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Seismic prediction technology
for thin reservoirs of tight gas in
coal measure strata: a case study
of Block L in the eastern margin
of the Ordos Basin

Yu Qi*, Kui Wu, Qixin Li, Xiaowen Zheng, Bo Wang, Dan Li and
Wei Tang

CNOOC Research Institute Ltd., Beijing, China

The development of high-accuracy seismic prediction technology, capable of
mitigating the influence of coal events and accurately inverting key reservoir
parameters, is critical for enhancing the exploration and development of tight
gas reservoirs in coal-bearing strata. Block L, located on the eastern edge
of the Ordos Basin, serves as a case study. This area, where tight sandstone
gas deposits are widespread in the Upper Paleozoic, is characterized by
coal seams that complicate seismic interpretation. The available drilling data
show that the tight gas layers in the Taiyuan and Benxi Formations are well-
developed and serve as the primary hydrocarbon source rocks. However, the
low-density, low-velocity coal seams create strong wave impedance contrasts,
which significantly affect the neighboring tight sandstone gas layers and present
substantial challenges for seismic prediction. To address this issue, we employ
wavelet decomposition and reconstruction techniques to eliminate coal seam
interference and high-resolution waveform simulation technology for seismic
prediction of thin reservoirs. This approach circumvents the limitations of
using a single impedance parameter to differentiate between sand–mudstone
and limestone–coal interfaces. Step-by-step inversion and gradual stripping
techniques are applied to remove the influences of coal seam and limestone,
thereby facilitating accurate identification of sandstone distribution. Drilling data
confirm the reliability and effectiveness of this reservoir prediction method for
coal-bearing strata. Based on successful applications in the eastern Ordos Basin,
this workflow demonstrates broad applicability and offers significant guidance
for exploring similar reservoirs, given the parallel reservoir characteristics and
the foundational technological approach.

KEYWORDS

seismic prediction, tight gas reservoir, coal seam, wavelet decomposition and
reconstruction, waveform simulation technology

1 Introduction

Our study focuses on Block L, situated on the northeastern margin of the Ordos
Basin, where the stratigraphic structure is representative of the region. The primary
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stratigraphic units in this area include the Carboniferous Benxi
Formation and the Permian Taiyuan, Shanxi, Shihezi, and
Shiqianfeng formations. Drilling data indicate widespread tight
sandstone gas in the Upper Paleozoic strata, with the Benxi and
Taiyuan formations identified as the main hydrocarbon source
rocks. Multiple coal seam sets, prevalent in the region, provide
substantial material for the large-scale gas supply to the tight
sandstone gas reservoirs. The Benxi and Taiyuan formations
are critical exploration and development targets in the eastern
Ordos Basin (Lan et al., 2010). The Benxi Formation represents
a sea–land transitional delta-shore shallow sea coal-bearing
sedimentary sequence, with the 8+9 # coal seam at the top. The
Taiyuan Formation, deposited on top of the Benxi Formation, is
defined by the 8+9 # coal seam as its lower boundary and consists
of delta-shore shallow sea deposits. Both formations primarily
comprise carbonate rock, sandstone, mudstone, and coal seams.
The tight sandstone gas layers, located adjacent to coal seams, form
tight gas reservoirs that efficiently accumulate natural gas due to the
source–reservoir pressure difference. The thickness of individual
sandstone layers in both the Benxi and Taiyuan formations ranges
from 2 to 10 m, with an average thickness of approximately 5 m.
However, there are three key challenges for reservoir prediction in
this area. First, the thick loess layer covering the surface, combined
with surface and geological constraints, limits seismic resolution.
The dominant seismic frequency near the target layers is 30 Hz, with
an effective frequency bandwidth of 5–55 Hz and an average seismic
velocity of 4,500 m/s. The minimum distinguishable thickness,
constrained by the resolution limit of λ/4 (where λ is the wavelength
of the seismic wavelet), is approximately 38 m, which exceeds
the thickness of the sandstone reservoir. Additionally, due to the
low density and velocity characteristics of coal seams, a strong
impedance contrast is created, causing significant interference in
the seismic response of the tight sandstone near the coal seam.
This results in challenges in accurately predicting the reservoir
from seismic data as the strong reflection from the coal seam
dominates the signal. Furthermore, the small difference in the
acoustic impedance between sandstone and mudstone hinders
effective impedance inversion for predicting the spatial distribution
of sandstone bodies.

