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Seismic inversion is one of the key techniques used for reservoir
characterization. Depth-domain seismic inversion eliminates the cumulative
errors associated with depth-to-time and time-to-depth conversions, thus
providing geologists and reservoir engineers with an intuitive basis for geological
interpretation. The method has received increasing attention in the field of
reservoir characterization. Extracting accurate depth-domain seismic wavelets
is a prerequisite for successful depth-domain seismic inversion. However, the
depth-domain wavelet is velocity-dependent and exhibits significant non-
stationarity, which leads to the failure of seismic wavelet estimation methods
based on the stationary convolutionalmodel. To this end, we propose amodified
wavenumber-domain unscaled S-transform (MWUST) method to accomplish
accurate estimation of depth-domain seismic wavelets. The proposed method
enhances the accuracy of wavenumber components by removing the linear
wavenumber-dependent term from the S-transform. Furthermore, it introduces
slope and intercept parameters to improve the depth resolution at low
wavenumbers, thereby yielding a more reliable depth–wavenumber spectrum.
Subsequently, the relationship between the non-stationary depth-domain
seismic wavelet and the depth–wavenumber spectrum is established, allowing
for the accurate extraction of non-stationary wavelets under the assumption
that the depth-domain reflectivity is a random sequence. Synthetic and real data
applications have been used to verify the effectiveness of the proposedmethod.

KEYWORDS

depth-domain seismic data, non-stationary signal, time–frequency decomposition,
modified S-transform, seismic wavelet extraction

1 Introduction

With continuous advancements in oil and gas exploration, the demands for accurate
reservoir characterization are becoming increasingly stringent. Seismic inversion is a key
technique used for obtaining elastic parameters for reservoir characterization (Zhang et al.,
2021b; Zhou et al., 2021; Wang P. et al., 2022; Zhang et al., 2022c; Wang et al., 2024). Many
depth migration methods have been developed and are widely used to generate depth-
domain seismic images, leading to a growing need for depth-domain seismic inversion of
subsurface elastic properties for reservoir characterization (Li et al., 2020; Li et al., 2022;
Paxton et al., 2022; Shadlow et al., 2022; Wang N. et al., 2022; Zhang and Deng, 2023).
Depth-domain seismic inversion avoids the cumulative errors associated with depth-to-
time and time-to-depth conversions, providing geologically significant results for geologists
and reservoir engineers. However, depth-domain seismic inversion is different from time-
domain seismic inversion, in that methods applicable in the time domain cannot be directly
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applied to the depth domain. The primary difference is that depth-
domain seismic data exhibit strong spectral variability. This is
because the depth-domain seismic wavelet depends on velocity, i.e.,
higher velocity results in longer waveforms, and vice versa. This
makes it challenging to assume stationarity in depth-domain seismic
data, which can lead to erroneous inversion results. In order to
obtain reliable results, the accurate extraction of the depth-domain
seismic wavelet is a prerequisite (Cai et al., 2024).

Typically, seismic wavelets can be estimated by statistical and
deterministic approaches (Zhang et al., 2022a). Statistical methods
estimate seismic wavelets using only seismic data (Lazear, 1993;
Walden and White, 1998; Sacchi and Ulrych, 2000; van der Baan,
2008; Sengupta et al., 2018; Zhang and Deng, 2018; Laake et al.,
2019), whereas deterministic methods rely on a combination of
seismic and well-log data to estimate the wavelets (Danielsen
and Karlsson, 1984; Lines and Treitel, 1985; Buland and Omre,
2003; Gunning and Glinsky, 2006; De Macedo and De Figueiredo,
2020; Ke et al., 2023). Given the limited well data in the field
region, the time–frequency decomposition method, which is a
statistical approach, serves as a suitable choice for estimating non-
stationary seismic wavelets. Zhang and Deng (2018) extended the S-
transform (ST)-based time–frequency decomposition method from
the time–frequency domain to the depth–wavenumber domain,
thereby completing the estimation of non-stationary seismic
wavelets in the depth domain. Sengupta et al. (2021) successfully
estimated the depth-domain seismic wavelet using the ST and
used it for depth-domain pre-stack seismic inversion, thereby
obtaining reliable depth-domain elastic parameters including P- and
S-wave velocity and density. Zhang and Deng (2023) developed a
depth–wavenumber decomposition technique that applies the ST
to depth-domain pre-stack angle gathers, generating depth and
angle-variant wavelets for inversion. Tang et al. (2024) introduced
a generalized unscaled ST for the spectral decomposition of depth-
domain seismic data, estimating seismic wavelets by utilizing local
spectral information at each depth sampling point.

