, LL, MM, and SS denote the number of correctly predicted
samples and the remaining values denote the number of incorrectly
predicted samples. Figure 9 illustrates the rockburst level prediction
process using the machine learning model established in this study.

5 Model classification performance
analysis

Table 6 displays the optimal hyperparameter combinations
for the model, determined using the SBO algorithm and 5-fold
cross-validation. Figure 10A presents the confusion matrix for the
model predictions, with green, orange, and red indicating the
precision, recall, and accuracy, respectively, for the different types
of rockburst predictions. Figures 10B, C presents the comparison
of the performance evaluation of the model. The prediction
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TABLE 8 Prediction results of different optimization algorithms based on the SVMmodel.

Algorithms c g Accuracy/% Optimization time-consuming/s

SBO-SVM 40.5894 1.8590 81.4 50.34

PSO-SVM 32.3943 6.6420 79.3 13.12

MFO-SVM 10 2.8998 80.0 74.12

DBO-SVM 8.4431 96.6125 77.9 39.57

SSA-SVM 216.4093 149.7526 76.6 42.95

WAO-SVM 7.3467 132.6783 80.7 50.76

GS-SVM 71.1765 8 64.8 60.80

FIGURE 13
Prediction accuracy of different feature sets.

accuracies of the different models were ranked as follows: RF
(82.8%) > LSSVM (82.1%) > SVM (81.4%) > KELM (80.7%)
> XGBoost (67.3%). These results were notably higher than the
70.0% prediction accuracy reported by Li (2023). However, the
poor prediction performance of the XGBoost model resulted in a
significant difference in accuracy compared to RF, LSSVM, SVM,
and KELM. The prediction accuracies of the five models that were
not optimized using the SBO algorithm are shown in Table 7, from
which it can be seen that the prediction accuracies were increased
by 1.6%–4.0% after optimization using SBO, thus verifying the
optimization effect of SBO.

Figures 10B, C demonstrates that the RF model excelled across
all evaluation metrics. However, the performance accuracy of the
RF, LSSVM, SVM, and KELM models was relatively similar, with
the accuracy rates ranging from 80.9% to 84.0%, the recall rates
from 80.7% to 82.7%, the F1 scores from 80.8% to 83.4%, and
the Kappa values from 74.3% to 77.1%. The analysis of the F1
index indicated that the LSSVM achieved the highest prediction
accuracy for mild and medium rockburst classifications, whereas

RF was superior in predicting the strong rockburst, with an
accuracy exceeding 80%. Account for the randomness in the model
training and test data. Each model was trained ten times to reduce
variability. Figure 11 illustrates the prediction accuracy of the test set
across the various models.

Figure 11 shows that the prediction accuracy of the different
models ranged from 60.5% to 82.8%. The average prediction
accuracy was ranked as follows: SVM (80.1%) > LSSVM (79.6%) >
RF (78.6%) > KELM (76.8%) > XGBoost (64.4%). Although the RF
model achieved a slightly higher prediction accuracy than the SVM
model, the SVM model exhibited superior classification stability.
Additionally, the average computation time for the SVM model
was 90.77 s less than that of the RF model, which took 262.21 s.
Considering the models’ generalization performance, stability, and
optimization time, the SVM was selected as the preferred rockburst
prediction model.

In order to verify the possibility of the SBO algorithm, the
PSO,MFO, DBO, SSA,WOA, and GridSearch (GS) algorithms were
adopted to optimize the SVM with the same dataset. All the models
were set to the maximum of 100 iterations, with the classification
prediction error rate of the model test set as the optimization
objective function. Figure 12 illustrates the optimization iteration
process for the different algorithms, and Table 8 presents the
optimization results. The analysis of Figure 12; Table 8 revealed
that the SBO, WOA, and MFO algorithms achieved superior
optimization effects on the prediction accuracy, with the accuracy
rates reaching or exceeding 80%. Notably, the SBO and WOA
algorithms avoided the local optima and achieved the global optima
in the fifth and third generations. In contrast, the MFO algorithm
encountered the local optima multiple times, reaching the global
optimum only in the 35th generation. Moreover, the SBO algorithm
demonstrated a slightly better optimization speed than the MFO
algorithm. These results confirmed the feasibility of using the SBO
algorithm for the parameter optimization in the SVMmodel.