To address the issue of strong coal seam reflections obstructing
reservoir prediction, numerous studies have been conducted. By
applying wavelet decomposition and matching pursuit techniques
to attenuate the strong reflection, researchers have developed
effective methods in prediction of coal-bearing strata reservoirs,
achieving promising results. Zhang et al. (2012) explored the use
of multi-wavelet decomposition and reconstruction in stripping
strong shielding. Sarkar et al. (2024) applied this approach to
enhance reservoir prediction accuracy and analyzed the use of
partial frequency wavelet techniques to mitigate the impact of
the coal seam. Wang (2010) proposed a multi-channel matching
pursuit algorithm to address the influence of coal seam reflections
on seismic profile continuity. Qiao (2018) used drilling data to
correlate coal seam thickness and amplitude attributes and applied
wavelet and waveform decomposition methods to eliminate coal
seam interference in seismic data. He et al. (2019) introduced a well-
controlledmatching pursuit technique to eliminate strong coal seam
reflections based on seismic constraints. Overall, these approaches

showed that impedance inversion results align well with drilled
sandstone thickness.

However, in our study area, post-stack impedance inversion,
which relies solely on decoal seismic data, fails to meet the
accuracy requirements in prediction of predicting thin sandstone
reservoirs. To enhance the resolution of inversion results, several
advanced methods, including model-based inversion, waveform
inversion, and other sophisticated inversion techniques (Russell
and Hampson, 1991; Hampson et al., 2001; ten Kroode et al.,
2013; Chen and Chen, 2019), are widely used. Drawing inspiration
from model-based inversion, we developed a deterministic
model using well interpolation techniques. When integrated with
seismic impedance inversion, this approach accurately aligns
high-frequency components with the well interpolation results.
Although this approach significantly improves resolution, it remains
highly sensitive to the initial model, leading to multiple possible
solutions in model-based inversion (Gelderblom and Leguijt,
2010; De Figueiredo et al., 2014; Virieux et al., 2014). Chen and
Chen. (2019) demonstrated that waveform inversion can overcome
the limitations caused by seismic vertical resolution and more
accurately predict thin sandstone reservoirs affected by coal seam
shielding. Wang et al. (2021) utilized seismic waveform inversion
and simulation techniques to minimize interference from thin coal
seams and successfully predicted oil and gas reservoirs.

This study proposes a high-resolution waveform indication
simulation technology for predicting reservoirs using coal removal
data. This methodology has broad applicability for predicting
tight sandstone gas reservoirs influenced by coal seams. Initially,
wavelet decomposition and reconstruction, based on the well
seismic combination methodology, are applied to eliminate coal
seam interference. Next, the high-resolution waveform indication
simulation technology is implemented.The accuracy of this reservoir
prediction technology is validated using drilled wells. The approach
holds significant reference andpromotional value andprovides crucial
guidance for natural gas exploration, particularly in tight sandstone
gas fields with coal seams. In contrast to traditional methods that
rely solely on impedance parameters or gamma curves, the proposed
workflow integrates wavelet decomposition and reconstruction to
mitigate coal seam interference. This is followed by high-resolution
waveform indication simulation,which refines reservoir prediction by
leveraging the lateral continuityandconsistencyof seismicwaveforms.
The technology delivers higher resolution and greater reliability than
conventional techniques, especially in areas with complex lithologies
and strong coal seam reflections.

2 Methods

2.1 Strong reflection attenuation of the
coal seam based on the wavelet
decomposition and reconstruction

The Benxi and Taiyuan formations are complex lithologic
targets in the study area, dominated by coal seams, limestone,
sandstone, and mudstone. Coal seams exhibit low density and
high acoustic time differences, contrasting sharply with the
impedance of surrounding rocks. They are characterized by
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FIGURE 1
Seismic reflection characteristic of the research area, the eastern part of the Ordos Basin. The Xline range spans from 1,120 to 2,280, and the inline is
917. The target area, in the range of 1,000–1,200 ms, is shown in blue. The strong reflections of the coal seams are obvious in the middle of the marked
part, which may influence the seismic prediction of the thin sandstone reservoirs in the target area.

low-frequency, continuous, strong reflections on seismic profiles
(Figure 1). Figure 1 illustrates the seismic profile for inline 917 in
the eastern Ordos Basin, with Xline ranging from 1,120 to 2,280 and
the target area spanning 1,000–1,200 ms.The strong reflections from
coal seamsmake it challenging to predict sandstone reservoirs based
solely on original seismic data.

