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Introduction: Gas migration in low-permeability buffer materials is a crucial
aspect of nuclear waste disposal. This study focuses on Gaomiaozi bentonite
to investigate its behavior under various conditions.

Methods:We developed a coupled hydro-mechanical model that incorporates
damage mechanisms in bentonite under flexible boundary conditions. Utilizing
the elastic theory of porous media, gas pressure was integrated into the soil's
constitutive equation. The model accounted for damage effects on the elastic
modulus and permeability, with damage variables defined by the Galileo and
Coulomb–Mohr criteria. We conducted numerical simulations of the seepage
and stress fields using COMSOL and MATLAB. Gas breakthrough tests were also
performed on bentonite samples under controlled conditions.

Results: The permeability obtained from gas breakthrough tests and numerical
simulations was within a 10% error margin. The experimentally measured gas
breakthrough pressure aligned closely with the predicted values, validating the
model's applicability.

Discussion: Analysis revealed that increased dry density under flexible
boundaries reduced the damage area and influenced gas breakthrough
pressure. Specifically, at dry densities of 1.4 g/cm³, 1.6 g/cm³, and 1.7 g/cm³, the
corresponding gas breakthrough pressures were 5.0 MPa, 6.0 MPa, and 6.5 MPa,
respectively. At a dry density of 1.8 g/cm³ and an injection pressure of 10.0 MPa,
no continuous seepage channels formed, indicating no gas breakthrough. This
phenomenon is attributed to the greater tensile and compressive strengths
associated with higher dry densities, which render the material less susceptible
to damage from external forces.
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reposition of nuclear waste, coupled hydro-mechanical model considering damage,
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1 Introduction

With the increasing depletion of energy sources, such as coal
and oil, people are becoming increasingly concerned about the
development of nuclear energy. The large amount of radioactive
waste generated by nuclear power plants poses a potential threat
to environmental protection. For the disposal of nuclear waste,
most countries internationally adopt deep geological repositories
as the preferred strategy for the long-term management of high-
level radioactive waste (Cui et al., 2023; Cui et al., 2022; Chen et al.,
2014).Themain idea of this plan is to solidify nuclear waste and bury
it deep in the stable strata 500–1,000 m underground. The disposal
strategy generally adopted a multi-barrier structure, comprising
radioactive waste solidification, waste containers, buffer materials,
and surrounding rocks from inside to outside, as shown in Figure 1.
The buffer materials should have high expandability and extremely
low permeability. However, over time, the decomposition of
microorganisms, the corrosion of metal cans, or the radiation effects
of water and organic matter will produce gas, and the gas pressure
will continue to increase.The increase in gas pressure will accelerate
themigration of nuclides through the engineering barrier, which has
a significant impact on the safety and stability of the entire disposal
repository.

Scholars generally believe that there are four main mechanisms
for gas migration in buffer materials (Senger et al., 2018; Guo
and Fall 2019; Feyyisa et al., 2019; Guo et al., 2022; Guo J. N. et al.,
2024): 1) dissolution and diffusion of gases in pore water; 2)
water–gas two-phase flow; 3) pore expansion control flow stage;
and 4) macro-fracture flow control. Currently, there is some
debate among domestic scholars regarding the gas migration
mechanisms in bentonite. Some scholars believe that gas migration
is mainly controlled by the two-phase flow effect, while others
believe that it is controlled by the dilatancy effect. Many studies
(Xu et al., 2017; Xu et al., 2015; Graham et al., 2016; Cuss et al.,
2014) have shown that the gas migration mechanism is mainly
affected by factors such as boundary conditions, dry density,
and interface properties. Some scholars (Xu et al., 2017; Xu et al.,

FIGURE 1
Repository of the multi-barrier structure
(Guo et al., 2022; Guo J. N. et al., 2024).

2015) believe that gas migration is mainly controlled by the
two-phase flow under rigid boundary conditions, and it is
mainly controlled by the dilatancy effect under flexible boundary
conditions. Some scholars (Davy et al., 2008; Alzamel et al., 2022)
believe that gas passing through bentonite mainly occurs along
the interface between the bentonite sample and the pressure
chamber. The above studies mostly used experimental methods,
and few scholars have established mathematical models for the gas
migration process.