The spectral decomposition method entails performing
depth–wavenumber spectral decomposition on depth-domain
seismic data and estimating depth-variant wavelets from the
resulting depth–wavenumber spectrum. As a hybrid of the short-
time Fourier transform and the continuous wavelet transform, the
ST combines the advantages of both, offering adaptive resolution
adjustment and lossless reversible transformation. The generalized
S-transform (GST) was later developed for specific applications.
However, the linear frequency-dependent term in the ST or GST
causes its frequency distribution to deviate from the true values.
This leads to incorrect estimation of seismic wavelets, which affects
the accuracy of the subsequent depth-domain seismic inversion.Wu
and Castagna (2017) developed an unscaled ST (UST) algorithm
to reduce the bias in frequency components by removing the
linear frequency-dependent term of the ST. Wang (2016) derived
the frequency domain form of the UST that preserves the signal
amplitude. However, the removal of the linear frequency-dependent
term reduces their temporal resolution at low frequencies.
Li et al. (2016) introduced slope and intercept parameters into the
generalized ST to achieve the desired time–frequency resolution.
Zhang et al. (2022b) further improved the temporal resolution of the
time–frequency spectrum bymodifying the basis in the study byWu
and Castagna (2017), while ensuring the preservation of frequency

characteristics. Existing wavelet extraction methods based on
spectral decomposition are constrained by the limitations of the
spectral decomposition algorithm, which reduces the accuracy of
wavelet extraction. Inspired by this, we combine the advantages
of the aforementioned time–frequency decomposition methods to
re-derive a modified frequency-domain unscaled ST algorithm and
extend it to the wavenumber domain (MWUST), thereby achieving
an accurate estimation of non-stationary seismic wavelets in the
depth domain. The effectiveness of the proposed method is verified
through a series of numerical experiments and by comparison with
traditional ST (Zhang and Deng, 2018)- and UST (Tang et al.,
2024)-based depth-domain wavelet extraction methods.

2 Methods

Depth-domain seismic inversion requires a reliable depth-
domain seismic wavelet as a prerequisite. In order to obtain a reliable
depth-domain seismic wavelet, a reliable depth–wavenumber
decomposition method is required. In this section, we first
derive a modified frequency-domain unscaled ST algorithm
and extend it to the wavenumber domain. Then, we describe
in detail the estimation of the depth-domain seismic wavelet
based on the depth–wavenumber spectrum obtained through the
proposed method.

2.1 The modified wavenumber-domain
unscaled S transform

For a time-domain signal x(t), the time–frequency spectrum
S(t, f) based on the ST is expressed as Equation 1 (Stockwell et al.,
1996)

S(τ, f) = ∫
+∞

−∞
x(t)g(t− τ, f)e−i2πftdt, (1)

where g(t) is theGaussianwindowof the specific form | f|√2π e
− t

2f2

2 , τ is a
translation factor to control the position of the Gaussian window on
the time axis t, f represents the frequency, and i is imaginary units.

Then, the depth–wavenumber spectrum of a depth-domain
signal based on the ST can be expressed as Equation 2

S(η,k) = ∫
+∞

−∞
x(h)g(h− η,k)e−i2πkhdh, (2)

where g(h) represents the depth-domain Gaussian window of the
specific form |k|

√2π
e−

h2k2

2 , η is a translation factor to control the
position of the Gaussian window on the depth axis h, and k
represents the wavenumber.

To reduce the bias of the frequency components in the
time–frequency spectrum based on the ST, the time-domain UST
removes the linear frequency-dependent term | f| of g(t). Then, the
depth-domain UST is derived as

S1(η,k) = ∫
+∞

−∞
x(h) 1
√2π

e−
(h−η)2k2

2 e−i2πkhdh. (3)

Then, the expression to the right of the equal sign in Equation 3
in the wavenumber domain (i.e., WUST) can be written as

S1(η,k) = ∫
+∞

−∞
X(α+ k) 1

|k|
e−

2π2α2

k2 ei2παηdα,k ≠ 0, (4)

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2024.1480487
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Xue et al. 10.3389/feart.2024.1480487

where X(α+ k) is the Fourier transform of x(h)e−i2πkh. α denotes the
translating wavenumber (Wang, 2016).