Seismic signals are processed using wavelet decomposition and
reconstruction, segmenting them into sub-wavelets based on the
amplitude, frequency, and other attributes. These sub-wavelets are
filtered, optimized, and reconstructed to enhance geological and
petroleum indicators, thereby aiding in reservoir prediction and
characterization.

This study utilizes wavelet decomposition and reconstruction
based on thematching pursuit algorithm.This iterative optimization
algorithm, proposed by Mallat and Zhang (1993), is widely applied
in sub-seismic signal analysis.

Thematching pursuit algorithmdecomposes the synthetic signal
into a linear expression of time–frequency atoms from an over-
complete atom library. Given a time–frequency atom library D and
parameter set Γ, then gγ is an atom defined by the parameter γ
from D (gγ ∈ D), and it is also the vector of unit length, i.e., ‖gγ‖ =
1. Assuming that the signal that needs to be decomposed is f,
the orthogonal projection of f in D illustrates the decomposition
process as Equation 1:

f = ⟨R0 f,gγ0⟩gγ0 +R
1 f, (1)

where gγ0 ∈ D and R1 f represent the residual signal of f after
approximation in the direction gγ0 .

Because R1 f and gγ0 are orthogonal, showing in Equation 2

‖ f ‖2 = |⟨ f,gγ0⟩|
2
+ ‖R1 f ‖2, (2)

To minimize the residual signal R1 f after the approximation,
the optimal vector gγ0 should satisfy the following
requirement in Equation 3:

|⟨ f,gγ0⟩| =max
γ∈Γα
|⟨ f,gγ⟩| ≥ α sup

γ∈Γ
|⟨ f,gγ⟩|, (3)

where Γα is a parameter set and Γα ∈ Γ; α is an optimization factor,
and 0 < α ≤ 1.

The same method is used to continue the approximation toward
R1 f [desired result]. After multiple iterations, the residual signal is
calculated as Rn f. The optimal matching atom, denoted as gγn , is
selected as Equation 4:

|(Rn f,gγn)| ≥ α supγ∈Γ
|(Rn f,gγn)|. (4)

Residual signal Rn f is decomposed as Equation 5:

Rn f = ⟨Rn f,gγn⟩gγn +R
n+1 f. (5)

Decomposition is repeated until the residual energy falls below
a predefined threshold, which depends on the actual seismic data.
Once this threshold is met, the whole decomposition process is
complete, and we can obtain Equation 6

f =
m−1

∑
n=0
(Rn f,gγn)gγn +R

m f. (6)

Using the selected optimal atom to reconstruct the signal,
the reconstructed seismic signal is derived. This reconstruction is
achieved by decomposing the signal into five sub-wavelets with
varying frequencies (Figure 2).

This technique has demonstrated significant success in
predicting sandstone within coal-bearing strata. By subtracting
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FIGURE 2
Decomposition and reconstruction sketch map of a seismic wavelet. The synthetic signal is first decomposed into five sub-signals with frequencies of
10, 15, 20, 30, and 40 Hz and then reconstructed into the final new signal for later application with the selected optimal atom based on the matching
pursuit algorithm.

FIGURE 3
Seismic profiles of Taiyuan Formation (A) before and (B) after wavelet decomposition. The strong reflection event in the seismic profile of the coal
seam has been eliminated, and the sand body, shown in blue, is more obvious after the wavelet decomposition technology. The new seismic data are
meaningful for further thin sandstone reservoir predictions.

the coal seam’s strong reflection from the original seismic
data, we isolate the data without coal seam interference.
Comparing the wavelet decomposition results with the actual
seismic data (Figure 3), it is evident that the effective information of
the reservoir, previously obscured by the coal seam, is restored. The
processed seismic profile removes the coal seam’s strong reflection,
highlighting the sand body’s clear reflection, reasonable lateral
variation, and a natural waveform without distortion.

2.2 High-resolution waveform indication
inversion

Traditional geostatistical inversion characterizes spatial
variation by analyzing a limited set of samples and estimating
high-frequency components for prediction points. Seismic data
are matched to forward gathers of simulation results to
integrate information across the seismic frequency band. However,

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2024.1487487
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Qi et al. 10.3389/feart.2024.1487487

FIGURE 4
Samples were selectively chosen based on the similarity of seismic
waveforms. Similar waveforms are connected based on the
consistency of sample structure characteristics. The samples are
sorted according to the distribution distance.