In the initial models (Ortiz et al., 1996; Gerard et al., 2008;
Graham et al., 2016; Liu et al., 2021), only two-phase flow effects
were considered, without considering the coupling between
the stress and seepage fields. These scholars believed that a
gas breakthrough would occur when the injected gas pressure
exceeded the critical capillary pressure. Some other scholars
(Xu et al., 2013; Nguyen and Le, 2014; Alonso et al., 2012; Ye et al.,
2014; Tawara et al., 2014; Zhang et al., 2024; Radeisen et al.,
2024) considered the influence of gas injection on the intrinsic
permeability of the soil and established a coupled hydro-mechanical
model considering the two-phase flow. These models mainly used
two methods: one was to establish a piecewise function between the
intrinsic permeability and gas pressure and the other was to establish
a piecewise function between the intrinsic permeability and the
elastic–plastic strain. The aforementioned researchers primarily
focused on the impact of gas pressure and plastic strain on the
gas migration process in the soil and derived the evolution laws of
gas flow and saturation. However, they encountered limitations in
characterizing the discrete distribution of gas flow pathways.

With the increase in gas pressure, the pore size of the
soil is likely to gradually increase, potentially resulting in the
development ofmacroscopic fractures. To simulate the development
of fracture channels, some scholars (Senger et al., 2006; Olivella
and Alonso, 2008; Alonso et al., 2012) have introduced conceptual
models, with the most commonly used one being the embedded
fracture model, which has been introduced into conventional
coupled hydro-mechanical models. These scholars embedded some
discrete fractures in the model in advance and considered the
impact of gas pressure on the size of the fracture, as well as the
effect of the size of the fracture on intrinsic permeability. These
models used two types of elements: fracture and matrix elements.
The permeability of fracture elements was mainly determined
by the fracture size and deformation, while the permeability of
matrix elements was determined by the porosity. Consequently,
these models were essentially controlled by strain, and the initial
embedding of cracks was hypothetical, failing to simulate the actual
process of pore expansion. To more accurately simulate the real
process of gas breakthrough and pore path expansion in the porous
medium, a coupled hydro-mechanical model for gas migration
in bentonite was established. This model considered the impact
of soil damage on soil deformation and gas flow during the gas
injection process and described the differences in the stress–strain
association before and after damage. Combined with the secondary
development of MATLAB and COMSOL, the actual evolution of
pore expansion pathways within bentonite during the gas injection
process was simulated. The dry density has a significant impact
on the permeability, damage variable, and strength of bentonite.
Finally, the variation law of pore path expansion within bentonite
was analyzed under flexible boundaries.
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2 A coupled hydro-mechanical model
considering the damage of bentonite

2.1 Deformation equations of bentonite

Taking into account the effect of pore pressure within bentonite,
the relationship between the stress and strain could be expressed
as shown in Equation 1 (Zhang et al., 2018a; Zhang et al., 2018b;
Zhang et al., 2019; Shi et al., 2023a; Shi et al., 2023b; Shi et al.,
2023c).

σij = λεkkδij + 2Gεij − ηpδij, (1)

where εij and σij(i, j = 1,2,3) are the strain and stress components,
respectively; p is the pore pressure; η is the coefficient of Biot; δij
is the symbol of Kronecker; G = E/2(1+ ν) is the shear modulus of
bentonite; and E and ν are the Elastic modulus and Poisson’s ratio of
bentonite, respectively.

The geometric equation for the deformation of bentonite could
be expressed as Equation 2.

εij =
1
2
(
∂ui
∂xj
+
∂uj
∂xi
), (2)

where (i = 1,2,3) is the displacement component.
The equilibrium differential equation of bentonite under

external loading could be expressed as Equation 3.

σij,j + fi = 0, (3)

where fi(i = 1,2,3) is the body force.
Combining Equation 1 and Equation 3, the Navier–Stokes

Equation 4 could be obtained as follows:

Gui,jj +
G

1− 2ν
uj,ji − ηp,i + fi = 0. (4)

Equation 4 is the deformation control equation for bentonite.

2.2 Governing equations of gas flows

The continuity equation for gas flow in bentonite could be
expressed as Equation 5:

∂m
∂t
+∇ · (ρ fq f) = Qm, (5)

where m is the mass of the gas passing through a unit volume of
bentonite, t is the time, ρ f is the density of the fluid, q f is the seepage
velocity, and Qm is the mass source of the fluid.

Assuming that the flow of gas within bentonite obeyed Darcy’s
law, the seepage velocity could be expressed by Equation 6.

q f = −
k
μ f
∇p, (6)

where μ f is the dynamic viscosity of argon and k is the permeability
of bentonite.

