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Nonlinear amplitude versus angle
inversion using hybrid quantum
ant colony optimization and the
exact Zoeppritz equation

Yuxing Chen, Jiwei Cheng, Hongping Miao, Defu Feng,
Chengci Wang, Chao Zhang and Mengxin Song*

PetroChina Research Institute of Petroleum Exploration and Development, Beijing, China

Prestack amplitude versus offset (AVO) inversion is an essential tool to estimate
elastic properties. Approximations of P-wave reflection coefficients based on
the Zoeppritz equation are limited by the assumption of weak contrast and
are inaccurate for far offset, and the existing nonlinear inversion method, like
ant colony optimization (ACO), cannot converge to the global optimal solution
within a limited time. Consequently, we propose a nonlinear AVO inversion
method based on the exact Zoeppritz equation using hybrid quantum ant colony
optimization (HQACO). The Zoeppritz equation is a forward modeling approach
with high accuracy at far offset and is valid at the strong-contrast interface.
HQACO, as a global optimization algorithm, not only has the potential of ACO
to search global solutions but also exploits the power of quantum computing
to speed up optimization procedures. The self-adaptive rotating strategy is
proposed to improve the flexibility and efficiency of the conventional quantum
rotating gate largely. Moreover, the quantum gate is introduced to enhance the
global search ability. Numerical results show that the average evaluation number
required for the global solution decreases largely and the solution converges
to the global optimal solution closely using the proposed method. Synthetic
applications verify that HQACO shows the most reliable exploring competence
to find the global solution. The new inversion method is not only suitable for the
strong-contrast interface with noise but also shows promising accuracy using
the wide offset range.

KEYWORDS

exact Zoeppritz equation, amplitude versus angle, nonlinear inversion, quantum
computing, hybrid quantum ant colony optimization

1 Introduction

Prestack amplitude variation with offset (AVO) inversion is one of
the commonly used techniques for estimating reservoir elastic parameters
(Ostrander, 1984). In AVO inversion, an objective function is usually designed
to fit the prior constraint and observation data by finding the minimum
value of the objective function to obtain the true solution of the problem.
Moreover, seismic data are band limited and always perturbed by noise, which
inevitably leads to non-uniqueness of the solution, that is, ill-posed problem.
In this sense, the inversion problem is a trade-off optimization problem
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TABLE 1 Average numbers of model evaluations required to converge to
the global minimum and the optimal result after improvements.

Average evolution
generation

Optimal result

QACO 321 [-0.0931, −0.0743]

QACO+SARS 217 [-0.0253, −0.0343]

HQACO 151 [-0.0032, −0.0036]

SARS, self-adaptive rotating strategy.

with non-unique solutions and high-dimensional nonlinear
characteristics. In order to improve the computational efficiency
and stabilize inversion, many approximations have been developed
to eliminate the nonlinear relationship between the seismic response
and the elastic parameters by linearization under the assumptions of
weak contrast and near offset limitations (Aki and Richards, 2002;
Shuey, 1985; Smith and Gidlow, 1987; Zong et al., 2013; Zhang and
Li, 2013; Lu et al., 2015; Zhang et al., 2019; Cheng et al., 2022a).
The global optimization algorithm, however, can never reach the
true model parameters under such assumption without considering
the computational efficiency (Lu et al., 2015). Consequently,
an exact inversion equation, like the Zoeppritz equation, is a
necessary condition for AVO inversion, and an accurate inversion
method with acceptable computation efficiency facilitates the
inverse problem.

Many inversion methods are proposed to solve the nonlinear
inverse problem (Stoffa and Sen, 1991; Li and Mallick, 2015; Sen
andStoffa,2013;MallickandAdhikari, 2015;AleardiandMazzotti,
2017; Zhou et al., 2017; Aleardi et al., 2019; Liu et al., 2022).
The linear inversion method, that is, deterministic algorithm,
solves the nonlinear function between model parameters and
observational data as a linear problem and iteratively modifies
the initial model until the convergence conditions are met. This
inversion method has high calculation efficiency, requires less
memory, and is concise and commonly used in practice (Buland
andOmre, 2003; Russell et al., 2011; Zhang et al., 2019). However,
the inversion result depends heavily on the initial model, and it
may converge to a local solution rather than a global solution,
which may cause large deviation between the solution and the
actual model (Liu et al., 2022; Liu et al., 2023). Considering that
the exact equations are high dimensional and nonlinear, extra
assumptions like linearizationmake global optimizationmethods
miss the global optimal solution, which means the desired global
optimization methods still cannot acquire the real solutions
without an exact forward modeling algorithm. Therefore, the
inversion method based on the exact Zoeppritz equation can
meet the requirements of the global optimization methods.
Although the most ideal inversion method in such a problem
is the exhaustive search method, it is also the most unrealistic
method because the optimization method requires infinite
calculation time whatever computer is used. Monte Carlo method
is a typical representative of the nonlinear global optimization
method, but its weaknesses is low efficiency, which may require
the order of thousands or even millions to obtain acceptable