geostatistical methods are influenced by sample distribution, and
simulation accuracy requires uniform well distribution (Gu et al.,
2016; Liu et al., 2020; Liu et al., 2023b; Qi et al., 2024). Additionally,
variogram statistics, particularly the range determination, often fail
to capture sedimentary facies variations within reservoir spaces,
leading to poorly defined geological patterns and highly random
simulationresults.Seismicwaveforminversionbuildsontraditional
geostatistics by incorporating both waveform similarity and spatial
distance to select statistical samples. Samples are sorted based
on structural consistency, and inversion results reflect constraints
imposed by sedimentary facies belts (Liu et al., 2023a), aligning
more closely with depositional laws and spatial characteristics.
The workflow for waveform inversion is as follows (Figure 4):
①A chronostratigraphic framework model is established based on
seismic interpretationhorizons.②Predicted seismicwaveforms are
compared with those from wells within the chronostratigraphic
framework. Wells with the most similar waveforms are selected
as analogs, and their logging curves help construct an initial
impedance model. ③The vertical impedance characteristics of
sample wells are analyzed, and high-frequency components
are filtered out using frequency division methods. Sample
comparisons highlight common structural features, preserving
deterministic frequency band elements. ④Using seismic mid-
frequency impedance as a reference, the initial model’s high-
frequency components are optimizedwithin aBayesian framework.
⑤Through iterative random simulations, the stochastic solutions’
mid-frequency components are aligned with seismic data, while
deterministic structural elements are maintained. ⑥The final
simulation results are obtained.

3 Results

Seismic waveforms reflect the geological body’s comprehensive
response, including vertical lithological combinations, lateral
variations, and changes in the reservoir spatial structure
(ten Kroode et al., 2013; Aleardi et al., 2018).

Seismic forward modeling demonstrates that although thin
layers may not be discernible in the longitudinal direction
of seismic data, they still affect the lateral waveform trend.
When reservoir structures are similar, seismic waveforms can
exhibit similar patterns. Therefore, lateral variations in seismic
waveforms are used to characterize spatial changes in reservoir
structures, rather than traditional variation functions (Figure 5),
where the upper figure shows the lithology model and the
lower figure presents the seismic simulation. Using A-30 and A-
33 wells as examples, a filtered gamma curve reveals that the
correlation is frequency-dependent. The correlation coefficient
for frequency ranges is as follows: 0–1,000 Hz, 20.2%; 0–800 Hz,
22.8%; 0–600 Hz, 26.9%; 0–400 Hz, 45.9%; 0–200 Hz, 76.8%; and
0–100 Hz, 95.6%. Analysis of waveform indication samples shows
that the frequency band for reservoir structure similarity is broader
than that of the seismic waveform. The waveform indication
simulation technology utilizes a frequency division strategy,
progressively enhancing resolution from low–intermediate-
frequency deterministic inversion to high-frequency stochastic
inversion. This process is validated by starting random simulation
only when the inversion frequency exceeds the specified high cut-off
frequency (Figure 6).

The seismic waveform’s simulation of the lateral variation
drives the characteristics of high-frequency logging data, enabling
high-resolution inversion. In the longitudinal direction, the
inversion aligns with high-frequency logging data, yielding
high longitudinal resolution. In the transverse direction, it
follows seismic waveform variations, achieving high lateral
resolution. These results confirm the high precision of the
inversion process. By using lateral seismic waveform variations,
the simulation eliminates the need for spatial domain interpolation
via variogram-based methods, realizing automatic facies-controlled
inversion. This approach overcomes the subjectivity inherent
in traditional facies-controlled inversion, which requires pre-
defined sedimentary facies (Zhao et al., 2007). The seismic
waveform indication simulation algorithm, based onMarkov Chain
Monte Carlo stochastic simulation, performs seismic prior finite
sample simulation involving two critical inversion parameters:
effective sample number and optimal cut-off frequency. These
parameters, along with well decoalization, are detailed further in the
following section.

3.1 Well decoalization

Based on the wavelet decomposition and reconstruction
techniques described above, the coal seam reflection data can be
obtained. To ensure consistency between well and seismic data
during inversion, a well decoal process is required. Drilling data
statistics indicate that both coal seams and sandstones in the study
area exhibit low GR values, whereas mudstone displays high GR
values. However, the GR attribute alone is insufficient to distinguish
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FIGURE 5
Seismic forward modeling of the thin sandstone reservoir. The velocity and density of the sandstone are 3,500 m/s and 2,375 kg/m3, respectively, and
the velocity and density of the mudstone are 2,500 m/s and 2,184 kg/m3, respectively. The seismic wavelet is the Ricker wavelet of 40 Hz. The upper
figure is the lithology model, and the lower part corresponds to the seismic simulation results. The basic lithology model interfaces are characterized in
the seismic profile.