Assuming that the pores in bentonite were always filled with
water, we obtain

m = ρ fϕ, (7)

whereϕ is the porosity. By taking the partial derivative of Equation 7,
Equation 8 can be obtained as follows:

∂m
∂t
= ϕ
∂ρ f
∂t
+ ρ f
∂ϕ
∂t
, (8)

where the compressibility coefficient of the fluid could be expressed
as c = 1

ρf

∂ρf
∂p
. As time changes, porosity remains almost constant,

therefore, it is assumed that porosity is constant. Equation 9 could
be obtained as follows:

∂m
∂t
= ϕcρ f
∂p
∂t
. (9)

Substituting Equation 6 and Equation 9 into Equation 5,
Equation 10 could be obtained.

ϕcρ f
∂p
∂t
+∇ · (− k

μ f
ρ f∇p) = Qm. (10)

2.3 Damage model of bentonite

Common methods for representing the heterogeneity of rock
and soil include the digital image and the probability density
method. Digital image analysis is a method that uses computer
software to convert image information into microstructural
information of geotechnical materials. The probability density
method assumes that the parameters of geotechnical materials
satisfy a certain probability density function to characterize
their heterogeneity. The probability density functions commonly
used to characterize the heterogeneity of geotechnical materials
include the Weibull distribution, normal distribution, log-normal
distribution, gamma distribution, and beta distribution. Some
scholars (Tang et al., 2002; Wong et al., 2006) have concluded
through experiments that the Weibull distribution function was
most suitable for characterizing the heterogeneity of geotechnical
materials. It was assumed that the elastic modulus and permeability
of bentonite obeyed the Weibull distribution, and its distribution
density could be expressed as Equation 11.

f(u) =
η
u0
( u
u0
)
η−1

exp[−( u
u0
)
η
], (u > 0), (11)

where u representsmechanical parameters of the unit, such as elastic
modulus and permeability; u0 is the average value of mechanical
parameters; and η is the heterogeneity coefficient of the soil.

In the high-level waste repository, gas continues to accumulate,
resulting in a steady rise in gas pressure. If the total stress on
the bentonite remains constant, the soil may transition from a
compressive to a tensile state when the pore pressure reaches a
certain value, potentially leading to tensile failure. When the stress
state of the unit satisfies the maximum tensile stress criterion (12),
it is considered to have undergone tensile failure. Tensile failure
obeys the Galileo criterion, and its threshold function is expressed
as shown in Equation 12.

G1 = σ(1) − ft, (12)

where σ(1) is the first main stress and ft is the tensile strength.
In addition, shear failure may also occur in bentonite.

When the Mohr–Coulomb criterion (13) is satisfied, it is
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FIGURE 2
Stress–strain curve of the rock mass under uniaxial stress conditions.

considered that shear failure has occurred. Shear failure obeys the
Coulomb–Mohr criterion, and its threshold function is expressed
as shown in Equation 13.

G2 = −σ(3) + σ(1)
1+ sin Φ
1− sin Φ

− fc, (13)

where σ(3) is the third main stress, fc is the uniaxial compressive
strength, and Φ is the angle of internal friction.

Since the tensile strength of bentonite is usually an order of
magnitude lower than its uniaxial compressive strength, the tensile
failure of the element will be judged preferentially.

Figure 2 shows a typical stress–strain curve of a rockmass under
uniaxial compression. It could be observed that the elastic modulus
remains unchanged before the rockmass reaches the stage of failure.
When the stress state experienced by the rock mass reached the
maximum tensile stress or the Mohr–Coulomb criterion, the rock
mass began to fail. In this stage, a power function was used to
characterize the stress–strain relationship of the rock mass in order
to describe the evolution law of the elasticmodulus as damage varies.

Taking into account both tensile and shear failure modes,
the damage variable D (Guo J. N. et al., 2024; Yang et al., 2007) is
expressed by Equation 14.

D =

{{{{{{{{
{{{{{{{{
{

0 G1 < 0,G2 < 0

1−(
εt0
ε(1)
)
2
G1 = 0,G2 < 0,dG2 > 0

1−(
εc0
ε(3)
)
2
G1 < 0,G2 = 0,dG1 > 0

, (14)

where ε(1) and ε(3) are the first and third principal strains,
respectively, and εc0 and εt0 are the uniaxial compressive strain and
tensile strain, respectively. To distinguish between tensile and shear
cracks, the damage for shear failure is positive, while the damage for
tensile failure is negative. G1 = 0 indicates that the unit experiences
tensile failure. dG1 > 0 indicates that further damage occurs upon
continued loading after tensile failure. G2 = 0 indicates that the unit
has experienced shear failure. dG2 > 0 indicates that further damage
occurs upon continued loading after shear failure.

