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Evaluation of the ArcIOPS sea ice
forecasts during 2021–2023

Xi Liang*, Zhongxiang Tian, Fu Zhao, Ming Li, Na Liu and
Chunhua Li

Key Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Center,
Ministry of Natural Resources, Beijing, China

The operational sea ice forecasts from the Arctic Ice Ocean Prediction System
(ArcIOPS) during 2021–2023 are validated against satellite-retrieved sea ice
concentration and drift data, in situ and reanalyzed sea ice thickness data.
The results indicate that the ArcIOPS has a reliable capacity on the Arctic
sea ice forecasts for the future 7 days. Over the validation period, the root
mean square error (RMSE) of the ArcIOPS sea ice concentration forecasts at
a lead time of up to 168 h ranges between 8% and 20%, and the integrated
ice edge error (IIEE) is lower than 1.6 × 106 km2 with respect to the Hai Yang
2B (HY-2B) sea ice concentration data. Compared to the Pan-Arctic Ice Ocean
Modeling and Assimilation System (PIOMAS), sea ice volume evolution from
the ArcIOPS forecasts is closer to that derived from the CS2SMOS sea ice
thickness observations, which have been assimilated into the ArcIOPS. Sea
ice thickness comparisons at three locations in the Beaufort Sea between the
ArcIOPS forecasts and in situ mooring observations also prove that the sea ice
thickness forecasts are credible, which sets a solid basis for supporting ice-
breaker navigation in the Arctic thick ice zone. The sea ice drift deviations
between the ArcIOPS forecasts and the National Snow and Ice Data Center
(NSIDC) data are lower than 4 cm/s in most of the months. Future work will
emphasize on developing multi-variable data assimilation scheme and fully
coupled air‒ice‒ocean forecasting system for the Arctic sea ice forecasts.
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1 Introduction

Along with the Arctic amplification (Serreze and Barry, 2011; Rantanen et al., 2022),
the Arctic Ocean has experienced a transition from a multiyear ice-dominated Arctic
toward a first-year ice-dominated Arctic (Lang et al., 2017). The general decline in sea ice
concentration and thickness in the satellite era provides an advantage for human activities
during summer in the Arctic Ocean (Comiso, 2012; Kwok, 2018). The Chinese National
Arctic Research Expedition (CHINARE) has been carried out once per year between 2016
and 2024, except for 2022.TheChinaCOSCOShippingGrouphas implemented commercial
vessel navigation in the Arctic Northeast Passage since 2013, which has created a sizable
economic benefit.

In the Arctic Ocean, sea ice is always a potential threat to safe navigation, especially to
those vessels without ice-breaking capacity. Aiming to provide accurate sea ice forecasting
information to commercial/scientific vessels in the Arctic Ocean, the National Marine
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FIGURE 1
Flowchart of the ArcIOPS. The system includes four modules: observation preprocessing module, data assimilation module, numerical integration
module, and visualization module. The LESTKF scheme is included in the data assimilation module. The Arctic configuration of the MITgcm is included
in the numerical integration module.

Environmental Forecasting Center (NMEFC) of China has
conducted an Arctic sea ice forecasting system at synoptic time scale
in 2017, i.e., Arctic IceOcean Prediction System (ArcIOPS)Mu et al.
(2019). The operational system forecasts changes in sea ice
concentration, sea ice thickness, sea ice drift, and sea ice convergence
rate for the future 7 days. The ArcIOPS sea ice forecasting products
have been actively engaged in the sea ice forecasting and warning
service for the CHINARE and COSCO Shipping since 2017.

Mu et al. (2019) introduced the ArcIOPS version 1.0 and
validated the system’s performance on sea ice forecasts in summer
2017. Liang et al. (2020) presented the ArcIOPS version 1.1 and
evaluated the system’s performance on sea ice forecasts in summer
2018. The key upgrade of the ArcIOPS from versions 1.0 to 1.1
is the utilization of the multi-variable data assimilation scheme,
which can assimilate satellite-observed sea ice concentration, sea ice
thickness, and sea surface temperature (SST) in the marginal ice
zone synchronously (Liang et al., 2019). In this paper, we evaluate
the whole-year performance of the ArcIOPS sea ice forecasts during
2021–2023 against satellite-retrievedmaps, in situ observations, and
reanalysis data, including the sea ice concentration derived from
the measurements of the scanning microwave radiometer equipped
on the Hai Yang 2B (HY-2B) Wu et al. (2023) satellite, sea ice

