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Introduction: To develop a small-scale regional microseismic location model
for coal mines and enhance the accuracy of microseismic location at the
bottom plate,this article proposes a high-precision location algorithm for 3D-
Fast Sweeping Method (3D-FSM) seismic sources under time quality constraints.

Methods: The study investigates the numerical simulation of microseismic
location accuracy on coal seam floor, considering various observation systems,
arrival time picking errors, and wave velocity discrepancies. The algorithm
employs a VGG-16 deep learning network to train and establish a quality
control model for P-wave pickup values; Next, utilizing the 3D-FSM framework,
it calculate the seismic wave travel time field and applies Fermat’s principle
for each detection point, as well as the reversible principle of elastic wave
propagation path. This allows for the determination of the spatial path and travel
time from any potential source point to the detection point. Finally, the algorithm
scans each computational node, using the controlled travel time difference to
identify the source point corresponding to the smallest spatial node.

Results: The results indicate that the location error of the borehole tunnel
observation system is smaller than that of the tunnel observation system.
Specifically, with the borehole tunnel observation system, the variance in P-
wave arrival time picking is 1 ms, and the wave velocity variance is 20 m/s2,
demonstrating high accuracy.

Discussion: The findings suggest that the 3D-FSM seismic source location
algorithm, under quality control, approaches the precision of manual location
methods and exhibits high reliability, even when disregarding significant
accuracy errors during the quality control location process.

KEYWORDS

microseismic location, observation system, coal seam floor, arrival time picking, deep
learning

1 Introduction

Disturbance-inducedwater hazard during coal seamfloormining represent a significant
form of mine water damage. Statistics show that 60% of coal mines in China are at risk
of such hazards, making it the country most ffected by coal seam floor water damage
worldwide (Yang et al., 2022; Li et al., 2023b). In recent years, China has made substantial
strides in evaluating, preventing, and issuing early warnings regarding water hazards
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associated with coal seam floors (Zhang et al., 2020; Xue et al.,
2023). However, water hazard from the bottom plate still occurs
occasionally, posing serious threats to miner safety. Accurate
localization of microseismic events on the coal seam floor is
crucial for understanding the spatiotemporal development of
mining-induced fractures, which is vital for informing strategies
to prevent and control water inrushes linked to coal mining
activities. Microseismic location technology is widely utilized across
various engineering fields to ensure the safety and stability of
rock formations. Key applications include deep mineral resource
extraction (Mngadi et al., 2019; Pan et al., 2020), excavation of
deep-buried tunnel rock masses, maintenance of high and steep
slope stability, and location the range of fracturing induced by
water pressure (Samsonov et al., 2024; Xiang et al., 2023). In the
mining field, micro-seismic location technology addresses a range
of issues, including rock burst, mine tremors, roof and floor damage,
coal pillar stability, coal and gas outburst, illegal mining activities,
and coalbed methane development. The main research directions
in microseismic data processing and interpretation focus on
arrival time picking (Barthwal and Shcherbakov, 2024; Charles and
Maochen, 2018; Qian et al., 2024), microseismic source localization
(Cheng et al., 2018; Jiang R. et al., 2021; Sedghizadeh et al., 2023;
Zhou et al., 2022), and microseismic source parameter inversion
(Li et al., 2023a). Anikiev et al. (2022) used machine learning to
analyze the noise and location network sensitivity in the arrival time
to obtain the source location, and verified it with the localization
of microseismic activity that occurred during actual hydraulic
fracturing operations in theAkomaBasin,United States. Cheng et al.
(2017) employed micro-seismic location technology to investigate
the distribution patterns of micro-seismic events originating from
the mining roof rock mass, both vertically and horizontally.
He proposed a method to determine displacement angle using
micro-seismic data, which was validated in Dongjiahe Coal Mine.
Ma et al. (2020) established a microseismic location system in the
Dongjiahe coal mine, applying moment tensor theory to deduce the
source mechanism of floor micro-seismic anomalies and employing
stress inversion method to identify underlying faults. Jiang et al.
(2021b) proposed a low-dimensional dual-event joint localization
method that simplifies high-dimensional inversion into a set of
equations with only six parameters, selecting 2,000 P-wave arrival
time combinations from over six sensors. Researchers at the
Mining Seismic Acquisition System Institute of Yongshaba Mine in
Guizhou Province conducted tests using two composite positions
and analyzed data from eight blasting events, confirming the high
positioning accuracy of the proposed method. Relative to the scale
of coal mines, the depth of coal seam floormining is relatively small.
Numerous theoretical studies and practical location efforts have
shown that the layout of observation systems, arrival time picking
errors, and velocity model inaccuracies can significantly impact the
accuracy of micro-seismic source localization.

In this paper, we propose a high-precision localization algorithm
for 3D-FSM seismic sources, developed through an examination
of numerical simulation that consider various factors affecting
localization accuracy on coal seam floors. Research on the
application of micro-seismic location for detecting water hazards at
the bottom plate of the 81,307 coal mining face demonstrates that
the 3D-FSM seismic source localization algorithm, when subjected
to quality control, yields results comparable tomanual localization in

terms of reliability. However, significant localization accuracy errors
may occurwithout proper consideration of time and quality control.