The SHAP method was employed to prove the validity of the
feature selection approach proposed in this study. This method
assigns contributions based on the marginal impact of each
feature on the overall model performance. Specifically, a member’s
benefits were equal to the average marginal benefits provided
by the group to which they belonged. One feature was removed
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TABLE 9 Comparison of average prediction accuracy of different feature sets.

Feature sets FS FS1 FS2 FS3 FS4 FS5 FS6 FS7

Mean accuracy/% 66.14 65.25 65.72 66.29 66.81 66.20 63.51 65.33

Diff — −1.89 −0.42 0.15 0.67 0.06 −2.63 −0.81

TABLE 10 Prediction accuracy of different datasets based on the SBO-SVMmodel.

Data set N L M S Total
accuracy

/%Sample
number

Accuracy
/%

Sample
number

Accuracy
/%

Sample
number

Accuracy
/%

Sample
number

Accuracy
/%

Initial 15 40.0 29 72.4 37 86.5 22 86.4 75.7

Smote 36 72.2 37 78.4 36 73.0 37 89.2 78.2

Adasyn 36 86.1 36 83.3 37 78.4 36 77.8 81.4

TABLE 11 Cases of rockburst engineering.

Number Engineering cases MTS/MPa UCS/MPa Wet D/m Real rockburst level

1

Sangzhuling Tunnel

58.40 141.46 4.60 1,100 M

2 54.40 143.16 4.60 860 M

3 41.90 149.64 4.00 650 L

4 32.30 146.81 4.00 100 L

5 Zhongnanshan Tunnel 37.40 154.42 7.10 1,610 S

6 Qinling diversion Tunnel 32.10 163.47 6.40 1,620 S

7
Zijin Gold Mine

29.49 35.14 1.54 830 N

8 21.06 59.95 1.37 950 N

9

The diversion tunnel of Jiangbei Hydropower Station

58.05 147.85 3.62 1,116 M

10 34.89 151.70 3.17 658 L

11 16.21 135.07 2.49 317 M

12 40.56 140.83 3.63 765 S

13 33.15 106.94 2.15 637 M

14 33.94 117.48 2.37 657 L

15
Duoxiongla Tunnel

87.32 137.70 7.14 700 S

16 87.31 94.40 3.57 700 L

17

Sanshandao Gold Mine

28.40 59.65 2.12 297 L

18 71.15 131.48 5.46 1,288 M

19 86.93 165.23 9.10 1,545 S

20 113.56 115.65 3.99 1,587 S
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FIGURE 14
Comparison of prediction results of rockburst SBO-SVM model.

from the original dataset, while the remaining six were retained
for prediction. The prediction results for each reduced feature
set were compared with those obtained using all the features.
The difference between these outcomes reflected the marginal
contribution of the removed features, with a larger difference
indicating a more significant influence on the prediction results.
All feature sets were denoted as FS, with the feature sets with
the first to seventh indicators removed labeled FS1 through FS7,
respectively. In order tominimize the variability, each feature set was
trained 50 times, and the average prediction accuracy was calculated
for analysis. The prediction accuracy of the model is shown
in Figure 13.

Table 9 lists the average prediction accuracy for different feature
sets. The difference in accuracy between FS1 and FS7 and FS
was denoted as Diff. A positive Diff indicated an improvement
in the prediction accuracy after removing the feature index,
suggesting that the index was a redundant disturbance variable
in rockburst prediction. Conversely, a negative Diff indicated a
decrease in the prediction accuracy after removing the feature
index, implying that the index was a crucial correlating variable for
rockburst prediction. Furthermore, the larger value ofDiff signified
the greater importance of the index for rockburst prediction.
The analysis of Table 9 revealed the importance of rockburst
prediction indicators in the following order: Wet, MTS, D, SCF,
UCS, UTS, and B. Wet, MTS, D, and UCS were identified
as the influential correlating variables, while SCF, UTS, and B
were categorized as the redundant disturbance variables. This
ranking of rockburst prediction indicators was consistent with
the results obtained from the feature selection method established
in this study.