thickness derived from the Pan-Arctic Ice Ocean Modeling and
Assimilation System (PIOMAS) Zhang and Rothrock (2003) and
from in situ sea ice draftmeasured by upward looking sonar (ULS) at
three locations from the Beaufort Gyre Exploration Project (BGEP)
Proshutinsky et al. (2005), and sea ice drift derived from a wide
variety of observational sources provided by the National Snow and
Ice Data Center (NSIDC) Tschudi et al. (2019).

The rest of the paper is organized as follows: a brief description
of the ArcIOPS and data sets used for assimilation and validation is
given in Section 2. The main results are presented in Section 3. The
discussion and conclusion are given in Section 4.

2 Methods

2.1 Arctic Ice Ocean Prediction System

The ArcIOPS is based on an Arctic configuration of the
Massachusetts Institute of Technology general circulation model
(MITgcm) Marshall et al. (1997) and an ensemble-based Kalman
filter data assimilation model (Nerger and Hiller, 2013). The ocean
model of the Arctic configuration using curvilinear orthogonal
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TABLE 1 List of data sets used in this study.

Variable Label Spatial resolution Spatial coverage Temporal coverage

Data used for assimilation

Sea ice concentration AMSR2 6.25 km Full model domain 2021–2023

Sea ice thickness CS2SMOS 25 km Full model domain March‒April 2021;
January‒April 2022;

November‒December 2022;
January‒April 2023

Sea surface temperature GMPE 0.25° Ice-free model domain 2021–2023

Data used for validation

Sea ice concentration HY-2B 25 km Full model domain 2021–2023

Sea ice thickness PIOMAS 22 km Full model domain 2021–2023

Sea ice draft BGEP ULS N/A BGEP_A: 75°N, 150°W;
BGEP_B: 78°N, 150°W;
BGEP_D: 74°N, 140°W

2021–2023

Sea ice drift NSIDC 25 km Full model domain 2021–2022

coordinates covers thewholeArcticOcean, with its open boundaries
close to 55°N in both the Atlantic and Pacific sectors (Nguyen et al.,
2011; Liang and Losch, 2018), which includes 420 × 384 horizontal
grid points with an average horizontal resolution of 18 km.
The ocean model has 50 uneven vertical layers, with intervals
ranging from 10 m at the sea surface to 456 m at the bottom.
Physical parameterizations used in the ocean model include the
K-profile parameterization vertical mixing scheme (Large et al.,
1994) and bulk formula (Doney et al., 1998) for surface heat
flux calculation. The Arctic configuration contains a zero-layer
thermodynamic–dynamic sea ice model (Semtner, 1976), which
shares the same horizontal grid points with the oceanmodel.The sea
ice model includes a prescribed sub-grid ice thickness distribution
with seven thickness categories, which allows ice to form even when
the mean ice thickness is large and thus reduces the low thickness
bias. Due to the lack of thermal inertia, the zero-layer sea ice
thermodynamics are known to overestimate the seasonal variations.
Sea ice rheology in the Arctic configuration uses the traditional
viscous–plastic scheme (Hibler III, 1979; Losch et al., 2010).The 12-
monthly climatological oceanic open boundary conditions used to
drive the ArcIOPS are derived from the Estimating the Circulation
and Climate of the Ocean (ECCO), phase II: high-resolution global
ocean and sea ice data synthesis (Menemenlis et al., 2008).

The data assimilation model of the ArcIOPS uses an ensemble-
based Localized Error Subspace TransformKalman Filter (LESTKF)
Nerger et al. (2012) scheme which is enveloped in the Parallel
Data Assimilation Framework (PDAF) Nerger and Hiller (2013).
The LESTKF is a localized variant of the Error Subspace
TransformKalman Filter (ESTKF) using dynamic background error
covariance, which allows the background error covariance to change
along with the evolution of the system state. Previous studies have
proven that the LESTKF is suitable for high-dimensional models
with small-scale local features and large number of observations,
which has advantages of high accuracy, low computational
consumption, and outstanding efficiency (Chen et al., 2017;
Mu et al., 2018; Liang et al., 2019).