2 Development of simulation
modeling

2.1 Principles of microseismic location

Source location is a fundamental tasks in microseismic
monitoring, and the accuracy of this process directly impacts the
subsequent analyses. Currently, various methods exist for source
location, with the travel time differences method being the most
widely adopted (Zhao et al., 2023). As shown in Figure 1, the spatial
coordinate of the ith detector are represented as (xi,yi,zi), while the
coordinates of the microseismic event S are denoted as (x0,y0,z0).
The arrival times of these waves in typical microseismic waveforms
are highlighted by the green and red vertical lines in Figure 2.
In Figure 2A, the microseismic waveform clearly displays both P-
wave and S-wave oscillations, with the P-wave propagating rapidly
and arriving first, followed by the slower yet more energetic S-
wave. Conversely, Figure 2B predominantly shows a pronounced
P-wave initiation, while the S-wave is obscured by the P-wave,
making identification challenging. In the practical context of coal
mine micro-seismic monitoring, the scenario depicted in Figure 2B
is quite common, where S-wave initiation is often subtle and
difficult to discern. Consequently, coal mine microseismic location
typically relies on P-wave travel time differences for source location
determinations.

The source location aims to determine the spatial coordinates
(x0,y0,z0) of microseismic events along with the time t0 of
which microseismic events occurrence. Given these conditions,
the objective function ft for microseismic source location can be
formulated, as shown in Equation 1:

ft =
n

∑
i=1
(tpi −√(x0 − xi)

2 + (y0 − yi)
2 + (z0 − zi)

2/vp − t0)
2

(1)

where n is the effective arrival time, and vp is the P-wave
velocity model.

Without considering errors associated with the velocity
model, arrival time picking, and measurement of the location
points, the micro-seismic event parameter (x0,y0,z0, t0) can be
substituted into Equation 1. Consequently the objective function
ft achieves a minimum value of 0.Thus, mathematically reframed as
the task of finding the minimum value of ft.

2.2 Numerical simulation experiment on
microseismic location accuracy of coal
seam floor

2.2.1 Simulation method for microseismic source
location accuracy based on d-value theory

Kijko and Sciocatti (1995) conducted comprehensive research
on microseismic location theory in order to optimize the spatial
arrangement of mining seismic stations.They proposed the D-value
theory to enhance microseismic observation systems (Zhao et al.,
2022), as shown below.
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FIGURE 1
Schematic diagram of microseismic source location.

FIGURE 2
Time of P- and S wave of typical microseismic wave signals. (A) Both P-wave and S-wave oscillations are evident. (B) The situation where the S-wave
oscillation is not obvious.

The microseismic arrival time ti recorded by the ith detector
satisfies Equation 2:

ti = t0 +T(h, si) + εi (2)

where h = (x0,y0,z0) and si = (xi,yi,zi) represent the coordinates of
the source and seismic station in the Cartesian coordinate system, εi
denotes the picking error of the seismic wave recorded by the ith
detector, where i=1,…, n, n is the total number of detectors, and
T(h, si) is the source.

The issue of microseismic location can be reformulated
as the following mathematical optimization problems

as shown in Equation 3:

Φ(X) =
n

∑
i
|ti − t0 −T(h, si)|

p (3)

where X = (x0,y0,z0, t0), p is the norm (p ≥ 1). When p=2, Φ(X) is
the least squares estimate, andwhen p=1,Φ(X) is the sumof absolute
residual values.

Kijko and M Sciocatti believes that the effectiveness of an
observation system should be determined by the covariance matrix
of the parameter X = (x0,y0,z0, t0) to be inverted for microseismic
events. Consequently, the optimization problem for microseismic
observation systems can be formulated as a mathematical problem,
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FIGURE 3
Microseismic seismic source location model of floor of roadway
observation system.

TABLE 1 Geophone coordinates of roadway observation system.

Detection Point Coordinate Notes

S1 (240, 275, 40) roadway

S2 (240, 225, 40) roadway

S3 (240, 175, 40) roadway

S4 (240, 125, 40) roadway

S5 (240, 75, 40) roadway

S6 (240, 25, 40) roadway

S7 (0, 275, 40) roadway

S8 (0, 225, 40) roadway

S9 (0, 175, 40) roadway

S10 (0, 125, 40) roadway

S11 (0, 75, 40) roadway

S12 (0, 25, 40) roadway

as presented in Equation 4:

min f(Cx) s ∈ f(Cx) (4)

where Cx is the covariance matrix of the microseismic event
parameter X, S = (S1,S2,…,Sn) represents the coordinate set of each
detection point in the microseismic observation system, and g
denotes the spatial domain set of potential source location.