In order to verify the reliability of the Adasyn algorithm
for data balancing, the comparative analysis was performed
using three datasets: the original dataset (103 groups), the
SMOTE-balanced dataset (146 groups), and the Adasyn-balanced
dataset (145 groups), with the SBO-SVM model. Table 10
presents the prediction accuracy for each dataset. The analysis
indicated that the Adasyn-based dataset achieved the highest

prediction accuracy, surpassing the original and SMOTE-
balanced datasets by 5.7% and 3.2%, respectively. Compared
to the original dataset, Adasyn has improved the classification
and prediction accuracy for the non-rockburst and slight
rockburst categories.

6 Engineering verification

In order to assess the applicability of the model, the optimized
SBO-SVM model was used to predict the rockburst events in
domestic projects, including the Jiangbian Hydropower Station.
Table 11 presents the predicted indices and actual rockburst levels,
and Figure 14 illustrates the rockburst prediction results. Figure 14
shows that the predicted grades for the 12th and 13th sample groups
were lower than the actual grades, likely owing to issues with the
reliability of the extracted characteristic index data. Despite this,
the model achieved a prediction accuracy of 90%, demonstrating
the feasibility of applying the SBO-SVM model for rockburst
prediction.

7 Conclusion

Rockburst is a dynamic disaster in underground engineering.
If it can be reasonably and accurately predicted in advance,
corresponding measures can be taken to reduce the risk of loss.
In this study, a data-driven feature selection method and a meta-
heuristic optimization algorithm are proposed and combined with
five basic algorithms (SVM, LSSVM, KELM, RF and XGBoost) for
underground engineering rockburst prediction. The rationality of
the proposedmethod is verified by comparing it with othermethods.
The main conclusions are as follows:

(1) Based on existing research and a literature review of rockburst
influencing factors, the following indices were selected
as predictors: maximum tangential stress (MTS), uniaxial
compressive strength (UCS), uniaxial tensile strength (UTS),
stress concentration coefficient (SCF), brittleness coefficient
(B), elastic energy index (Wet), and burial depth (D). These
indices were selected considering the surrounding rock
lithology and in situ stress. The feature selection using the
ReliefF-Kendall model and correlation analysis yielded Wet,
MTS, D, and UCS as the final feature set. The model can
remove the redundant features of rockburst, identify the
most significant features that affect rockburst, enhance the
interpretability of the model, reduce the risk of over-fitting
in model prediction, and make hyperparameter tuning more
efficient.The rationality of the selected indicators was validated
using the SHAP method.

(2) 342 rockburst datasets were collected, balanced, and visualized
using the Adasyn oversampling technique and the t-SNE
algorithm. Five rockburst prediction models, SVM, LSSVM,
KELM, RF, and XGBoost, were developed using the SBO
algorithm and 5-fold cross-validation. The results indicated
that RF achieved the highest prediction accuracy, with the RF,
LSSVM, SVM, and KELM models exceeding 80% accuracy.
However, only the SVMmodel achieved an average prediction
accuracy exceeding 80%. Considering the prediction accuracy
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and stability, SVM was selected as the preferred rockburst
prediction algorithm.

(3) Compared to six other algorithms used to optimize the
SVM model, the SBO-SVM model demonstrated superior
prediction accuracy and optimization speed, indicating
robust generalization capability. Predictions were made
using the original SMOTE-processed and Adasyn-processed
datasets to verify the reliability of the Adasyn algorithm
for data balancing. The prediction accuracies of the Adasyn
dataset were 5.7% and 3.2% higher than those of the
original and SMOTE datasets, respectively. Furthermore,
the comprehensive prediction accuracy for rockbursts using
machine learning (75.7%) was significantly higher than that of
single-index predictions (52.0%).

(4) The established SBO-SVM model was applied to domestic
rockburst projects, such as the Sangzhuling Tunnel, achieving
a prediction accuracy of 90%. This result demonstrated the
strong applicability of the model in engineering contexts.
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