However, the UST sacrifices time/depth resolution at
low frequencies/low wavenumbers in order to obtain a
reliable frequency/wavenumber distribution. To overcome this
shortcoming, slope (A) and intercept (B) parameters are introduced
to obtain the desired depth–wavenumber resolution. The equation
of the modified UST in the depth domain is

S2(η,k) = ∫
+∞

−∞
x(h) 1
√2π

e−
(h−η)2(Ak+B)2

2 e−i2πkhdh. (5)

Based on the convolution theorem, the expression to the right
of the equal sign in Equation 5 in the wavenumber domain (i.e.,
MWUST) can be written as

S2(η,k) = ∫
+∞

−∞
X(α+ k) 1

|Ak+B|
e−

2π2α2

(Ak+B)2 ei2παηdα,k ≠ 0, (6)

where X(α+ k) is the Fourier transform of x(h)e−i2πkh. The constant
average of the signal x(h) is put into zero wavenumber, which
ensures the feasibility of the inverse transform. By integrating
and inverse Fourier-transforming along different axes, we can
reconstruct the original signal. It is worth noting that Equation 6
degenerates to Equation 4 when A = 1 and B = 0.

There are two parameters (i.e.,A and B) in the proposedmethod
that need to be determined in advance. For different tasks and
frequencies, the values of A and B may vary, which requires manual
adjustment. One can use trial-and-errormethods to obtain relatively
optimal results. However, before that, we can use the full-window
spatial or wavenumber width at half-maximum (FWHM) to roughly
estimate parametersA and B (Li et al., 2016; Zhang et al., 2022b). For
the depth and wavenumber domains, there are different expressions
for A and B.

For the depth domain, A and B have the following expressions
(Equation 7) (George et al., 2009):

{{{{
{{{{
{

A =
2.355( 1

Δh2
− 1
Δh1
)

k2 − k1
B = 2.355
Δh1
−Ak1

, (7)

where ∆h1 and ∆h2 represent specified spatial (or depth) FWHM
resolutions at wavenumbers k1 and k2, respectively.

For the wavenumber domain, A and B have the following
expressions (Equation 8):

{{{
{{{
{

A =
2.668(Δα2 −Δα1)

k2 − k1

B =
2.668(Δα1k2 −Δα2k2)

k2 − k1

, (8)

where ∆α1 and ∆α2 represent specified wavenumber FWHM
resolutions at wavenumbers k1 and k2, respectively.

Figure 1 shows relationships between FWHM amplitudes and
wavenumber for different A and B expressions. In Figure 1A, the
width of the MWUST is narrower than that of the WUST in the
low-wavenumber region whenA > 1 (i.e., orange-, green-, and gray-
solid curves). It indicates that the MWUST has higher resolution
in the low-wavenumber region, and the difference decreases as the
wavenumber increases. When A < 1, shown as a purple solid curve,

the width of the MWUST is broader than that of the WUST in
the high-wavenumber region, indicated by larger depth FWHM
values. The wavenumber FWHM values increase linearly as the
wavenumber increases, as shown in Figure 1B. From Figure 1, it can
also be noticed that A plays a greater role for FWHM values than
B, indicating that A has a great influence on the depth–wavenumber
resolution. B controls the starting depth resolution.

2.2 Depth-domain seismic wavelet
estimation based on the
depth–wavenumber spectrum

The depth-domain non-stationary convolution model is
expressed as

u(x) = ∫
+∞

−∞
w(x− η,η)r(η)dη, (9)

where u(x) represents depth-domain synthetic seismic records,
w(x,η) represents the non-stationary depth-domain seismicwavelet,
and r(η) represents the depth-domain reflectivity series. Equation 9
is transformed into the wavenumber domain with the following
expression (Equation 10):

U(k) = ∫
+∞

−∞
R(ξ)W(k,k− ξ)dξ, (10)

whereW(k,ξ) is the 2D Fourier transformation of w(x,η). U(k) and
R(ξ) are the Fourier transformation of u(x) and r(η), respectively. If
r is the random reflectivity, we have (Yilmaz, 2001)

U(k) = Rξ∫
+∞

−∞
W(k,ξ)dξ, (11)

where Rξ is a constant value, which can be determined from the
well-side seismic traces. We then perform the inverse Fourier
transform to Equation 11 to reproduce the original signal,
as follows (Equation 12):

u(x) = ∫
+∞

−∞
U(k)e2πikxdk = Rξ∫

+∞

−∞
∫
+∞

−∞
W(k,ξ)e2πikxdξdk = Rξ∫

+∞

−∞
w(x,ξ)dξ.