The expression of function f(⋅) varies depending on the specific
problem, with the D-value optimization being the most common
approach, aiming to minimize the value of column CX. John and
Draper (1975) provided an in-depth discussion on the selection of
D-value criterion parameters. The approximate confidence ellipsoid
of the X parameter is represented by Equation 5:

(X− X̂)C−1X (X− X̂)
T ≤ constant (5)

where X̂ is the estimated value of X, constant is the appropriate
quantity, and matrix operator T represents transpose.

The steps of the ellipsoid depicted in Equation 5 are proportional
to √detCX. Therefore, a clear optimization criterion is to minimize

FIGURE 4
Detector layout method. (A) Installation of tunnel sensors. (B)
Installation of bottom plate deep hole detectors.

FIGURE 5
Microseismic source location model of the hole-lane
observation system.

the ellipsoid shown in Equation 5 by minimizing the source
parameter CX. The microseismic observation system achieves this
minimization is referred to as D optimization.

Disregarding error factors such as coordinate measurements of
detection points and arrival time picking, the Equation 6 for seismic
wave travel time is given by:

Ti(H,Vp,Xi) = ti − t0 =
√(xi − x0)

2 + (yi − y0)
2 + (zi − z0)

2

Vp
(6)
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TABLE 2 Geophone coordinates of the hole-lane observation system.

Detection Point Coordinate Notes

S1 (240, 275, 40) roadway

S2 (240, 225, 40) roadway

S3 (240, 175, 40) roadway

S4 (215, 125, 15) deep hole

S5 (240, 75, 40) roadway

S6 (240, 25, 40) roadway

S7 (0, 275, 40) roadway

S8 (0, 225, 40) roadway

S9 (0, 175, 40) roadway

S10 (25, 125, 15) deep hole

S11 (0, 75, 40) roadway

S12 (0, 25, 40) roadway

where ti is the seismic wave travel time recorded by detector
i, Xi(xi,yi,zi) is the spatial coordinate of detector i, i=1, 2, ····,
n, X = (x0,y0,z0, t0) is the parameter (x0,y0,z) to be inverted for
microseismic events, 0 is the spatial coordinate of the source, t0
represent the time of the earthquake, and Vp is the P-wave velocity.
The seismic wave travel time Ti is a function of (X,VP,Xi).

The covariance matrix CX of the source parameter X is
presented in Equation 7:

C = k(ATA)−1 (7)

where k is a constant and A is a partial differential matrix.
According to the basic properties of the determinant,CX satisfies

the following Equation 8:

det (CX) = [det (CX − 1)] − 1 (8)

Therefore, the minimization problem of det (CX) is equivalent
to the problem of det(ATA). The actual microseismic location
problem is much more complex than the D-value optimization
theory. Matrix A and the corresponding covariance matrix CX are
functions of the unknown actual source parameter X, which are
unsolvable quantities. For this purpose, the partial derivative matrix
A is generally calculated at the initial guess value of the actual source
parameter X.

If Ωh is the spatial domain set of all microseismic events, and
the probability of microseismic event Hj occurring at location j is
P(Hj), then Equation 9 holds:

∫Ωhph(h)dh = 1 (9)

Considering the randomness of the source coordinates, the
average value within the location range Ωh Equation 10 can be used

to replace f(CX) in Equation 4.

f(CX) = ∫
Ωh

ph(h) f(CX)dh (10)

Considering that the probability of microseismic events
occurring at different points in the spatial domain Ωh varies, the
optimal estimation of themicroseismic event parameterX is ensured
when the observation point s satisfying the following conditions,
as shown in Equation 11:

min ∫
Ωh

ph(h) f(CX)dh s ∈Ωs (11)

In the above derivation process, it is assumed that all n detectors
in the microseismic observation system are triggered by one event.
For all events, the partial derivative matrix A has the same number
of rows, equal to the total number of microseismic detectors
n. The fundamental assumption underlying this approach is that
the energy emitted by microseismic events must be sufficiently
substantial for all detectors to reliably capture the stress waves.
To address this stringent assumption, Kijko and Sciocatti (1993)
integrated Equation 12 within a certain range of seismic energy:

min ∫
Ωh

∫
Emax

Emin

ph(h)PE(E) f(CX)dEdh s ∈Ωs (12)

where Emin and Emax are the minimum andmaximummicroseismic
energies, respectively, and PE(E) is the probability density
distribution function of the energy.

According to the basic theory of seismic wave propagation, both
microseismic energy and the covariance matrix CX are functions of
detection distance r. The relationship between microseismic event
energy E and detection distance r as shown in Equation 13:

E = constrq (13)

where q is approximately equal to 2.
According to Rikitake (1976) derivation of seismic energy

distribution, the probability density distribution function Pr(r) for
the detectable distance r is given in Equation 14:

P(r) = −bd

d(r−bq/dmax − rr
−bq/d
min )

r−(1+bq/d) (14)

where b is the b value related to magnitude m and the number
of events in the Gutenberg Richter equation, and d is the d
value in the relationship between seismic energy E and magnitude
m shown in Equation 15:

log E = c+ dm (15)

where d equals 1.5, and the value of b depends on the specific mine,
generally ranging from 0.6 to 1.2.