The ArcIOPS is an ensemble forecasting system which includes
12 parallel members. The flowchart of the ArcIOPS is shown in
Figure 1. The forecasts initialized on 1st January 2021 are used as
an example to illustrate the flowchart of the ArcIOPS.

Step 1: The initial model state ensemble on 1st January 2021
was directly taken from the 24-h forecast fields from
the operational result of the previous day. On 1st
January 2021, the observation preprocessing module
automatically downloaded near-real-time satellite
observations from the internet, including the Advanced
Microwave Scanning Radiometer 2 (AMSR2) sea ice
concentration data (Spreen et al., 2008), the CS2SMOS
sea ice thickness data (Ricker et al., 2017), and the
Group for High-Resolution SSTMulti-Product Ensemble
(GMPE) SST data (Donlon et al., 2007).

Step 2: The data assimilation module assimilated the near-
real-time satellite observations into the initial model
state ensemble to improve the initial condition, thus
generating an analyzed initialmodel state ensemble.Then,
an adjusted initial model state ensemble was produced
after applying basic physical constraints among model
variables to the analyzed initial model state ensemble.The
physical constraints include the following: setting sea ice
thickness to 0 whenever the sea ice concentration is 0, sea
ice concentration ranging between 0 and 1, and sea ice
thickness ranging between 0 and 5. In addition, absolute
increment in the ocean temperature in the ocean mixed
layer introduced by each SST assimilation step is limited
to 0.5°C to avoid numerical instability.

Step 3: Starting from the adjusted initial model state ensemble,
each member was integrated for 168 h driven by
the Global Forecast System (GFS; Han et al., 2021)
operational atmospheric surface forcing variables,
including 2 m air temperature, 2 m specific humidity,
10 m wind speed components (u and v), precipitation,
and downward shortwave and longwave radiation at
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FIGURE 2
Time series of (A) the sea ice concentration RMSE and (B) integrated ice edge error of the ArcIOPS forecasts at different lead times with respect to the
HY-2B data. The black, cyan, blue, magenta, green, yellow, and red lines denote the forecasts at lead times of 24 h, 48 h, 72 h, 96 h, 120 h, 144 h, and
168 h, respectively.

the sea surface. Ensemble mean forecasts of sea ice
and ocean states of the future 168 h were recorded and
visualized at a time interval of 24 h. The 24-h forecasts
of sea ice and ocean states were saved as the initial
model state ensemble for the operational forecast of the
following day.

2.2 Data sets

Daily AMSR2 sea ice concentration data, daily CS2SMOS
sea ice thickness data, and daily GMPE SST data were used
for assimilation (Table 1). Over the 3 years, the AMSR2 and
GMPE data were available and assimilated each day, whereas
the CS2SMOS data were assimilated discontinuously. The AMSR2
sea ice concentration data (Spreen et al., 2008), provided by

the University of Bremen, are derived from Global Change
Observation Mission–Water satellite brightness temperature data
with a horizontal resolution of 6.25 km using the ARTIST Sea
Ice algorithm. The daily CS2SMOS sea ice thickness data with a
horizontal resolution of 25 km (Ricker et al., 2017), provided by
the Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, are a combined product interpolated from the
daily Soil Moisture Ocean Salinity (SMOS) sea ice thickness data
in the thin ice area (<1 m) and the weekly Cryosat-2 sea ice
thickness data in the thick ice area (≥1 m). Sponsored by the
European Space Agency, the SMOS sea ice thickness data are
retrieved from satellite brightness temperature data combined with
a sea ice thermodynamic model and a three-layer radiative-transfer
model (Tian-Kunze et al., 2014). The Cryosat-2 sea ice thickness
data are retrieved from radar altimetry measurements of sea ice
freeboard, which are converted to sea ice thickness under the
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FIGURE 3
Monthly patterns of sea ice concentration deviation between the ArcIOPS forecasts at a lead time of 24 h and the HY-2B data. (A–L) denote
January‒December, respectively. The patterns are averaged between 2021 and 2023.