The elastic modulus decreases after bentonite failure, which
could be expressed by Equation 15.

E = E0(1− |D|). (15)

FIGURE 3
Soil configuration.

Equations 14, 15 represent the damage model for bentonite.
The initiation and expansion of cracks in the process

of bentonite failure resulted in changes in its permeability.
Many experiments have shown that the permeability increased
exponentially with the damage variable (Zhang et al., 2018a;
Zhang et al., 2018b; Zhang et al., 2019). Permeability can be
calculated using Equation 16.

k = k0(
ϕ
ϕ0
)
3
(
1−ϕ0
1−ϕ
)
2
exp(λkD), (16)

where ϕ0 is the initial permeability and λk is the coefficient of the
effect of damage on the permeability.

3 Calculation of the coupled
hydro-mechanical model considering
damage

3.1 Soil configuration and boundary
conditions

In order to verify the applicability of numerical methods, the
geometry of bentonite is modeled as a circular plate with a diameter
of 2 as and a height of Hs. A rectangular coordinate system
and a cylindrical coordinate system are established on the soil,
as shown in Figure 3.

In the rectangular coordinate system Ox1x2x3, the deformation
of the soil Ω can be expressed by Equation 17.

Ω:
{
{
{

x21 + x
2
2 ≤ as, (x1 ≤ as,x2 ≤ as)

0 ≤ x3 ≤Hs

. (17)
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FIGURE 4
2D geometry mode of soil under confining pressure.

In the cylindrical coordinate system Orθz, the deformation of
the soil Ω can be expressed by Equation 18.

Ω:
{{{{
{{{{
{

0 ≤ r ≤ as
0 ≤ θ ≤ 2π

0 ≤ x3 ≤Hs

. (18)

In the indoor permeability test, the circumferential
displacement and stress changes in the bentonite sample were
minimal. Thus, the coupled hydro-mechanical model could be
simplified to a two-dimensional axisymmetric model. The 2D
geometry mode of bentonite under confining pressure boundary
conditions is shown in Figure 4.

Theboundary conditions at the top are expressed inEquation 19.

{{{{
{{{{
{

p|z=Hs
= Pup

uz|z=Hs
= 0

σzr|z=Hs
= 0

, (19)

where Pup is the pressure in the inlet, uz is the axial displacement,
and σzr represents components of the shear stress.

The boundary conditions at the bottom are expressed by
Equation 20.

{{{{
{{{{
{

p|z=Hs
= patm

uz|z=Hs
= 0

σzr|z=Hs
= 0

, (20)

where patm is the standard atmospheric pressure. The boundary
conditions on the side are expressed in Equation 21.

{
{
{

σrr|r=as = −Pc

qgr|r=as
= 0
, (21)

where σrr represents the components of radial stress and qgr is the
radial component of gas seepage velocity in bentonite.

3.2 Computational method

In this study, the model development, parameter assignment,
and numerical solution were accomplished by combiningMATLAB
programming with COMSOL software. The state of the element is

determined based on the established failure criterion, which is used
to update the corresponding physical parameters. The gas pressure
is incrementally applied utilizing a stepwise loading technique. An
iterative method is applied in the calculation, which results in
the evolution process of the element under the load. The primary
procedural steps are outlined below.

(1) A geometric model is built, and the geometry is divided
into a series of units. The initial mechanical parameters and
boundary conditions on the element are set.

(2) The numerical calculation of the coupled hydro-mechanical
model is carried out using COMSOL, and the stress and strain
results of the element are extracted.

(3) COMSOL determines whether the element is damaged based
on a program written in MATLAB.

(4) After updating the mechanical parameters of the unit,
calculations are performed again using COMSOL. The results
of the mechanical parameters before and after the update are
compared. If new damage occurs, steps (3)–(4) are repeated;
otherwise, proceed to step (5).

(5) The initial gas pressure is set to 0.1 MPa, the differential was
0.1 MPa, and the final value was 10.0 MPa. Steps (2)–(4) are
repeated until the cracks penetrate through the sample.