Based on the above factors, the criteria for determining the
optimal observation system can be obtained shown in Equation 16:

min ∫
Ωh

∫
rmax

rmin

ph(h)Pr(r) f(CX)drdh s ∈Ωs (16)

where rmax is the maximum detection distance, corresponding to
the maximum energy release rmax within the energy range. It is
important to ensure that rmin <rmax must be ensured.
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FIGURE 6
Simulation of microseismic location error of coal seam floor under different observation systems. (A) Distribution of location errors in the bottom plate
seismic source of the tunnel observation system. (B) Distribution of bottom plate source location error in hole lane observation system.

The expected standard error diagram of microseismic event
parameter CX is generally used to evaluate the quality of the
observation system. This method accounts not only for time error
but also for uncertainties in the velocity model. The diagonal
elements of matrix CX represent the variance of the seismic event
parameter x0,y0,z0, t0.The standard error of the epicenter location is
defined as the radius of a circle, the area of which is equivalent to the
area of the ellipsoid representing the standard error of coordinate
x0,y0. This standard error of the epicenter location defined in this
way is expressed by Equation 17:

σxy = [{Cx}22{Cx}33 − [{Cx}23]
2]1/4 (17)

Due to the eigenvalues (λx0,λy0) of the covariance matrix
corresponding to the two axes of the ellipse, Equation 17 can be

rewritten as Equation 18:

σxy = √√λx0λy0 (18)

Gong et al. (2010) proposed the calculation formula for seismic
source error based on Equation 19:

σxy =
3√√λx0λy0λz0 (19)

where λx0,λy0,λz0 corresponds to the X-axis, Y-axis, and Z-axis of
the ellipsoid, respectively.

2.2.2 Simulation of source location accuracy
under different observation systems

Installing detectors in deep holes within the coal seam floor
positions them in the rock layers beneath, bringing them closer
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FIGURE 7
Simulation of coal seam floor source location error under different P-pick-up errors. (A) P-wave arrival time picking variance 5 m location accuracy. (B)
P-wave arrival time picking variance 10ms location accuracy.

to the target location area and potential micro-seismic events.
Based on the theory of micro-seismic localization theory, this
closer proximity is expected to enhance localization accuracy.
However, installing detectors in deep boreholes is complex, non-
recoverable, and results in high construction costs. To strike a
balance between location costs and accuracy, we utilize the D-
value optimization criterion to simulate the localization error
of micro-seismic events under two observation systems: the
bottom-plate-depth hole observation system and the tunnel
observation system.

2.2.2.1 Microseismic location of tunnel observation
system

Acoal seamfloor seismic source locationmodelwas constructed
as illustrated in Figure 3. The model has a Y-axis length of 300 m
(representing the location length of the fully mechanized mining
face floor), an X-axis width of 240 m (representing the width of

the fully mechanized mining face), and a Z-axis height of 40 m
(indicating the maximum depth of floor failure). The coordinate
distribution of the observation system is shown in Table 1.

2.2.2.2 Microseismic location of the borehole tunnel
observation system

To enhance the accuracy of location coal seam floor mining
damage, a borehole-tunnel observation system is proposed. This
approach strategically optimizes the layout of the microseismic
location system. “Lane” refers to themicro-seismic detector installed
on the bottom anchor rods of the mine roadway, as illustrated
in Figure 4A. “Hole” refers to the micro-seismic detectors placed
in the deep boreholes in the floor, where the drilling axis
forms a 135° angle with the coal slope of the working face and
reaches a vertical depth of 25 m. The detectors are positioned
at the bottom of the borehole and sealed with cement mortar,
as shown in Figure 4B.
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FIGURE 8
Cloud map of focal spatial location accuracy of combined well and
hole bottom plate with different wave velocity errors. (A) P-wave
velocity variance 500 m/s2. (B) P-wave velocity variance 200 m/s2. (C)
P-wave velocity variance 20 m/s2.

A coal seam floor seismic source location model was
constructed, as illustrated in Figure 5. The model features a Y-
axis length of 300 m (representing the location length of the
fully mechanized mining face floor), an X-axis width of 240 m
(representing the width ofx the fully mechanized mining face),
and a Z-axis height of 40 m (indicating the maximum depth
of floor failure). The points S4 and S10 correspond to bottom
plate deep holes, and the coordinates of each detection point are
provided in Table 2.

2.2.2.3 Location accuracy simulation
The location range for micro-seismic events in coal seam floor

mining is defined as {(x, y, z)|0<x<240∩ 0<y<300∩0<z<40}, with an
average P-wave velocity of 3,000 m/s, a velocity variance of 100 m/s2,

and an average picking error of 1 m at that time. The grid size is
δx = δy = δz = 2 m. Using the D-value optimization criterion, the
distribution cloud map of micro-seismic event location errors was
simulated for both the tunnelmicro-seismic observation system and
the borehole observation system. The results are shown in Figure 6.