precision (Cheng et al., 2022b). With the rapid development of
the current computer performance, the implementationof parallel
computations enables some classic meta-heuristic algorithms,
based on Monte Carlo ideas, such as simulated annealing, which
is based on statistical mechanics, and the ant colony algorithm,
which is based on biology (Stoffa and Sen, 1991; Mallick, 1995),
in order for the inversion of actual seismic data. Ant colony
optimization (ACO) is an iterative algorithm based on the natural
system; it is inherently highly parallel because it simulates a
range of solutions and has no strict restrictions on the initial
model, but the efficiency of ACO is influenced by the population
size heavily, that is, convergence can be premature if a small
number of models are employed, and ACO does not always
guarantee it will converge to the global optimal solution within a
limited time.

Quantum computing methods have been hailed as the future
of computing sciences (Moradi et al., 2018). This can be attributed
to their theoretically proven supercomputing speed, better stability,
and effectiveness. Although many studies have been conducted to
examine the applicability of quantum computing in general (e.g.,
Moradi et al., 2018; Liu et al., 2018), its potential in geophysics has
received limited attention. Quantum computing principles such as
superposition, entanglement, and quantum tunneling can bring a
paradigm shift in computing by achieving substantial speed-up over
its classical counterpart (Hoos and Stϋtzle, 2018; Kallel et al., 2013).
Quantum computing offers reversible computational logic, which
helps in the minimization of power consumption while preserving
computational information, making it a good alternative for
reducing overall computational complexity and resource overhead.
Additionally, quantum superposition using the Hadamard gate
will allow parallel exploitation of the search space and thus may
offer the desired solution faster than classical ACO synthesis
through quantum interference (Grover, 1996).This improvement in
QACO results in improved convergence efficiency and accuracy of
results in optimization problems (Lahoz-Beltra, 2016). Despite these
improvements, QACO shows two major deficiencies when solving
relativelymore complex problems: first, the slow rate of convergence.
The angle of rotation, which is usually fixed, and the direction of the
quantum rotating gate are obtained from a look-up table (Han et al.,
2001), making the algorithm less flexible and resulting in a slower
convergence rate in the early stages. Second, there is high tendency
of being trapped in a local minimum. QACO uses the quantum
rotating gate to update genes with the best fit. This increases the
population of the best-fit genes but ultimately results in the loss
of diversity, which increases the tendency of being trapped in a
local minimum.

To address these shortcomings in the QACO method, in this
study, we propose an improved version called the hybrid quantum
ant colony optimization (HQACO). It combines a self-adaptive
search strategy and the operations of the quantum gate, enjoying
the advantages of quantum computing and ACO. This positions
the HQACO as a great tool for global optimization using a small
population size. It also enjoys the advantages of the results being
independent of the initialmodel and high likelihood of obtaining the
global solution.We verified its reliability and stability by conducting
synthetic tests using models based on synthetic and actual logging
data. The results show that HQACO is a strong candidate for
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FIGURE 1
(A) P-wave velocity, S-wave velocity, and density of model I are shown from left to right. (B) Synthetic seismic angle gathers of model I.

global optimization with fast convergence speed and robust
stability.

