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Editorial on the Research Topic

Volcanoes’ change of mood and their impact: effusive—explosive
eruptions and vice versa
s

Most volcanoes in subduction settings with magmas ranging in composition from
mafic to felsic may change their eruptive regime between effusive and explosive. For
instance, volcanoes such as Pinatubo (Philippines), Mount Saint Helens (United States),
Guagua Pichincha and Tungurahua (Ecuador) or Popocatépetl (Mexico), routinely
change their eruptive regime between effusive and explosive or from explosive to
effusive yet the triggers of regime change are not fully understood (Pallister et al., 1992;
Dingwell, 1996; Wright et al., 2006; Cashman et al., 2008; Delgado Granados et al., 2008;
Wadsworth et al., 2020; Razvan-Gabriel et al., 2021; Samaniego et al., 2011). This leads
to considerable uncertainty in the forecasting of eruptive style and magnitude and in
the selection of forecasting parameters that enable mitigation of the threat from such
volcanoes (Cassidy et al., 2018). This is especially critical when volcanoes have been
presenting continuous activity and changes in regime might only be preceded by very
smooth or short-term changes in monitored parameters.

The mood swings of volcanoes’ eruptions comprise various temporal and spatial scales,
as volcanoes perform this switching between effusive and explosive events (Cassidy et al.,
2018). Such changes can occur on time scales of months, years, decades, or even centuries.
In the short term, during eruption, volcanoes can also switch between effusive and explosive
behavior on time scales ranging from fractions of a second to hours or days (Ruprecht and
Bachmann, 2010; Venzke, 2013). For large stratovolcanoes, effusive volcanism can occur in
one part of the volcanic edifice, while it can behave explosively in another sector (Smith
and Houghton, 1995). Even in monogenetic volcanic fields, volcanoes can behave effusively,
explosively or exhibit a combination of both, through a central conduit or from fissures
controlled by the stress field prevalent in the region.

It is important to review the processes that lead to explosive and effusive
eruptions of magmas of different compositions (Sparks, et al., 1977; Pallister et al., 1992;
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Williamson, et al., 2010). These processes can occur in silicic
magmas, as well as in magmas of andesitic or basaltic composition
(Newhall and Melson, 1983; Cashman and Sparks, 2013;
Cassidy et al., 2015), as was observed in the recent eruption of
Cumbre Vieja, on the island of La Palma, Spain (Romero et al.,
2022; Benito et al., 2023; Birnbaum et al., 2023; Taddeucci
et al., 2023).

The role of parameters such as magma viscosity (Lavallée et al.,
2007), abundance and loss of magmatic volatiles (Newhall
and Melson, 1983; Jaupart and Allègre, 1991; Parmigiani et al.,
2016; Preece et al., 2016; Campion et al., 2018), the geometry
of the conduits (de Michieli Vitturi et al., 2008), the basement
conditions and groundwater (Collinson and Neuberg, 2012;
Ball et al., 2015) have all been brought into consideration.
Variations in magma supply from depth (in terms of
mass and chemical fluxes) may also influence the ascent
rate (Scandone and Malone, 1985; Scandone et al., 2007;
Preece et al., 2016), crystallization (Nishimura et al., 2005;
Wallace et al., 2015), decompression (Alidibirov and Dingwell,
1996; Tarasewicz et al., 2012) and degassing of magma (Edmonds,
2008; Takeuchi et al., 2009; Owen et al., 2013) yielding temporal and
spatial variations in eruptive style.

The collection of contributions gathered in this special edition of
Frontiers demonstrates that more studies are needed to understand
the causes of mood changes at volcanoes. Basaltic (e.g., Ikenaga
et al.) as well as silicic systems (Aubin et al.) require new ways
to envisage the acting processes driving the changes in behavior
(Martin-Del-Pozzo and Santos Morales). All methodologies are
useful to elucidate these changes, and the morphological analyses
are key for volumetric estimates combinedwith thermal information
(Vallejo et al.).