Figure 6 shows that adding deep borehole detector on both
sides of the coal mining face significantly enhances the location
accuracy of micro-seismic events within the location area. The
average location errors of micro-seismic events under the tunnel
microseismic observation system and the combined borehole-
tunnel observation system are 10.33 m and 5.63 m, respectively.

Based on the experimental results, we selected the borehole-
tunnel observation system for microseismic location of the coal
seam floor.

2.2.3 Simulation of source location accuracy
under different picking errors at different arrival
times

Building on the preferred borehole-tunnel observation system,
we conducted simulations to assess the spatial localization accuracy
of micro-seismic location at the wellbore joint bottom plate.
The simulations were performed under three P-wave arrival time
picking variances: 1 ms, 5 ms, and 10 ms, while keeping consistent
parameters for location range, average P-wave velocity, and P-wave
velocity variance. Results for the 1 ms variance are depicted in
Figure 6B, and while results for the 5 ms and 10 ms variances are
illustrated in Figure 7. With picking variances of 1 ms, 5 ms, and
10 ms, the average micro-seismic location accuracy were 5.63 m,
16.67 m, and 32.04 m, respectively.

The experiment demonstrates that the precision of P-wave
arrival time picking has a significant impact on micro-seismic
localization accuracy. Enhancing source localization accuracy
requires filtering out P-wave arrival time picks with lower precision
before determining source location. To address this, this study
applies deep learning techniques to identify and eliminate erroneous
P-wave arrival time picks, ultimately improving the accuracy of
microseismic source localization.

2.2.4 Simulation of source location accuracy
under different wave velocity errors

Building on the selected borehole-tunnel observation system,
simulation were conducted to assess the spatial location accuracy
for micro-seismic location at the wellbore joint bottom plate under
three conditions of P-wave velocity variance:500 m/s2, 200 m/s2, and
20 m/s2. The results of these simulations are presented in Figure 8.

According to the simulation results, when the P-wave velocity
variance is 500 m/s2, the source location error in the location area
ranges from 10 to 50 m, with an average location accuracy of
21.52 m, which does not meet the accuracy requirements of bottom
plate source location. At a P-wave velocity variance of 200 m/s2, the
average source location accuracy in the location area improves to
9.35 m; while a variance of 20 m/s2 further reduces the average error
to 3.33 m. To reliably monitor micro-seismic events on the bottom
plate, micro-seismic location at the well hole joint bottom platemust
be based on a high-precision velocity model.
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FIGURE 9
Typical convolutional neural network architecture.

FIGURE 10
Typical error P-wave pickup value.

2.3 Quality control of microseismic pickup
values

2.3.1 Convolutional neural network
CNNs are a prominent algorithm in deep learning,

specifically a type of feedforward neural network known for
its convolutional operations and deep structure. Since 2010,
CNNs have achieved significant success in image and video
recognition applications, including facial recognition, medical
imaging, and autonomous driving. Recently, geophysicists have
begun applying deep learning techniques, such as CNNs, in
geophysical research. CNN models consist of input layers,

multiple convolutional layers, pooling layers, fully connected
layers, and output layers. An example architecture of a CNNs
architecture is shown in Figure 9. The convolutional layers
are responsible for feature extraction, pooling layers reduce
image spatial dimensions, and fully connected layers establish
connections between adjacent layers, respectively (Huang et al.,
2018; Jafari et al., 2023; Viatkin et al., 2021).

2.3.2 P-wave pickup value dataset
The purpose of quality control for P-wave arrival time

picks is to use computer intelligence to distinguish between
correct and incorrect values. Building large-scale training and
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FIGURE 11
Typical high-precision P-wave time pickup value.

TABLE 3 Quality control dataset of P-pickup.

Sample set Sample set Total

Available P-wave pickup values Unavailable P-wave pickup values

training set 4,704 4,774 9478

test set 2016 2046 4,062

testing datasets is essential for developing and evaluating models
to control P-wave pick quality. Using micro-seismic location
waveform data from a certain mine, the AIC algorithm and
manual methods were applied to pick the P-wave arrival times
of micro-seismic signals. Based on the picking accuracy for
each micro-seismic waveform, correct and erroneous P-wave
arrival times were identified. The results of automatic picking
were saved as images (Figures 10, 11) to serve as input data
for the CNNs. Figures 10A, B show typical low signal-to-noise
ratio (SNR) signals with P-wave picking errors, commonly due
to weak microseismic signals, long propagation distances, or
detector failures. Figures 10C, D show incorrect arrival time
picks values for medium to high SNR signals, often caused by
strong energy of S-wave energy, which conventional algorithms
struggle to separate from P-wave arrivals. Figure 11 shows
an example of an accurate P-wave arrival time pick with
a high SNR.

As shown in Table 3, this study used 13,540 data samples
collected from micro-seismic location at the 81,307 working
face of a certain mine. The dataset includes 6,720 correct
and 6,820 incorrect P-wave picks, with an approximate 1:1
ratio. The dataset was divided training and test sets at a 7:3

ratio, with both correct and incorrect picks proportionately
distributed. The training set contains a total of 9,478 samples,
comprising 4,704 correct and 4,774 incorrect picks. The test set
includes 4,062 samples, with 2,016 correct and 2,046 incorrect P-
wave picks.