3.3 Model validation and analysis

3.3.1 Gas breakthrough test
The research object of this paper was Gaomiaozi bentonite. The

diameter of the sample was 50.06 mm, the height was 10.09 mm,
and the dry density was 1.7 g/cm3. After the sample was prepared, a
water injection saturation experiment was conducted on the sample
first, and then a gas breakthrough experiment was carried out.
The task consists of the following steps: 1) the sample was placed
in a triaxial load cell. We determined that the confining pressure
for bentonite should be set to 7.0 MPa based on actual ground
stresses, the swelling force of bentonite when saturated, and the
results of multiple tests and maintained it for 24 h. 2) The water
injection pressure was set to 1.0 MPa. The water injection time
was set to 15 days to ensure that the bentonite was fully saturated.
3) After saturation with water injection, the gas breakthrough test
was conducted. The primary gas pressure was set to 1.0 MPa, with
a gradient of 1.0 MPa, until gas breakthrough occurred. The test
principle of permeability under the confining pressure boundary
condition is shown in Figure 5.

Due to the low permeability of water-saturated bentonite, the
permeability was calculated based on the pressure changes at both
ends of the sample (Wu et al., 2020;Wu et al., 2022;Wu et al., 2024).
The equation for calculating bentonite permeability (Guo et al.,
2022; Guo J. S.et al., 2024) is expressed as Equation 22.

k =
4HsPupVbμΔp

A(2Pup −Δp)(P2up − P2down)Δt
, (22)

where A is the cross-sectional area of the sample; Pdown and Pup are
the pressures in the outlet and inlet, respectively;Vb is the volume of
the gas cylinder (Vb = 0.40049L); μ is the momentum viscosity; and
Δp is the decreasing pressure in the inlet after time Δt.
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FIGURE 5
Schematic diagram of the permeability test system (Guo et al., 2022; Guo J. S. et al., 2024).

TABLE 1 Basic mechanical parameters of bentonite.

Parameter Soil matrix

Height (m) 0.01

Diameter (m) 0.05

Dry density (kg/m3) 1.70

Uniaxial compressive strength (MPa) 1.50

Uniaxial tensile strength (MPa) 0.35

Poisson’s ratio 0.25

Angle of internal friction (°) 10.71

Biot coefficient 0.60

Initial porosity 0.30

Elastic modulus (MPa) 160

Weibull coefficient η 7

Initial permeability (m2) 4.05 × 10−21

3.3.2 Example analysis
Utilizing the coupled hydro-mechanical model considering

damage presented in Section 2, the changes in seepage path
and permeability in bentonite subjected to a confining pressure
of 7.0 MPa and a dry density of 1.7 g/cm3 were obtained.
Subsequently, themodel’s applicability was confirmed by comparing
numerical simulation outcomes with experimental data. The basic
mechanical parameters of bentonite used in the numerical model
are shown in Table 1.

The gas injection pressure was applied in a step-by-step loading
way, commencing at 0.1 MPa with an incremental step of 0.1 MPa,
culminating at a final pressure of 7.0 MPa. The computation

duration for each pressure stage was set at 7.2 h.The cloudy pictures
of bentonite damage evolution and permeability under different
injection pressures are shown in Figure 6.

The area of the model was calculated based on the height and
diameter of bentonite. The damage area was calculated through the
following steps: 1) the number of damaged meshes was calculated
through numerical computation. 2) The ratio of the number of
damaged meshes to the total number of meshes was calculated. The
area of the damage was calculated by multiplying the above ratio
by the total area of the model. The area of damage at different gas
injection pressures is shown in Figure 7.

As shown in Figures 6, 7, 1) when the gas injection pressures
were 0.3 MPa and 0.5 MPa, shear damage started to occur at
the bottom of the model. 2) During the stage of gas injection
pressure from 1.0 MPa to 4.0 MPa, the tensile damage began to
appear, and shear damage extended rapidly toward the axisymmetric
boundary on the right. 3) During the gas injection pressure
phase ranging from 5.0 MPa to 6.0 MPa, tensile damage rapidly
propagated from the top to the bottom of the bentonite. 4) As
the gas injection pressure increased from 6.0 MPa to 6.5 MPa,
tensile cracks spread throughout the bentonite, forming the primary
percolation channels. The results indicated that at low gas injection
pressures, the bentonite predominantly experienced shear failure
under the confining pressure, which led to a reduction in effective
stress. With an increase in gas injection pressure, tensile damage
became increasingly evident, eventually extending into continuous
percolation channels. When the gas injection pressure reached
6.0 MPa, a continuous seepage channel formedwithin the bentonite,
indicating that the gas breakthrough pressure was 6.0 MPa. As the
pores expanded, the permeability of the soil mass continuously
increased. When the confining pressure was 7.0 MPa and the dry
density was 1.7 g/cm3, the permeability was calculated through
numerical simulation and the gas breakthrough experiment, and the
error between the two is shown in Table 2.