FIGURE 6
Analysis of the correlation coefficient between the natural gamma curve of well A-30 and the natural gamma curve of well A-33 at frequency bands of
(A) 0–1,000 Hz, (B) 0–800 Hz, (C) 0–600 Hz, (D) 0–400 Hz, (E) 0–200 Hz, and (F) 0–100 Hz. The correlation coefficient of 0–1,000 Hz is
approximately 20.2%, that of 0–800 Hz is approximately 22.8%, that of 0–600 Hz is approximately 26.9%, that of 0–400 Hz is approximately 45.9%,
that of 0–200 Hz is approximately 76.8%, and that of 0–100 Hz is approximately 95.6%.
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FIGURE 7
Comparison of GR curves before (left part) and after (right part) the well decoalization process at the location of (A) well A and (B) well B. The red
arrows indicate the main coal seam parts. It is obvious that the coal seam has totally different GR properties of the sandstone layers (yellow lithology),
which can easily distinguish the coal seam and sandstone layers.

between coal seams and sandstone. By interpreting well lithology,
the GR value for coal seams can be adjusted to match the mudstone
GR value, thus generating a reservoir-sensitive logging curve.
This allows for the application of waveform indication simulation
inversion (Figure 7).

3.2 Number of valid samples

The number of effective samples primarily reflects the impact
of seismic waveform spatial variation on reservoirs and is a
key parameter for optimizing samples in seismic waveform
indication simulation. This number is closely linked to the spatial
variation of reservoirs, encapsulating both lateral variation and

vertical structural complexity (Sambridge and Drijkoningen, 1992;
Sokolov et al., 2021; Yang, 2018).

Seismic waveform indication simulation achieves cross-well
prediction by calculating the common structure of valid samples.
Increasing the number of samples improves the accuracy of this
common structure, thereby enhancing the correlation index.

However, once the number of valid samples exceeds a certain
threshold, further increases do not significantly affect the correlation.
In Markov chain Monte Carlo stochastic simulations, the sample
weight is determined based on waveform similarity (primary) and
the distance between the prediction points (secondary).

As the number of effective samples increases, the proportion
of samples with lower waveform similarity also increases,
causing the difference between reservoirs to increase and
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FIGURE 8
Analysis of simulated sample number of seismic waveform indication
in the study area. When the sample number is 8, the correlation
reaches the limited value, and the inversion quality tends to be stable.

reducing the weight that influences prediction outcomes. Fewer
samples are required to enhance the prediction accuracy. Based
on data characteristics and statistical results from the study
area, the correlation stabilizes when the number of effective
samples reaches 8, at which point the inversion quality also
becomes stable (Figure 8).

3.3 Best cut-off frequency

The seismic waveform indication simulation is a statistical
method characterized by “low-frequency determination and
high-frequency randomness” (Zhang et al., 2018). The low-
frequency component is primarily influenced by the seismic
frequency band, while high-frequency variability results from
random simulation, with increased randomness at higher
frequencies. Therefore, selecting an optimal cut-off frequency
is essential (Figure 9). Figure 10 presents the optimal cut-off
frequency analysis for the waveform indication simulation
in our study area. The analysis shows that most curves
exhibit inflection points at approximately 200 Hz. Prior to
this point, the correlation index decreases gradually and then
stabilizes thereafter. Thus, 200 Hz is identified as the optimal
cut-off frequency.

3.4 Application effect

The waveform indication simulation technology addresses
limitations in identifying sandstone and mudstone when using
only a single-wave impedance parameter, as well as distinguishing