2.3.3 Training of P-wave pickup value quality
control model

To compare the differences in identifying incorrect P-
wave pickup values among different convolutional neural
network models, this study used four network models
to train P-wave pickup value quality control models,
including VGG-16, ResNet-50, VGG-SENet, and ResNet-
SENet.

This study employs four convolutional neural network
models—VGG-16, ResNet-50, VGG-SENet, and ResNet-SENet—to
train P-wave pickup quality control models, allowing for a
comparative analysis of each model’s effectiveness in identifying
incorrect P-wave pickup values.

The input P-pickup image is set to a width and height of 128
pixels. During the training process, adjust the learning rate and
evaluate the model performance by location val-acc (validation
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FIGURE 12
Training accuracy curves of VGG-16 ResNet-50 VGG-SENet and
ResNet-SENet models. (A) VGG-16 accuracy comparison. (B)
ResNet-50 accuracy comparison. (C) VGG-SENet accuracy
comparison. (D) ResNet-SENet accuracy comparison.

accuracy). The parameters that need to be optimized include
patient, factor, and minimum learning rate (min_lr). Set the initial
patient=2, factor=0.1, and min_lr=1e−10. The training accuracy
curves of four convolutional neural network models are shown
in Figure 12.

The input P-wave pickup images are configured to a resolution
of 128x128 pixels. During training, the learning rate is adjusted,
and model performance is evaluated by tracking validation
accuracy (val-acc). Key parameters to optimize include “patience,”
“factor,” and “minimum learning rate (min_lr),” initially set
to ‘patience=2′, ‘factor=0.1′, and ‘min_lr=1e-10`. The training
accuracy curves for the four convolutional neural network models
are illustrated in Figure 12.

The training results of four CNNs models are shown in Table 4.
The accuracy scores for the VGG-16,ResNet-50,VGG-SENet,
and ResNet-SENet models are 0.915, 0.821, 0.848, and
0.858, respectively, with corresponding precision scores of
0.905, 0.712, 0.733, and 0.802. Among these, the VGG-
16 model achieved the highest accuracy and precision
for P-wave pickup quality control. Therefore, this study
chose the P-wave pickup quality control model trained
on VGG-16.

2.4 A high-precision location algorithm for
3D-FSN seismic sources under time quality
constraints

According to simulation assessing the micro-seismic location
accuracy of mining-induced fractures at the bottom plate, the
accuracy of the velocity model significantly affects the accuracy
of the seismic source location. Given that the development
depth of these fractures is typically within 30 m, it is essential
to base the seismic source location on high-precision velocity
models rather than simplified uniform models. Based on the
above analysis, this study employs the FSM to locate seismic
events at the bottom plate (Chen et al., 2015; Tro et al., 2023).
The specific algorithm flowchart is illustrated in Figure 13. The
fundamental idea involves first calculating the seismic wave
travel time field of each detection point based on 3D-FSM.
Next, based on Fermat’s principle and the principle of reversible
elastic wave propagation, the spatial path and travel time from
any potential source point to the detection point are obtained.
Finally, each calculation node is scanned, using the travel time
difference to identify the spatial node that corresponds to the
earliest arrival time as the source point. The 3D-FSM source
location algorithm offers advantages such as high computational
accuracy, compatibility with complex velocity models, and rapid
iteration speed.

Utilizing the principle of seismic wave propagation and
source exchange, we calculate the travel time matrix for each
grid node within the observation area. This is accomplished by
considering each detector in the observation system as a virtual
source. By performing pairwise subtraction of these matrices, we
derive the travel time difference matrix for each grid point. This
information is then compiled into a comprehensive travel time
difference database.

Source location involves matching the travel time difference
matrix of the source to be inverted with the arrival time difference
database. Note thatOij denote the time differencematrix component
for the ith and jth detectors, and O represents the time difference
matrix of the microseismic event to be inverted. To enhance
computational efficiency, we employ the similarity matching search
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TABLE 4 Comparison of test results.

Models Training Time Accuracy Precision CPUMem

VGG-16 Required 15min 0.915 0.905 3147MiB

ResNet-50 Required 13min 0.821 0.712 7193MiB

VGG-SENet Required 11min 0.848 0.733 2839MiB

ResNet-SENet Required 7min 0.858 0.802 2227MiB

FIGURE 13
High precision source location method of 3D-FSM with P-pickup quality control.

method (Guo Chao, 2019) for matching the event time difference
matrix with the time difference database. Specifically, Equation 20
is used to calculate the similarity between the time difference
matrix and the event time difference matrix of each grid node
in the location area. The geometric centers of the nodes with the
smallest similarity values, denoted as δ, are identified as the micro-
seismic sources.

δ =
n

∑
i = 1
j = 1

((Oij −N
k
ij)/N

k
ij)

2(k = 1,2,…) (20)

where Nk is the arrival time difference matrix of the kth node in the
arrival time difference database.