As given in Table 2, before the gas breakthrough occurred,
the error between the permeability obtained from the numerical
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FIGURE 6
Cloud map of bentonite damage evolution and permeability under a dry density of 1.7 g/cm3. (A) Damage evolution. (B) Permeability.

FIGURE 7
Area of the damage.

calculation and that obtained from the gas breakthrough experiment
was within 10%. The gas breakthrough pressure obtained from
numerical simulations and gas breakthrough experiments was the
same, which verified the rationality and applicability of the model.
However, there is a significant difference between the calculated
and experimental values of permeability when a continuous seepage
channel is formed. In numerical simulations, the occurrence of the
gas breakthrough is determined by assessing whether the pores
at the upper and lower bounds of the soil are connected. During
the experimental process, the continuous flow of pore water in
the soil causes the pores within the bentonite to close and open

TABLE 2 Experimental values, calculated values, and errors of
permeability at a dry density of 1.7 g/cm3.

Gas
injection
pressure
(MPa)

Permeability (10−21 m2) Error (%)

Experimental
value

Calculated
value

0.3 — 0.31 —

0.5 — 1.09 —

1.0 4.05 4.36 7.65

2.0 4.52 4.79 5.97

3.0 5.53 5.64 1.99

4.0 5.94 6.19 4.21

5.0 6.22 6.49 4.34

5.5 — 11.2 —

6.0 657.91 13.8 —

6.5 — 14.9 —

at times, making the internal changes within the bentonite very
complex. In numerical simulations, the effect of pore water flow on
the closure of pores within the bentonite has not been considered.
As the pores expand, the permeability of the soil mass continuously
increases. Therefore, there is a significant difference between the
permeability calculated by numerical simulations and thatmeasured
experimentally at the time of gas breakthrough.
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TABLE 3 Mechanical parameters at different dry densities.

Dry density (g/cm3)
1.4 1.6 1.8

Parameter

Height (m) 0.01 0.01 0.01

Diameter (m) 0.05 0.05 0.05

Poisson’s ratio 0.25 0.25 0.25

Biot coefficient 0.6 0.6 0.6

Weibull coefficient 7 7 7

Uniaxial compressive strength (MPa) 1.06 1.31 1.88

Uniaxial tensile strength (MPa) 0.247 0.31 0.44

Angle of internal friction (°) 15.71 12.38 9.04

Initial porosity 0.39 0.31 0.23

Elastic modulus (MPa) 113 140 200

Initial permeability (10−21 m2) 6.75 4.93 3.22

4 The bentonite damage law changed
with dry density

Thedry density of bentonite was a key parameter in determining
the permeability of bentonite, and some scholars (Zhang et al.,
2012; Zhang et al., 2014; Chen et al., 2016; Radeisen et al., 2023)
suggested that the dry density of bentonite should be controlled to
be between 1.4 g/cm³ and 1.8 g/cm³. Higher dry densities result in
increased stress exerted on the waste container by the bentonite,
potentially causing damage to the waste container and reducing
the sealing of the high-level waste repository. Conversely, a lower
dry density meant a lower swelling pressure of bentonite, leading
to a lower degree of filling in the gap between bentonite and
the waste container, which also affected the sealing of the high-
level waste repository. According to the above reasons, the damage
evolution law of bentonite under the dry densities of 1.4 g/cm³,
1.6 g/cm³, and 1.8 g/cm³ was analyzed using the method of
coupled simulation of multiple physical fields Section 2. Mechanical
parameters at different dry densities (Zheng et al., 2022; Dong et al.,
2023; Zhu et al., 2023) are shown in Table 3.

When the dry density of bentonite was 1.4 g/cm3, the initial
gas injection pressure was 0.1 MPa, with an incremental increase of
0.1 MPa, reaching a final pressure of 6.0 MPa. The cloudy pictures
of bentonite damage evolution under different injection pressures
are shown in Figure 8.

As shown in Figure 8, 1) when the gas injection pressure was
0.5 MPa, shear damage began to appear at the bottom of the model.
The total damage areas were 6.86 × 10−6 m2 during these phases.
2) When the gas injection pressure was 0.8 MPa, the shear damage
rapidly extended to the upper regions, while discrete tensile damages
began to appear at the bottom of the model. It was calculated eight
times under this pressure.The total damage areaswere 3.9 × 10−5 m2.