2 Methodology

2.1 Forward modeling

Based on the three-dimensional wave equation and the
boundary conditions of continuous displacement and stress

at the interface of the medium, Zoeppritz (1919) deduced
the expression of the reflection and transmission coefficient
when the wave propagates to the interface, which is described
as the Zoeppritz equation. Assuming a solid–solid interface
between two homogeneous isotropic elastic half-spaces, P-
wave velocity, S-wave velocity, and density of the upper
half-space are denoted by VP1,VS1,ρ1, respectively; P-wave
velocity, S-wave velocity, and density of the lower half-space
are denoted by VP2,VS2,ρ2, respectively; i1 and i2 are the
incident angle and transmitted angle of P-wave; j1 and j2 are
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FIGURE 2
Using static search windows to constrain the AVO inversion with different bounds: (A) 15% deviation, (B) 10% deviation, and (C) 5% deviation. P-wave
velocity, S-wave velocity, and density are shown from left to right. The solid black lines denote the true models. The red dashed curves denote the
inverted models by HQACO, where the upper and lower bounds of search windows are denoted by gray dashed curves. The dashed blue lines and
green lines indicate the inverted results by QACO and ACO, respectively.

the incident angle and transmitted angle, respectively, of S-
wave; the ray parameter is constant and described as p =
sin i1/VP1 = sin i2/VP2 = sin j1/VS1 = sin j2/VS2. Aki and Richards
(2002) derived the accurate solutions of the Zoeppritz equation as

RPP =
[(b cos i1

VP1
− c cos i2

VP2
)F− (a+ d cos i1

VP1

cos j2
VS2
)Hp2]

D
,

where

{{{{{{{
{{{{{{{
{

a = ρ2(1− 2V
2
S2p

2) − ρ1(1− 2V
2
S1p

2)

b = ρ2(1− 2V
2
S2p

2) + 2ρ1V
2
S1p

2

c = ρ1(1− 2V
2
S1p

2) + 2ρ2V
2
S2p

2

d = 2(ρ2V
2
S2 − ρ1V

2
S1)

and

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2024.1483776
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yuxing et al. 10.3389/feart.2024.1483776

FIGURE 3
Using dynamic search windows to constrain the AVO inversion with different bounds: (A) 15% deviation, (B) 10% deviation, and (C) 5% deviation. P-wave
velocity, S-wave velocity, and density are shown from left to right. The solid black lines denote the true models. The red dashed curves denote the
inverted models by HQACO, where the upper and lower bounds of search windows are denoted by gray dashed curves. The dashed blue lines and
green lines indicate the inverted results by QACO and ACO, respectively.

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

E = b
cos i1
VP1
+ c

cos i2
VP2

F = b
cos j1
VS1
+ c

cos j2
VS2

G = a− d
cos i1
VP1

cos j2
VS2

H = a− d
cos i2
VP2

cos j1
VS1

D = EF+GHp2

.

As shown above, although the Zoeppritz equation is a highly
nonlinear functionwith respect to these properties, the formulations
are explicitly valid in the isotropic media, and it uses few numbers
of approximations, which allows the prediction of the reflection
coefficients to be accurate from near to far incident angles. Then,
global optimization schemes are suggested to be involved to treat
AVO inversion. Combining the exact Zoeppritz equation with the
global optimization methods can help inversion converge to global
solutions.
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TABLE 2 Relative errors between the inversion results and true models by using ACO with different search windows.

ACO Optimized search window Conventional search window

Interval = 0.5 Interval = 1 Interval = 1.5 Interval = 0.5 Interval = 1 Interval = 1.5

Vp 0.0536 0.1094 0.1287 0.0765 0.1446 0.1904

Vs. 0.1236 0.1857 0.1964 0.1609 0.2360 0.3921

ρ 0.0512 0.0918 0.1483 0.0630 0.1369 0.1517

TABLE 3 REs between the inversion results and true models using QACO with different search windows.

QACO Optimized search window Conventional search window

Interval = 0.5 Interval = 1 Interval = 1.5 Interval = 0.5 Interval = 1 Interval = 1.5

Vp 0.0498 0.0671 0.1231 0.0597 0.0934 0.1488

Vs. 0.1088 0.1215 0.1376 0.1095 0.1794 0.2996

ρ 0.0384 0.0650 0.0711 0.0490 0.0859 0.1481

TABLE 4 REs between the inversion results and true models using HQACO with different search windows.