3 Research on high-precision location
application of microseismic events
caused by bottom plate mining

3.1 General situation

The 81,307 fully mechanized mining face in a coal mine in
Shanxi province is used to mine 8# coal, with a strike length of
2,491 m and a dip length of 240 m. During the mining period,
the west side of the 81,307 working face adjoins the undeveloped
81,308 working face, while the east side borders the fully mined
81,306 working face. The thickness of the coal seam in the 81,307
working face varies from 4.5 to 9.2 m, with an average thickness of
6.8 m, gradually increasing from the cutting eye toward the retreat
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FIGURE 14
Schematic layout of microseismic location system.

channel. The coal dip at an angle of 2°–5°, typically interbedded
with an average of 3 layers of gangue, primarily consisting of
mudstone. The maximum thickness of a single layer of interbedded
gangue reaches 0.9 m. Beneath the 8 # coal seam lies the main
11# coal seam, which is part of the Taiyuan Formation of the
Carboniferous-Permian period, with an average thickness of 7.36 m.
The Ordovician limestone aquifer below the 11# coal seam serves as
the primary aquifer affecting the mining operations. The water level
elevation of the Ordovician limestone confined aquifer is +839 m.
The average distance from the top interface of theOrdovician aquifer
to the 8# coal seam is 112.5 m, while the average distance to the
11# coal seam is 66.7 m. The elevation of the bottom plate of the
81,307 working face is lower than the water head elevation of
the Ordovician limestone, presenting a challenge of mining under
pressure. The 11# coal seam lies almost entirely beneath the water
head of the Ordovician limestone. During the mining process of the
8# coal seam, no structural water transmission phenomena, such as
faults, have been observed. However, during the development of the
11# coal seam,multiple small faults were encountered, accompanied
by water hazards from the bottom plate of the Ordovician limestone,
which poses significant challenges for water prevention and control.
At present, the degree of cracks development in the coal seam floor
and other related issues remains unclear in the mine. Therefore,
microseismic location has been carried out in the 81,307 working
face to investigate the evolution of disturbance and damage in
the floor rock layer during coal seam mining, thereby providing a
scientific basis and experience for the safemining of the 8# coal seam
and the underlying 11# coal seam.

3.2 Layout of microseismic location system
for working face

Based on the optimization research results of the micro-seismic
observation system, location is conducted using the borehole tunnel
observation system.Thedetectors in the tunnel are positioned on the

anchor rods of the coal wall side, with the deep hole axis oriented at
a 135° angle to the coal wall of the working face, reaching a vertical
depth of 25 m. The detectors are installed at the bottom of the holes
and sealed with cement mortar.

The micro-seismic location system for the bottom plate of the
81,307 working face consists of two location stations, located in
the 81,308 No.2 return air channel and the 81,307 No.2 return air
channel, respectively. The location substation in the 81,308 No.2
return air channel is connected to six sensors, which include five
detectors positioned on the coal side of the 81,308 No.2 channel
and one deep hole detector located in the 81,307 glue transportation
channel. The sensors are spaced horizontally 40–60 m apart.
Similarly, the location substation in the 81,308 No.2 return air
channel is also connected to six sensors, comprising five detectors on
the coal side of the 81,307 No.2 channel and one deep hole detector
in the 81,307 No.1 return air channel, with the same horizontal
spacing. To monitor the damage to the bottom plate, a rolling
method is employed: as the working face advances, the detectors in
the rear No. 81,308 and No. 81,307 coal seams are relocated to the
unexplored area along themining direction.The deep hole detectors
in the No.81,307 rubber transportation channel and No.1 return air
channel remain in place, with new location points established in
these two tunnels. The detectors in the tunnels and deep boreholes
form a three-dimensional micro-seismic location network that
dynamically tracks the development of mining-induced fractures in
the coal seam floor, spanning from 150 m behind the mining face to
150 m in front of the working face. Figure 14 illustrates a schematic
diagram of the micro-seismic location system as of mid-May 2019.

3.3 Typical microseismic event location

Figure 15 presents the 12 channel signals of the micro-seismic
event monitored on 28 June 2019, at 11:41:50. For ease of reference,
this event is designated as E20190628-541. With the exception of
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FIGURE 15
Channel waveform of No. E20190628-541 microseismic event.

channel 12, which exhibits a low SNR, the quality of the micro-
seismic signals collected from the other 11 channels is very high,
displaying clear oscillations in all P-waves and some S-waves.
The VGG-16 pickup value quality control algorithm, derived from
previous training, is employed to assess the pickup values of micro-

seismic events. The resulting discrimination vector is {1 1 1 1 1
1 1 1 1 1 1 1 0}, indicating that the first 11 channel waveforms
have valid pickup values, while the 12th pickup value is deemed
incorrect and unavailable. The algorithm’s discrimination results
are accurate.
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FIGURE 16
X-Y view of microseismic events on the floor.