3)When the gas injection pressurewas 1.0 MPa, the upper and lower
boundaries of the soil almost expanded into connected seepage
channels.The total damage area was 4.28 × 10−5 m2. 4)When the gas
injection pressures ranged from 2.0 MPa to 4.0 MPa, shear damage
extended rapidly to the axisymmetric boundary on the right. The
total damage areas were 6.11 × 10−5 m2, 7.4 × 10−5 m2, and 8.82
× 10−5 m2. 5) When the gas injection pressures were 5.0 MPa, the
tensile damage expanded significantly. The total damage area was
1.05 × 10−4 m2. When the dry density of bentonite was 1.4 g/cm³,
the main damage that occurred in bentonite was shear damage.
The main cause of this result was that the lower the dry density,
the lower the compressive strength of bentonite, making it more
susceptible to shear failure under a certain confining pressure.
When the gas injection pressure was 5.0 MPa, a continuous seepage
channel formedwithin bentonite.When the dry density of bentonite
was 1.6 g/cm3, the initial gas injection pressure was 0.1 MPa, with
an incremental increase of 0.1 MPa, reaching a final pressure of
8.5 MPa. The cloudy pictures of bentonite damage evolution under
different injection pressures are shown in Figure 9.

As shown in Figure 9, 1) when the gas injection pressure was
0.5 MPa, shear damage began to appear at the bottom of the model.
The total damage areas were 8.66 × 10−6 m2 during these phases. 2)
When the gas injection pressures ranged from 1.0 MPa to 4.0 MPa,
shear damage extended rapidly to the axisymmetric boundary on
the right, and tensile damage started to occur at the bottom of the
model. However, the propagation of tensile damage was relatively
slow. The total damage areas were 3.62 × 10−5 m2, 5.33 × 10−5 m2,
5.94 × 10−5 m2, and 7.19 × 10−5 m2. 3) When the gas injection
pressures ranged from 5.0 MPa to 6.0 MPa, the propagation of shear
damage became slower, and tensile damage started to occur at the
top of the model. With the increase in gas injection pressure, tensile
damage has expanded significantly. When the gas injection pressure
was 6.0 MPa, the upper and lower ends of the soil expanded, forming
a continuous seepage path, indicating that the gas breakthrough
pressure was 6.0 MPa. The total damage areas were 8.61 × 10−5 m2,
9.09 × 10−5 m2, and 9.44 × 10−5 m2.

When the dry density of bentonite was 1.8 g/cm3, the initial
gas injection pressure was 0.1 MPa, with an incremental increase of
0.1 MPa, reaching a final pressure of 10.0 MPa. The cloudy pictures
of bentonite damage evolution under different injection pressures
are shown in Figure 10.

As shown in Figure 10, 1) when the gas injection pressure was
0.5 MPa, a large area of shear damage began to appear at the bottom
of the model, with the total damage areas amounting to 1.34 ×
10−5 m2 during these phases. 2) As the gas injection pressure ranged
from 1.0 MPa to 7.0 MPa, shear damage rapidly extended to the
right-hand axisymmetric boundary, and tensile damage initiated.
With the increase in gas injection pressure, the area of shear damage
increased, and the tensile damage expanded to the lower portion
of the model. The total damage areas were 2.14 × 10−5 m2, 2.73 ×
10−5 m2, 3.43 × 10−5 m2, 3.82 × 10−5 m2, 4.12 × 10−5 m2, 4.73 ×
10−5 m2, and 5.18 × 10−5 m2. 3) When the gas injection pressures
ranged from 8.0 MPa to 10.0 MPa, the propagation of shear damage
slowed down significantly, while tensile damage began to propagate
rapidly, and new instances of tensile damage started to appear at
the upper part of the model. The total damage areas were 5.90
× 10−5 m2 and 8.15 × 10−5 m2. No connected seepage path was
formed within bentonite until the gas injection pressure reached
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FIGURE 8
Cloud map of bentonite damage evolution at a dry density of 1.4 g/cm3.

FIGURE 9
Cloud map of bentonite damage evolution at a dry density of 1.6 g/cm3.

10.0 MPa. The main cause of this result was that the greater the dry
density, the greater the tensile and compressive strength of bentonite,
thereby reducing its susceptibility to damage from external forces.
We investigate the effects of dry density on bentonite damage, and
the variation curve of damagewith dry density is shown in Figure 11.