(12)

Combined with the original signal reconstruction method, the
following expression is obtained:

Rξ∫
+∞

−∞
w(x,ξ)dξ = ∫

+∞

−∞
S(x,η)dη, (13)

where w(x,ξ) represents the depth-domain seismic wavelet and
S(x,η) represents the results after inverse Fourier transform along
the depth of the depth–wavenumber spectrum (e.g., S2). Then, the
estimation of the depth-domain seismic wavelet can be achieved
based on the depth–wavenumber spectrum calculated by the
method proposed in Section 2.1.

3 Application

To validate the proposed approach, we apply it to synthetic
experiments and real data.We first illustrate the differences between
depth-domain and time-domain wavelets under different velocity
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FIGURE 1
Full-window spatial or wavenumber width at half-maximum (FWHM) amplitudes versus wavenumber (A) in the depth domain and (B) the
wavenumber domain.

model conditions and further apply the proposed method to the
single-wavelet model. A three-wavelet model is then designed
based on the single-wavelet model to verify the validity of the
proposed method. Finally, well-log data are used for testing, and
the extracted wavelet is used for depth-domain inversion to obtain
satisfactory results.

3.1 Synthetic data test

We first experiment with the proposed method using a simple
three-wavelet model, referencing the model used in Zhang and
Deng (2018). Figure 2A shows a 40-Hz zero-phase time-domain
Ricker wavelet, and its corresponding amplitude spectrum is shown
in Figure 2B. Taking this wavelet as the source, the corresponding
depth-domain wavelets as they propagate through the different
velocity strata are shown in Figure 2C, and their corresponding
amplitude spectrums are shown in Figure 2D. It can be seen that
as the velocity changes, the depth-domain wavelet is significantly
stretched or compressed, i.e., the depth-domain wavelet is velocity-
dependent. Since subsurface velocities are spatially variable, the
interpretation and inversion of depth-domain seismic data can result
in unreliable results if a constant wavelet is utilized.

Figure 3 shows the single-wavelet (i.e., sky-blue line shown in
Figure 2C) depth–wavenumber spectrum experiments for different
methods. It can be seen that WUST (Figure 3C) obtains a
more accurate wavenumber spectrum than ST (Figure 3B) by
removing the linear wavenumber-dependent term, but it performs
poorly in the low-wavenumber region. By introducing parameters
A and B, MWUST ensures that the wavenumber spectrum is
accurate while performing well in the low-wavenumber region
(Figures 3D–F). Figures 3D–F show thatA plays a greater role in the
depth–wavenumber spectrum than B, which is consistent with the
conclusion reached in Figure 1. The amplitude spectra are extracted
from the red dashed lines in Figure 3 to describe the wavenumber
distribution in detail, as shown in Figure 4. Here, 1/3 and 10 are

used for A and B in MWUST, respectively. It can be seen that the
central frequency of the amplitude spectrum obtained based on
the ST deviates from the reference frequency. However, MWUST
matches the FT curve well, which further validates the advantages
and effectiveness of the proposed method (i.e., MWUST) over
ST and WUST.

Subsequently, a simple model in which the three
reflection coefficients (Figure 5A) are related to the wavelet
velocities mentioned in Figure 2C is used to perform wavelet
estimation. Figures 6A–C show the depth–wavenumber spectrumof
ST, WUST, and MWUST, where the black and red asterisks indicate
the reference primarywavenumber of the signal at the position of the
reflection coefficient and the primary wavenumber corresponding
to the depth–wavenumber spectrum calculated by the different
methods, respectively. It can be seen that the wavenumber
distributions of WUST and MWUST match the reference values
more closely than those of ST, but the depth–wavenumber spectrum
of MWUST has a higher depth resolution in the low-wavenumber
region (white arrows).