FIGURE 17
X-Z view of microseismic events on the floor.

FIGURE 18
Frequency distribution of microseismic events in front of longwall face.

FIGURE 19
Frequency distribution of microseismic events along the trend.

FIGURE 20
Frequency distribution of microseismic events along depth.

Using the aforementioned algorithm for source location, the
arrival time of waves 1–11# was processed, resulting in a pickup
at P1=(9334.92, 9938.27, 794.42). For waves 1–12#, the pickup
resulted in P2=(9395.19, 9978.35, 553.48). In contrast, the manually
picked arrival time yielded P3=(9337.32, 9936.29, 793.14). It can be
concluded that P3 is closest to the true source point, while P1 and
are relatively close to P3. However, P2 is significantly further from
P3 and lies outside the range of coal mining disturbance, indicating
it can be regarded as a location error.

3.4 Spatial distribution pattern of bottom
plate microseismic events

FromMay 2019 to June 2019, the micro-seismic location system
recorded a total of 235 strongmicro-seismic events from the bottom
plate. The XY and XZ views of the distribution of these micro-
seismic events are presented in Figures 16, 17, respectively. The XY
view reveals that the micro-seismic events are mainly concentrated
near the return airway of the 81,307 working face, within an
approximate range of 150 m. In the XZ view, it is evident that the
micro-seismic events mainly extend to a depth of 32 m below the
coal seam floor. The rupture zone is mainly localized on the return
airway side of the 81,307 working face, extending toward the middle
of the working face at an inclination angle of 16.5°, with a depth
of 32 m below the coal seam floor. Conversely, there are fewer
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micro-seismic events observed on the floor of the intake airway
side of the 81,307 working face. Analysis indicates that the return
air roadway of the 81,307 working face is situated near the goal of
the 81,308 working face. During the mining process of the 81,307
working face, cracks in the bottom plate of the 81,306 working face
rapidly developed due to secondary mining stress, resulting in the
concentration of micro-seismic events primarily on one side of the
return air roadway.

3.4.1 Characteristics of bottom plate failure along
the strike direction

The frequency chart of micro-seismic events in front of the coal
wall in the 81,307working face is shown in Figure 18.Within a range
of 0–40 m in front of the coal wall, micro-seismic events account for
55% of the total, with their frequency remaining relatively stable.
In the range of 40–70 m, the occurrence of micro-seismic events
gradually decrease. Beyond 70 m in front of the coal wall, there is
a sharp decline in the number of micro-seismic events.

3.4.2 Characteristics of failure along the inclined
bottom plate

The trend chart showing the distance from the bottom plate
micro-seismic event to the return airway plane of the 81,307
working face is shown in Figure 19.Micro-seismic events aremainly
concentrated within 90 m of the second side of the return airway,
accounting for 94% of the events in this area. As the distance from
the return airway increases, the number of micro-seismic events
decreases sharply.

3.4.3 Characteristics of failure along the depth of
the bottom plate

The trend chart depicting the distance from the coal seam floor
micro-seismic events to the coal seam floor of the 81,307 working
face is shown in Figure 20. The micro-seismic events related to the
coal seam floor are primarily concentrated in the area more than
30 m below the coal seam, accounts for 80% of the total events. In
contrast, there are significantly fewermicro-seismic events observed
in the area further than 30 m below the coal seam floor.

4 Conclusion

With Liu et al. (2022) Compared with the traditional
microseismic positioning studied, in order to enhance the
localization accuracy of microseismic events in coal seam floor
mining, this study employed theoretical analysis and numerical
simulation to investigate the impact of various factors on localization
precision.These factors include different observation systems, errors
in arrival time picking, and inaccuracies in the wave velocity model.
Consequently, the study optimized the bottom plate microseismic
location observation system and developed a deep learning-based
quality control algorithm for the arrival time picking values of
microseismic waveforms. Ultimately, a high-precision localization
method for 3D-FSM seismic sources under arrival time quality
constraints was proposed. Additionally, research was conducted
on the application of these methods to bottom plate microseismic
events. The main conclusions are as follows:

• A simulation study on the spatial location accuracy of bottom
plate microseismic location was conducted using the theory
of optimizing the D-value of seismic source location. The
optimized hole-tunnel joint micro-seismic observation system
was developed, highlighting the importance of eliminating
erroneous picking values and utilizing high-precision velocity
models for accurate bottom plate microseismic event location.

• A quality control method for P-wave pickup values based on
deep learning was proposed, utilizing a VGG-16 network for
training. The trained model achieved the highest recognition
accuracy, successfully identify 95% of incorrect pickup values.

• A 3D-FSM source location algorithm incorporating quality
control was proposed, demonstrating high computational
accuracy, suitability for complex velocity models, and fast
iteration speed.

• When subjected to quality control, the algorithm produces
results comparable tomanual localization in terms of reliability.
However, without considering time and quality control,
significant errors in localization accuracy may occur.

• The next step will be to further investigate and demonstrate the
effectiveness of deep learning in data processing for earthquake
source localization.
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