between limestone and coal seams with a single gamma curve.
Coal seams typically exhibit lower densities and P-wave velocities,
resulting in a P-wave impedance generally below 7,000 g/cm³ ×m/s,
while limestone displays higher densities and P-wave velocities, with
impedance values exceeding 14,800 g/cm³ × m/s. These contrasts in
P-wave impedance enable clear differentiation between coal seams
and limestone. Seismic waveform-guided inversion, supported by
gamma-ray logs, is employed to effectively characterize sandstone
and shale, allowing precise delineation of coal seams, limestone,
and shale to identify tight sandstone formations. Using step-by-
step inversion and gradual stripping techniques, the influence of
coal seams and limestone is isolated, enabling accurate sandstone
distribution identification and reliable seismic predictions, even
under coal seam shielding and complex lithologic conditions.
Figure 11 presents the waveform indication inversion profile for
the Tai 2 section, where black indicates coal layers in wells L-
1 and L-2, red denotes gas layers, yellow represents dry layers,
and gray signifies shale. The profile aligns well with actual drilling
data, demonstrating high resolution, reasonable lateral variability,
and accurate reservoir prediction. The process effectively mitigates
strong coal seam effects, facilitating tight gas layer prediction,
as shown in Figure 11. According to the inversion results, Well L-1
was drilled with 23.6 m of the gas layer encountered in the Taiyuan
and Benxi Formations, exhibiting a full gas logging curve. This well
has recently commenced production, achieving an industrial daily
output of 1.46 × 10⁴ m³, further validating the accuracy of this
reservoir prediction technology. Subsequently, 16 boreholes have
been drilled in the block, with sand body prediction accuracy rates
of 76.47% for the Taiyuan Formation and 81.25% for the Benxi
Formation.This methodology shows potential for wider application
in the development of tight gas reservoirs similar to those in the
Ordos Basin.

4 Discussion

The proposed technology offers improved accuracy and
resolution for tight gas reservoirs influenced by coal seams,
enhancing the exploration and development efficiency. Waveform
indication simulation is widely used for thin sandstones with
strong coal seam events (Nelson et al., 2012; Chisholm et al.,
2015; Babikir et al., 2022) and has been applied in regions such as
Eastern India (Choudhury and Dutta, 2016; Sarkar and Mandal,
2018), the United States (Harris and Varela, 2014; Batzle and
Wang, 2019), and Canada (Margrave and Lines, 2006; Harris and
Calvert, 2015). However, our proposed approach combines wavelet
decomposition and seismic waveform indication simulation with
multi-parameter testing, offering higher accuracy. Unlike traditional
methods, this combination effectively eliminates the strong seismic
influence of coal seams, yielding more precise predictions for thin
sandstone reservoirs. The proposed workflow is highly applicable
to similar reservoirs and thin sandstone strata affected by coal
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FIGURE 10
Quality control chart of the optimal cut-off frequency for waveform indication simulation. When the frequency is approximately 200 Hz, most of the
curves have inflection points. The correlation index gradually decreases before the inflection point (the optimal cutoff frequency), and then it tends to
be stable after the cutoff frequency.

seams, enablingmore accurate seismic predictions by removing coal
seam interference. Due to data limitations, we have only applied this
technology to the Ordos Basin, but with additional data, it can be
extended to other similar reservoirs.

5 Conclusion

The study of coal measure reservoirs in the L gas field
of the Ordos Basin has led to the development of effective
reservoir prediction techniques for coal measure strata. These

techniques address challenges in reservoir prediction, enhance
well location deployment, and improve thin-sand-body prediction.
The key findings are as follows: (1) wavelet decomposition
and reconstruction technology effectively removes coal seam
shielding effects, restoring the reflection signal from sandstone.
(2) Seismic waveform indication simulation is a significant
innovation over traditional geostatistical inversion, using lateral
seismic waveform variation to characterize changes in reservoir
spatial structure instead of variation functions. This method
aligns with the “phase control” concept and overcomes the
limitations of geostatistical inversion, significantly improving

FIGURE 11
Seismic meme inversion profile of the Tai 2 Segment. The prediction results correspond well with the actual well data for different lithology facies,
which can be further applied for the thin sandstone tight gas exploration.
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FIGURE 9
Analysis of the analog frequency component of seismic waveform indication. The comparisons of the well and seismic frequency bands for relative
determinacy and randomness are shown obviously for later analysis.

the resolution and prediction accuracy. (3) The number
of effective samples and the optimal cut-off frequency are
fundamental parameters in waveform indication simulations,
directly influencing inversion accuracy. This method significantly
enhances the resolution and precision of seismic reservoir
predictions, which, in turn, improves well location selection and
optimization in tight gas fields. Although wavelet decomposition
and reconstruction have demonstrated considerable promise in
reducing coal seam interference for thin reservoir prediction,
there are inherent limitations. The variability in coal seams
and other lithologies introduces uncertainties that cannot be
entirely resolved by signal processing alone. Additionally, the
algorithm’s sensitivity to the choice of wavelets and decomposition
levels necessitates careful calibration for optimal results.
Furthermore, the quality of input seismic data is critical; even
sophisticated processing techniques cannot compensate for
poor-quality data.
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