Figures 7A–C show the depth-variant wavelets extracted from
the depth–wavenumber spectrumobtained using differentmethods.
Based on the known reflection coefficients, the depth-domain
wavelets extracted by the different methods are convolved with
them to obtain reconstructed seismic records, as shown by the
red line in Figures 5B–D. The seismic records reconstructed by
the proposed method (i.e., MWUST) are best matched to the
reference seismogram (black line in Figure 5D). Figure 8 shows
the normalized errors of the reconstructed seismic records of the
wavelet extracted by the different methods. The white dashed line
indicates the exact solution, i.e., the closer the focus is to the
white dashed line, the more accurate the reconstructed result is. As
expected, themore accurate depth–wavenumber spectrum obtained
by MWUST resulted in more accurate extracted depth-domain
wavelets, thus minimizing the error between the reconstructed
seismogram and the reference seismogram.
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FIGURE 2
Single-wavelet comparison. (A) 40-Hz time-domain zero-phase Ricker wavelet. (B) Amplitude spectrum of the time-domain wavelet in the frequency
domain. (C) Corresponding depth-domain wavelets for different velocities (2 km/s, 3 km/s, and 4 km/s). (D) Amplitude spectrum of depth-domain
wavelets in the wavenumber domain.

FIGURE 3
Depth–wavenumber spectrum of (A) the depth-domain wavelet with velocity 2 km/s obtained by (B) ST, (C) WUST, (D) MWUST (A = 4/3, B = 10), (E)
MWUST (A = 4/3, B = 15), and (F) MWUST (A = 1/3, B = 10). The white dashed line indicates the reference wavenumber.
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FIGURE 4
Amplitude spectrums of different methods (ST, WUST, and MWUST) at the locations shown by the red dashed lines in Figure 3.

FIGURE 5
(A) Synthetic reflectivity series model. (B) Reference seismogram (black line) and reconstructed seismic records (red line) using the ST. (C) Reference
seismogram (black line) and reconstructed seismic records (red line) using WUST. (D) Reference seismogram (black line) and reconstructed seismic
records (red line) using MWUST.

FIGURE 6
Depth–wavenumber spectrum of the three-wavelet model obtained using (A) ST, (B) WUST, and (C) MWUST (A = 4/3, B = 10).
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FIGURE 7
Depth-variant wavelets extracted from the depth–wavenumber spectrum obtained using (A) ST, (B) WUST, and (C) MWUST (A = 4/3, B = 10).

FIGURE 8
Normalized errors of the reconstructed seismic records of the wavelet extracted by the different methods.

3.2 Field data example

Amore realistic example is further used to test the effectiveness
of the method. The well–seismic ties between velocity curves and
depth-domain seismic data (black lines) are displayed in Figure 9.
Figures 10A–C show the depth–wavenumber spectrum of depth-
domain seismic data using ST, WUST, and MWUST, respectively.
The depth-variant wavelets extracted using the different methods
are shown in Figures 11A–C. The reconstructed seismograms (red
lines) obtained by combining known velocity well-log data and
depth-domain wavelets extracted using the different methods
are shown in Figures 9B–D. In this test, the density is assumed to be a
constant density that does not vary with depth. The seismic records
reconstructed (red lines) by the three methods roughly match the
reference seismic records (black lines). However, the reconstructed
seismic records of the proposed method are more consistent with

the reference seismic records in some aspects compared to the
reconstructed records of the other twomethods (e.g., green arrows).

We perform further inversion tests to demonstrate the impact
of the extracted wavelet on subsequent seismic inversion and
interpretation. The algorithm used here is a Bayesian-based
inversion method, the details of which can be found in Zhang et al.
(2021a). In order to ensure a fair comparison of the inversion
results, we perform the inversion by changing only the input wavelet,
leaving the other inversion parameters unchanged. Figure 12 shows
the inversion results obtained from the wavelet extracted by the
different methods (i.e., ST, WUST, and MWUST) as input. It can
be seen that the results obtained from the inversion of the wavelet
extracted based on the ST show significant oscillations compared
to those obtained from the inversion of the wavelets extracted by
the other two methods. Although small differences are exhibited
in the reconstructed seismic records (Figure 9B), the impact of the
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FIGURE 9
(A) Field well-log data of P-wave velocity. (B) Reference seismogram (black line) and reconstructed seismic records (red line) obtained using ST. (C)
Reference seismogram (black line) and reconstructed seismic records (red line) obtained using WUST. (D) Reference seismogram (black line) and
reconstructed seismic records (red line) obtained using MWUST (A = 4/3, B = 10).