HQACO Optimized search window Conventional search window

Interval = 0.5 Interval = 1 Interval = 1.5 Interval = 0.5 Interval = 1 Interval = 1.5

Vp 0.0110 0.0432 0.0558 0.0293 0.0618 0.1201

Vs. 0.0247 0.0793 0.0968 0.0956 0.0964 0.1262

ρ 0.0103 0.0444 0.0534 0.0185 0.0637 0.0649

2.2 Conventional objective optimization

Nonlinear inversions are usually done by minimizing an
objective function. The L2 norm and cross-correlation coefficient
are commonly objective functions to define an error, misfit, or
similarity in the optimization problem. Then, we can obtain the
objective function of the form as follows:

mINV = argmin
m
[(r−G(m))T(r−G(m))],

where r is the data vector, denoted as r = [r1, r2,…, rn]
T, and model

parameters m = [m1,m2,…,mp]
T are all positive; and n and p

are the numbers of observed data points and model parameters,
respectively. Arg min returns the value of m, which minimizes the
given function. It should be noted that these objective functions are
the simplest form and are affected by the energy of noise.

2.3 Hybrid quantum ant colony
optimization

Simple ACO functions in two operating modes: forward (from
the nest toward the food) and backward (from food back to the

FIGURE 4
Evolution process with ACO (green), QACO (blue), and HQACO (red)
using the 5% deviation dynamic search window.
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FIGURE 5
Model II: well data of real data are used to generate the synthetic data for inversion. P-wave velocity, S-wave velocity, and density are shown from
left to right.

nest). Forward ants build a solution by probabilistically choosing
the next node to move to among those in the adjacent positions
with respect to the current node. This probabilistic choice is biased
by pheromone trails previously deposited on the paths by other
ants. Forward ants do not deposit any pheromone, which, when
associated with deterministic backward moves, helps eliminate loop
formation.

First, an ant k locating on node i moves to j as the next node
using the following constraint for the transition function:

m(j) =
{
{
{

arg{max[(τij(t))
α ∙ (ηij)

β]}, r ≤ r0

j′, r > r0
,

where τij is the pheromone trail at time t, ηij is the problem-specific
heuristic information, α and β are impacts of pheromone trail and
heuristic information, respectively, r is the random number with
uniform distribution in [0, 1], r0 is the pre-specified parameter
ranging from 0 to 1, and j′ is the target point selected according to
the following probability distribution:

Pkij(t) =
(τij(t))

α ∙ (ηij)
β

∑
j∈Nk

i

(τij(t))
α ∙ (ηij)

β
,

where Nk
i is the neighborhood of ant k when located on node i.

Ant k traversing in the backward mode through the arc (i; j) will
update the pheromone value as follows:

τ∗ij = (1− ρ)τij +
K

∑
k=1
∆τkij,

where∆τkij indicates the amount of pheromone deposition to all arcs,
ρ ∈ (0,1] is the pheromone evaporation parameter, and K indicates
the amount of ants.

In a quantumcomputer, a two-level quantum system called qubit
acts as the physical media to store the information units. A qubit
is the basic unit of information in quantum computation and is
described by a superposition of the basis states φ⟩ = α |0⟩ + β |1⟩,
where |0⟩ and |1⟩ are denoted as two basic states (Han and Kim,
2000); α and β are complex numbers and satisfy |α|2 + |β|2 = 1. |α|2

and |β|2 are called the probability amplitude of the corresponding
states |0⟩ and |1⟩ of qubit, respectively. We can note that a qubit
is not a value of 0 or 1, but there is a possibility that it can be
represented with values. A qubit can contain the information of
both state |0⟩ and |1⟩, and a superposition state φ⟩ also can be
represented by a unit vector of a two-dimensional Hilbert space as

|φ⟩ = [

[

α

β
]

]
(Williams, 2010).

The quantum rotating gate is the core operator in the evolution
operation, and it directly affects the performance of the algorithm.
As model parameters are in superposition states, the genetic qubits
in the population should be updated by the quantum rotating gates
to adjust the probability amplitude and constitute new individuals.
Quantum rotating gates can be designed according to the practical

problems and can be usually defined asG = [

[

cosθ −sinθ

sinθ cosθ
]

]
, where

θ is the rotating angle. The rotation strategy adopted is given by
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FIGURE 6
Synthetic angle gathers with different levels of noise: (A) without noise, (B) signal-to-noise ratio = 4, and (C) signal-to-noise ratio = 2.

the following equation: |φ′⟩ = G(θ) × |φ⟩ = [

[

cosθ −sinθ

sinθ cosθ
]

]

[

[

α

β
]

]
=

[

[

α′

β′
]

]
, where |φ′⟩ is the updated quantum superposition state and

α ‘and β' are the probability amplitudes of the quantum state after
rotation. Generally, the rotation angle and rotation direction of the
quantum gates are empirically determined in advance (Layeb and