From Figures 8–11, it could be observed that 1) the greater
the dry density, the smaller the area of damage to the bentonite

at the same gas injection pressure. 2) When the dry density was
1.4 g/cm³ and 1.6 g/cm³, the bentonite was prone to shear failure,
while at a dry density of 1.7 g/cm³ and 1.8 g/cm³, the bentonite
was prone to tensile failure. The primary reason for this outcome
is the inverse relationship between dry density and compressive
strength of bentonite: the lower the dry density, the lower the
compressive strength, which renders the bentonite more susceptible
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FIGURE 10
Cloud map of bentonite damage evolution at a dry density of 1.8 g/cm3.

FIGURE 11
Variation curve of damage with dry density.

to shear failure under specific confining pressures. 3) At dry
densities of 1.4 g/cm³, 1.6 g/cm³, and 1.7 g/cm³, the corresponding
gas breakthrough pressures were 5.0 MPa, 6.0 MPa, and 6.5 MPa,
respectively. When the dry density was 1.8 g/cm³ and the injection
pressure reached 10.0 MPa, no continuous seepage channels formed
within the bentonite, indicating that a gas breakthrough had not

occurred. From the research findings, with the increase in dry
density, it was inferred that the damage area of bentonite was smaller
and the gas breakthroughpressurewas greater.This is because higher
dry densities enhance bentonite’s tensile and compressive strengths,
making it more resistant to damage from external forces.

5 Conclusion

The coupled governing equations for the seepage and stress
fields of bentonite were established based on the theory of porous
media. Considering the heterogeneity of bentonite, the Weibull
distribution function effectively describes the initial permeability
and elastic modulus of bentonite. Additionally, the damage variable
of bentonite was defined based on the maximum tensile-strain
criterion and Mohr–Coulomb criterion. The damage theory was
applied to characterize the enhancement of the permeability
and the reduction of the elastic modulus due to damage. The
numerical solution of the coupled hydro-mechanical model was
calculated using COMSOL and MATLAB software. The model’s
applicability and rationality were confirmed by comparing results of
numerical simulation with those of gas breakthrough tests. Finally,
the impact of dry density on damage area, seepage path, and
gas breakthrough pressure was analyzed. The main conclusions
were as follows:

(1) When the confining pressure was 7.0 MPa and the dry density
was 1.7 g/cm3, shear damage predominantly occurred within
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the model at low gas injection pressures. As the gas
injection pressure increased, shear damage rapidly extended
to the axisymmetric boundary on the right. When the
injection gas pressure is greater than 5.0 MPa, tensile
damage rapidly extends from the top to the bottom of
bentonite. When the gas injection pressures were 6.0 MPa
and 6.5 MPa, the tensile damage became increasingly
evident, eventually forming continuous percolation channels.
The gas breakthrough pressure, as determined by both
numerical simulation and gas breakthrough experiments,
was consistent, thereby validating the model’s rationality and
applicability.

(2) The evolution law of damage exhibited similar patterns across
varying dry densities. When the dry density was 1.4 g/cm3,
bentonite primarily caused shear damage, with only a few
discrete instances of tensile damage.When the dry density was
1.6 g/cm3, shear damage mainly occurred in the model at low
gas injection pressures. As the gas injection pressure increased,
shear damage rapidly extended to the right-hand axisymmetric
boundary. When the injection pressure surpassed a certain
threshold, the upper and lower ends of the soil expanded into a
connected seepage path.However, at a dry density of 1.8 g/cm3,
no connected seepage path was formed within bentonite
until the gas injection pressure reached 10.0 MPa. The
primary reason for this outcome is that higher dry densities
correspond to greater tensile and compressive strengths in
bentonite, thereby reducing its susceptibility to damage under
external forces.

(3) The damage area to bentonite decreases with increasing dry
density at a given gas injection pressure. At dry densities of
1.4 g/cm³, 1.6 g/cm³, and 1.7 g/cm³, the corresponding gas
breakthrough pressures were 5.0 MPa, 6.0 MPa, and 6.5 MPa,
respectively. Notably, at a dry density of 1.8 g/cm³, even
when the injection pressure reached 10.0 MPa, no continuous
seepage channels formed within the soil, indicating that gas
breakthrough had not yet occurred. The main cause of this
result was primarily attributed to the fact that higher dry
densities enhance the tensile and compressive strengths of
bentonite, thereby reducing its vulnerability to damage from
external forces.
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