FIGURE 10
Depth–wavenumber spectrum of depth-domain seismic data obtained using (A) ST, (B) WUST, and (C) MWUST (A = 4/3, B = 10).

small errors on the inversion results is significant. The accuracy of
the inversion results (green arrows in Figure 12) of the proposed
method is greater due to the extraction of a more accurate depth-
domain wavelet.

4 Discussion

Many depth migration techniques have been developed to
create depth-domain seismic datasets, which are increasingly
being utilized for oil and gas exploration and demonstrate

greater advantages over time-domain datasets. This places higher
requirements on direct deep-domain processing and interpretation
techniques, including depth-domain seismic inversion. To obtain
reliable results from depth-domain seismic inversion, it is necessary
to have an accurate depth-domain wavelet. The wavelet has two key
parameters, dominant frequency and phase, mostly obtained from
the depth–wavenumber spectrum for the depth-domain seismic
data. To this end, we developed a workflow for extracting depth-
variant wavelets to accommodate the potential non-stationarity
of seismic data in the depth domain. The method improves the
precision of wavenumber components by removing the linear term
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FIGURE 11
Depth-variant wavelets extracted from the depth–wavenumber spectrum obtained using (A) ST, (B) WUST, and (C) MWUST (A = 4/3, B = 10).

FIGURE 12
Inversion results obtained from the depth-domain wavelet extracted by the different methods as input. (A) ST, (B) WUST, and (C) MWUST (A = 4/3, B =
10). The black lines represent reference well-log curves, the red lines represent inversion results, and the blue lines represent the initial model.

related to the wavenumber in the S-transform. Additionally, it
introduces slope and intercept parameters to enhance the depth
resolution at low wavenumbers, resulting in a more reliable
depth–wavenumber spectrum. Then, on the premise that the
reflectivity in the depth domain is a random sequence, the non-
stationary wavelet can be accurately extracted based on the obtained
depth–wavenumber spectrum. However, the proposed method is

not limited to the extraction of non-stationary wavelets in the depth
domain. Depending on the difference in the input spectrum, the
proposedmethod can be easily extended to the extraction of seismic
wavelets from both stationary and non-stationary signals in the
time domain.

Zhang and Deng (2023) examined the impact of varying angles
on seismic wavelets and extended the spectral decomposition-
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based wavelet extraction method to pre-stack seismic data. In this
study, we focus on achieving a more precise spectrum by re-
deriving the expression for the depth–wavenumber spectrum to
ensure the accuracy of the subsequent wavelet extraction. This
improved method is tested and validated using post-stack seismic
data. Indeed, seismic gathers exhibit angle dependence in actual
exploration processes, and it is crucial to consider the effects of
this angle dependence. In addition, attenuation and dispersion
effects of seismic signals during propagation through subsurface
media are not considered. For future research, the proposed depth-
domain wavelet estimation method is suggested to be improved by
incorporating the depth-variant effects of seismic attenuation and
dispersion. It is hoped to obtain a wavelet matrix that can more
accurately characterize seismic wave propagation and improve the
accuracy of subsequent reservoir prediction and interpretation.

5 Conclusion

An accurate depth-domain wavelet plays a crucial role in
the reliable interpretation and inversion of depth-domain seismic
data. In this paper, we propose a MWUST method to accomplish
accurate depth-domain seismic wavelet estimation. The method
obtains more accurate wavenumber distribution with guaranteed
depth and wavenumber resolution, thus providing a prerequisite for
reliable depth-domain wavelet estimation. Numerical experiments
demonstrate the advantages of the proposed method over ST- and
WUST-based wavelet extraction methods. We further apply depth-
domain wavelets extracted using different methods to perform
inversion tests and show that even small errors can lead to
unreliable inversion results. This illustrates the importance of
extracting an accurate wavelet for subsequent seismic inversion
and interpretation, as well as the effectiveness of the proposed
method. Additionally, the proposed method can be easily extended
to the wavelet extraction of arbitrary non-stationary seismic data,
in addition to its application to depth-domain seismic wavelet
extraction.
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