Saidouni, 2007; Han and Kim, 2000), and the adjustment strategy
of the rotation angle and rotation direction for the quantum gate
is updated in accordance with the self-adaptive rotating strategy
proposed by Cheng et al. (2022b). A dynamic rotating method to
adjust the rotation angle of the quantum rotating gate is proposed
as follows:

∆θ = −sgn(A) × (θmax − θmin) × |
FCur − Fmin

C
|,
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FIGURE 7
Comparison among the real logs (black solid), inversion results by QACO (blue), and inversion results by ACO (green) for synthetic model II with
different levels of noise: (A) without noise, (B) signal-to-noise ratio = 4, and (C) signal-to-noise ratio = 2. P-wave velocity, S-wave velocity, and density
are shown from left to right. The upper and lower bounds of search windows are denoted by gray curves.

where A = |

|

αB αi
βB βi
|

|
, αB,βB are the probability amplitudes of a

qubit in the currently optimal solution, and αi,βi are the probability
amplitudes of the corresponding qubits in the current search
solution.Then, the direction of the rotation angle is taken as follows:
when A ≠ 0, the direction is −sgn(A); when A = 0, the direction can
be positive or negative. θmax represents the maximum value in the
interval, θmin represents the minimum value in the interval, Fmin
represents the fitness of the best optimal individual, FCur represents

the fitness of the current individual, and C is a positive integer
constant. The proposed method can associate the rotating angle
with the fitness value and dynamically adjust the rotating angle,
thereby improving the total convergence rate without losing the
accuracy. Adjusting the corresponding qubit based on the fitness
can make the individual update toward the direction of the optimal
model parameter, and the rotating angle gradually reduces as the
fitness converges to the optimal solution. Results listed in Table 1
represent the average evaluation number requested to the global
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FIGURE 8
Comparison among the real logs (black solid), inversion results by HQACO (red), and inversion results by QACO (blue) for synthetic model II with
different levels of noise: (A) without noise, (B) signal-to-noise ratio = 4, and (C) signal-to-noise ratio = 2. P-wave velocity, S-wave velocity, and density
are shown from left to right. The upper and lower bounds of search windows are denoted by gray curves.

minimum, which reduces from 321 to 217 after applying the
self-adaptive rotating strategy, and the optimal solution is closer to
the global minimum.

Quantum gate, in practical applications, is an assistant operation
with the purpose to avoid losing important information of
the population and enhance the local searching ability, as the
diversity maintained by the superposition state is not enough to
reflect the superiority of the quantum algorithm and premature
convergence may occur due to the effect of noise. Therefore,

quantum gates will be added to improve the performance of
the algorithm.

The quantum NOT gate (Pauli-X gate) is commonly adopted
to implement quantum gates. Through exchanging the probability
amplitude of each gene |0⟩ and |1⟩, the chance of the obtained result
after measurement is exchanged. Moreover, the quantum NOT gate,
as the quantum gate operator, rotates the angle of the gene by π

2
− 2θ.

As the rotation angle is slightly large, the convergence speed of the
algorithm can be accelerated in the early stage of the quantum genetic
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TABLE 5 REs and CCs between the inversion results and true models
using ACO with different SNR.

ACO Relative error Correlation
coefficient

Vp Vs. ρ Vp Vs. ρ

Without noise 0.0400 0.0514 0.0348 0.9983 0.9980 0.9967

SNR=4 0.0490 0.0687 0.0510 0.9975 0.9954 0.9968

SNR=2 0.0582 0.0938 0.0747 0.9968 0.9931 0.9950

TABLE 6 REs and CCs between the inversion results and true models
using QACO with different SNR.

QACO Relative error Correlation
coefficient

Vp Vs. ρ Vp Vs. ρ

Without noise 0.0207 0.0282 0.0202 0.9990 0.9989 0.9984

SNR = 4 0.0488 0.0676 0.0494 0.9976 0.9959 0.9974

SNR = 2 0.0557 0.0886 0.0691 0.9969 0.9932 0.9957

algorithm, and at the same time, the diversity of the population
can be guaranteed. However, the quantum NOT gate may cause
premature phenomenon in the late stage. Consequently, we consider
using Hadamard gates for quantum gates when the convergence is in
the late stage. The matrix representation of the Hadamard gate isH =

1
√2
[

[

1 1

1 −1
]

]
, and the mutation of genes can be represented as

H(|ψ⟩) = 1
√2
[
1 1
1 −1
][

cosθ
sinθ
] = [[

[

cos(π
4
− θ)

sin(π
4
− θ)
]]

]

= [[

[

cos(θ+ π
4
− 2θ)

sin(θ+ π
4
− 2θ)
]]

]

.