Ikenaga et al. observe that most studies of explosive volcanism
concern silicic magmatic systems. Yet explosive basaltic volcanism
such as the eruption of Etna in 122 BC (Coltelli et al., 1998), the
1886 eruption of Tarawera (Walker et al., 1984), or the eruption
of Parícutin volcano in 1943–1952 (Pioli et al., 2008) demonstrate
the importance of studying mafic explosive-effusive switching in
eruptive style and consequences for associated hazards. In studying
the 1777–1792 An’ei basaltic eruption of the Izu-Oshima volcano,
Ikenaga et al. reconstructed the transition of eruptive style of a
complex eruption consisting of lava flows and explosive products,
based on a combination of geological data, historical documents,
and chemical analyses, and the development of magma plumbing
models. The eruption started at the summit crater with weak
explosive activity producing scoria. This was followed by more
intense explosions, with the resulting deposit being classified into
Units A-C. Unit B also started with weak explosive activity which
increased its intensity until the climatic phase of November 1778
when Unit C was ejected. It is noteworthy that the amount
of Al2O3 and the modal phenocryst contents in the magma
showed an increase with the progression of the eruption. Ikenaga
et al. documented a transition from relatively weak activity with
Strombolian explosions, associated with aphyric magma (Unit A;
1.0–4.3 × 107 m3), to short-period activity with more intense sub-
Plinian explosions (Unit C; 1.3–3.2 × 107 m3), associated with
porphyritic magma. They explained this transition as resulting from
the evacuation of magma from multiple reservoirs with different

contents of plagioclase phenocrysts. Simultaneously, lava flows with
different petrological features as compared with those of the scoria
from explosive eruptions suggest also multiple magma reservoirs
and pathways.

As noted by Aubin et al., two eruptions in 2008–2012 in
Chile (Chaitén and Cordón-Caulle) exhibited lava extrusion and
the explosive release of pyroclasts simultaneously, challenging
sequential eruption style models for rhyolitic eruptions (Castro and
Dingwell, 2009; Castro et al., 2013; Schipper et al., 2013; Heap et al.,
2019). Wadsworth et al. (2020); Wadsworth et al. (2022) explain
the contemporaneous eruption of degassed pyroclasts and lava
via variable amalgamation and sintering of pyroclasts at depth
following fragmentation, a process involving an occlusion of the
eruptive conduit following the accumulation of variably sintered
magma. Effusion of degassed lava ensued, and the continuous
degassing re-sintered magma along the conduit walls to be
subsequently re-fractured accompanied by explosive gas expansion
(Castro et al., 2012; 2014; Schipper et al., 2013; Saubin et al., 2016;
Wadsworth et al., 2022). Aubin et al. have tested this conceptual
model using microlite number densities (MND) in obsidian
pyroclasts from the 1340 C.E. North Mono eruption, California,
United States. (Sieh and Bursik, 1986; Bursik, 1993) backed up
by hydrothermal experiments (800°C, 10–50 MPa, 1–7 h). They
observe 1) MND increases with time during the eruption; 2)
feldspar and pyroxene microlites exhibit multiple morphologies;
3) microlite orientations correlate with the dominant morphology
of vesicles (generally well aligned in samples with ellipsoidal
vesicles, but poorly aligned in samples with spherical vesicles, and
could be either aligned or unaligned into planes in samples with
distorted vesicles). The experimental results show 1) an increase
of MND with time, 2) a single morphology of microlites, and 3)
random orientations regardless of pressure or temperature. The
experimental results suggest that microlites could have grown
in ≤∼7 h. The authors conclude that MND increases with time
as volatile concentrations decrease throughout the eruption. The
variety of microlite morphologies and orientations support the idea
of a repeated in-conduit fragmentation and sintering, consistent
with the idea that each individual obsidian pyroclast is the product
of ash sintering at multiple depths in the conduit prior to finally
being erupted. At the beginning of the eruption, fragments of
obsidian formed in magma stalled at crustal depths were entrained.
Obsidian pyroclasts were extracted from many depths in the
conduit, preserving an array of volatile contents and microlite
textures. Near the end of the explosive phase, higher MND
record longer periods of stalling while dissolved volatile contents
record vapor-melt equilibration at shallow depths in the conduit.
At the end of the eruption, the obsidian pyroclasts were more
degassed and stalled for longer periods before they explosively
erupted from shallow depths. Microlites became well aligned as
the conduit was blocked by sintered ash and with higher strain
rates. Sintered degassed lavas with well oriented microlites were
extruded with the continued fragmentation and degassing of
ash at depth.