From the formula, we can find that the angle of the qubit is
rotated by π

4
− 2θ. Therefore, the Hadamard gate is more suitable

as a mutation operator when the individual is close to the optimal
value, to prevent the information of the current optimal individual
from disappearing and to ensure the stability of the population.
Table 1 shows that using quantum gates leads to higher efficiency,
the average calculation number decreases to 151, and the higher
accuracy is when optimal solution closes to 0.

3 Inversion test

Wepresent two numerical examples to examine the effectiveness
of our proposed algorithm. The misfit between the predicted and
observed data is used as the objective function to be minimized.
An objective function with multiple local minima reflects high ill-
conditioning of the inversion problem. Several performance criteria
are used to evaluate the performance of the algorithms, such as
the number of iterations and robustness. In all synthetic examples,

TABLE 7 REs and CCs between the inversion results and true models
using HQACO with different SNR.

HQACO Relative error Correlation
coefficient

Vp Vs. ρ Vp Vs. ρ

Without noise 0.0188 0.0232 0.0172 0.9992 0.9991 0.9989

SNR = 4 0.0406 0.0602 0.0440 0.9979 0.9961 0.9978

SNR = 2 0.0543 0.0876 0.0683 0.9971 0.9934 0.9959

the incidence angles for the AVA gathers are 1°–40°, and the
wavelets used for the forwardmodeling are Ricker wavelets. First, we
design a 1-dimensional 13-layer horizontal theoretical stratigraphic
model to test the accuracy and efficiency of the 3 optimization
algorithms: ACO, QACO, and HQACO under different search
windows. Next, the actual logging data are used to generate synthetic
seismic records, and the convergence efficiency and robustness of the
inversion algorithm are tested by adding random noise.

3.1 Numerical test

3.1.1 Example I
First, we build a 13-layer horizontal layered model to test the

stability and accuracy of HQACO, QACO, and ACO in different
search windows. Given the termination criterion, maximum
generation 500 and error tolerance 10–5, two kinds of search
windows with three different search ranges, are used to detail the
influence and choice of search windows required for inversions
without any noise. Figure 1A shows the information of model I.
Figure 1B shows the amplitude versus angle gathers generated by
exact Zoeppritz forwardmodeling from 1° to 40°. Figure 2 shows the
inversion result under the fixed search window with the deviation
of 15%, 10%, and 5%, respectively. Figure 3 shows the result of
the optimized search window with the deviation of 15%, 10%,
and 5%. The optimized search window represents the upper and
lower constraint bounds, which can be obtained from the initial
models in practice. It is also noted that the dynamic search window
in the nonlinear inverse problem is not applied to offer the low
frequency component because the low frequency trend can be
obtained in the static window. Instead, the dynamic window is
used for a high computational efficiency and resolution. With the
same length of chromosome, the narrow-bound constraint results
in high resolution. Comparing the results shown in Figures 1, 2,
it can be observed that the inversion result by HQACO has the
highest accuracy among the three algorithms, and the accuracy
of QACO is higher than that of ACO. In addition, the results
obtained by the dynamic search window show better performance
than those obtained by the static search window, and the inversion
results increasingly deviate from the true models as the size of the
search window expands. The relative errors (REs) of the results are
calculated and shown in Tables 2–4, and all of them can conclude
the consistent results with the figures. It is clear that HQACO
is suitable for the inversion in such a theoretical situation, and
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FIGURE 9
Residual between input seismic data and predicted seismograms with different methods when without noise: (A) ACO, (B) QACO, and (C) HQACO.

the dynamic search window with narrow bounds can significantly
decrease the inversion uncertainty. Then, we test the efficiency of
convergence for different algorithms. We run each algorithm with
the parameter range of 5%, and the maximum number of model
evaluations is set to 1,000. Figure 4 shows that the results of all of
the methods are close enough to the global minimum with limited
iteration numbers, whereas ACO shows the lowest convergence
rate because it has the highest computational complexity, which

means minimizing computational cost may cause undesirable
solutions.

3.1.2 Example II
Based on thewell-log information, we calculate the PP reflection

coefficients using the exact Zoeppritz equation in the time domain
and then generate the PP AVA gathers by convolving the reflectivity
with the real wavelets in different angles. The objective function
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FIGURE 10
Residual between input seismic data and predicted seismograms with different methods when signal-to-noise ratio = 4: (A) ACO, (B) QACO, and
(C) HQACO.

is the L2 norm between the predicted and real angle gathers. The
maximumnumber of fitness evaluations thatwe allow for algorithms
to minimize the error is 500∗N, where N is the dimension of
the problem. In addition, different noise energies are added to the
synthetic data to test the robustness of the proposed algorithm.
Algorithm efficiency, like the number of function evaluations and
the number of iterations, are likely to be correlated with the CPU

time. Figure 5 shows the P-wave velocity, S-wave velocity, and
density of well log. Figure 6A represents the AVA gathers computed
using the Zoeppritz equation, and random noise with a signal-to-
noise ratio (SNR) of 4 and 2 is added to the synthetic gathers, as
shown in Figures 6B, C. Then, the results inverted by ACO and
QACO with different SNR are shown in the Figure 7. It can be
seen that the inversion results by QACO show higher accuracy than
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FIGURE 11
Residual between input seismic data and predicted seismograms with different methods when signal-to-noise ratio = 2: (A) ACO, (B) QACO, and
(C) HQACO.

those using ACO; however, the error of density badly increases
with the enhancement of noise energy. The results inverted using
QACO and HQACO with different SNR are shown in Figure 8,
and inversion results using HQACO without noise are closely
consistent with real-model parameters. Moreover, results using
HQACO show higher accuracy than those using QACO in different
SNR. The relative errors (REs) and correlation coefficients (CCs) of

the results are calculated and shown in Tables 5–7, and the lower
SNR makes relative errors become larger, whereas the lower SNR
makes correlation coefficients become smaller. Figures 9–11 show
the residual between the predicted seismic data and the observed
data (Figure 6) with different signal-to-noise ratios. It is shown that
the difference between the observed model and predicted model
is closely related to the magnitude of noise, where the error of
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FIGURE 12
Evolution process with ACO (green), QACO (blue), and HQACO (red).

HQACO is the smallest and the results using ACO show larger
errors, especially at large offsets. Moreover, the convergence graph
is a useful tool to show the average error performance of the total
runs, and the average iteration curves shown in Figure 12 express
that HQACO can spend less time converging to global minimum
and reach the highest accuracy among the three algorithms, followed
by QACO, and ACO is the worst. Above all, the proposed algorithm
has higher accuracy, higher efficiency, and stronger robustness than
the other two algorithms, and Bayesian inference is recommended
to ensure the stability of inverted density.

4 Discussion and conclusion

We propose a nonlinear AVO inversion method based on the
exact Zoeppritz equation and apply it to the synthetic model. When
dealing with high-contrast interfaces with far-offset information,
the new inversion method based on the accurate Zoeppritz
equation is sufficient to achieve the promising results. QACO shows
greater global search competence and higher efficiency than ACO
because the quantum qubit increases the population diversity and
the quantum rotating gate is involved. HQACO, combining the
quantum rotating gate with the self-adaptive rotating strategy and
quantum gate, can adaptively update the search step and accelerate
the convergence. All inversions use a dynamic search window,
which can be constructed by combining the interpreted horizon
with smoothed logs calibrated using seismic data. Inversion using
dynamic search windows is more efficient than that using static
search windows. Although it is recommended that special care
must be taken in setting the search window range, in general,
larger search windows require a larger computation time and
have a greater likelihood of obtaining a global solution, whereas
smaller search windows may miss the true solution. In conclusion,
although the nonlinear inversion method based on the exact
equations is time-consuming, HQACO is reliable in accuracy

for reservoirs with strong contrast, long offset ranges, and noise
energy using the exact Zoeppritz equation. The proposed method
also significantly improves the inversion efficiency. The current
quantum algorithm is developed in the current computer, whereas
quantum computers promise computational improvement for a
wide variety of applications, indicating that the algorithm should
be designed for quantum computers to make possible further
development of the efficiency of the inversionmethod.Theproposed
inversion method in conceptual models has been tested, and it
can be applied in various geophysics problems and disciplines.
With the recent breakthroughs in the construction of the universal
quantum computer, future work will be devoted to incorporating
multicomponent information, anisotropy, and complex wave
propagation effects.
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