Traditional techniques such as photogrammetry performed
with the new tools developed by advanced technology (such as
Unmanned Aerial Vehicle or UAV) to produce digital elevation
models (DEM) using structure from motion (SFM) techniques
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and complemented with several other remote sensing tools (e.g.,
IR thermal cameras; or the volcanic radiative power -VRP- from
MIROVA; Coppola et al., 2016; Coppola et al., 2020) may provide
new insights into the switching between eruption styles from
a geodetic/geomorphological perspective. For the case of long-
lived-eruptive volcanoes such as El Reventador in Ecuador Vallejo
et al. have presented an alternative view of the destructive and
constructive processes, during the long-lasting activity following the
paroxysmal eruption on 3 November 2002, which destroyed the
upper part of the summit. They document morphological changes
which they attribute to an interplay of destructive and constructive
processes caused by a combination of explosive and effusive events
influenced by the dynamics and architecture of the magmatic
system. On the basis of a large dataset of thermal and visible
imagery resulting from 20 years of continuous monitoring activity
at Instituto Geofísico (Ecuador), combined with DEMs constructed
from imagery obtained during reconnaissance flights and VRP;
Vallejo et al. describe in detail the transitions and coexistence
of Strombolian and Vulcanian eruptive activity at El Reventador
volcano from November 2002 to November 2023. The eruptive
activity comprised of three destructive events (November 2002,
leaving a north-south branched crater; June 2017, NE border crater
collapse; and April 2018, NW flank collapse) and two constructive
periods (refill of the crater in November 2002-early April 2018,
and refill of the northwestern flank scar in late April 2018 until
2023). The DEMs enable the estimation of volumes removed (34.1
× 106 m3 of volcanic material during destructive events or added
64.1 × 106 m3 during constructive events). They infer a maximum
height of stability of the volcano at 3,600 ± 10 m, arguing that this
cone height corresponds to a lithostatic load threshold, limiting the
elevation of magma ascent.

Changes in volcanic behavior, like those discussed above, are
complex and are likely to result from variations in a combination of
processes, such asmagma ascent velocity, conduit geometry, magma
composition and volcanic degassing. For the first case, the ascent
and stalling of batches of magma can be documented through the
observation of the geomagnetic field at volcanoes (Yukutake et a.,
1990; Zlotnicki et al., 1993; Sasai et al., 2002; Martin Del Pozzo,
2012). In this collection, Martin-Del-Pozzo and Santos Morales
present a time-series of magnetic data recorded at Popocatépetl
volcano, Mexico, using signals from a monitoring network between
October 2018 and December 2019, documenting changes from
effusive to explosive behavior associated with the extrusion of
lava domes. The volcano changed its eruptive behavior between
March 15 to 18 July 2019, during which no lava domes were
observed. Although there was an important decrease in activity in
this interval, unexpected explosions in March and June, produced
ash plumes as high as 14,000 m a.s.l. As the local geomagnetic
field can be affected by variations due to magnetic storms,
micropulsations, and other external effects, Martin-Del-Pozzo and
Santos Morales processed the raw magnetic data using the weighted
difference method of Rikitake (1966) to enhance the magnetic
changes associated with volcanic activity, and used the discrete-
time continuous wavelet transform (Torrence and Compo, 1998)
to evaluate the local variations of energy within the time series.
They separated the magnetic data into three periods of 5 months

to observe the volcanic processes before, during and after dome
growth in 2019. They evaluate whether the internal behavior of
the volcano can be recognized from the volcano magnetic signals
which are the result of a sum of superimposed thermomagnetic
and piezomagnetic processes. Magma ascent along the conduit
may have induced negative magnetic anomalies during the high
energy periods. Sudden more energetic explosions can be explained
in terms of magma batches with different compositions that
could have induced changes in the rheology of lava extruded,
with more viscous degassed, ascending andesitic magma being
pushed up, whilst compacting due to gas loss. This contribution
shows the importance of correlating several sources of geophysical
data and integrating geochemical and mineralogical composition
information. Particularly, the observation of the geomagnetic field
at volcanoes can be used for monitoring and hazards assessment.

The causes for the mood changes at volcanoes will hopefully be
the subject of upcoming studies considering factors associated with
the source of magmas from deep areas of >10 km in the mantle,
through the mantle-crust interface, to shallow conditions (<10 km).
Recent work by Valade et al. (2023) imaging the morphological
evolution of lava flows and internal features of Popocatépetl
volcano’s crater using remote sensing techniques shows the
importance of gathering together different sources of data to
understand the effusive-explosive behavior at volcanoes. Further,
an attempt should be made to give a temporal perspective,
which is a very challenging Research Topic considering that
observational evidence and monitoring can span fractions of a
second, whereas geological observations (stratigraphic, petrologic,
and tectonic) encompass years (in the order of 10 to 105 of years)
covering the entire compositional range from mafic to silicic. The
geophysical perspective (gravimetry, magnetometry, seismology,
remote sensing), should allow to recognize a change of regime in
different periods, as suggested by Martin-Del-Pozzo and Santos
Morales. Additionally, it is essential to have a spatial perspective
that considers the migration of volcanism on different time scales,
for both polygenetic and monogenetic volcanoes, to understand
regime changes in a three-dimensional context. Taken together such
studies may provide an important glimpse into the effects that
these regime changes have on the environment and their impact on
climate change. The societal benefits will include the improvement
to risk mitigation efforts with the goal of the prevention of
loss of life.
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