assumption of hydrostatic equilibrium (Laxon et al., 2013). Due to
the limitation of the sea ice thickness retrieval algorithm in the
melt season, the CS2SMOS sea ice thickness data are available

during October‒April. The GMPE SST data (Donlon et al., 2007),
provided by the United Kingdom Met Office, are a near-real-
time Level 4 satellite-retrieved product which covers ice-free areas
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FIGURE 4
Time series of the sea ice volume derived from the CS2SMOS data (black), the PIOMAS data (blue), and the ArcIOPS forecasts at a lead time of 24 h (red).

with a horizontal resolution of 0.25°. During the assimilation, the
uncertainties of the AMSR2 data were defined as a constant of
0.25, following our previous work (Liang et al., 2019), whereas the
uncertainties of the CS2SMOS and GMPE data were provided by
the data sets.

Daily HY-2B sea ice concentration data, daily PIOMAS sea
ice thickness data, daily in situ ULS-observed sea ice thickness
data, and daily NSIDC sea ice drift data are used for validation
(Table 1). The HY-2B satellite, launched on 25th October 2018
by the National Satellite Ocean Application Service (NSOAS)
of China, collects brightness temperature data with a swath of
1,600 km, which are converted to sea ice concentration data
on the standard EASE grid using the National Aeronautics and
Space Administration (NASA) team algorithm (Cavalieri et al.,
1984), with a horizontal resolution of 25 km (Wu et al., 2023).
The PIOMAS system, developed at the Applied Physics Laboratory
of the University of Washington, produces sea ice thickness
maps covering the Arctic Ocean by assimilating the observed
sea ice concentration and SST (Zhang and Rothrock, 2003).
The three moored ULSs were deployed by the Woods Hole
Oceanographic Institution at the locations of BGEP_A: 75°N,
150°W; BGEP_B: 78°N, 150°W; and BGEP_D: 74°N, 140°W in
the Beaufort Sea (Proshutinsky et al., 2005). The sea ice draft
was recorded since 2003 by the three ULSs in the ocean. The
ULS samples the ice draft with a precision of 0.1 m, and the
ice draft can be converted to sea ice thickness by multiplying
a factor of 1.1 (Nguyen et al., 2011). The NSIDC sea ice drift
data, with a horizontal resolution of 25 km, are computed from
a wide variety of sources including multiple passive microwave
radiometers, on-site buoy data, and reanalysis data from the
National Centers for Environmental Prediction/National Center for
Atmospheric Research (Tschudi et al., 2019). The HY-2B, PIOMAS,
and ULS data used in this study cover 2021–2023, whereas the
NSIDC data cover 2021–2022 owing to time delay in publishing the
2023 data by the data producer.

3 Results

3.1 Sea ice concentration

Since the ArcIOPS assimilated the AMSR2 sea ice concentration
data, we validate sea ice concentration forecasts of the ArcIOPS
at different lead times against the HY-2B sea ice concentration
data. The HY-2B sea ice concentration data have a comparable
resolution to that of the ArcIOPS forecasts. In addition, the sea
ice edge, defined as the isoline of 15% sea ice concentration, is
derived from the sea ice concentration forecasts. The performance
of sea ice edge forecasts is represented by the integrated ice edge
error (IIEE) Goessling et al. (2016).

Basically, along with the prolongation of the forecast lead
time, the sea ice concentration root mean square error (RMSE)
between the ArcIOPS forecasts and the HY-2B data increases,
ranging between 8% and 20% at a lead time of up to 168 h during
the validation period. The only exception is in the second half
of the month of October 2021 when the sea ice concentration
RMSE exceeds 20% (Figure 2A). The sea ice concentration RMSE
is relatively small in summer and is maintained below 15% in
summers of 2021 and 2022; however, in these 2 years, the periods
of January‒March and May‒June have relatively large sea ice
concentration RMSE, which is higher than 15%. The first half year
of 2023 has relatively steady sea ice concentration RMSE, ranging
between 12% and 16%, in comparison to the same periods of the
other 2 years.

The IIEE between the ArcIOPS forecasts and the HY-2B data
over the 3 years is lower than 1.6 × 106 km2 for most of the
time, with its maximum value being lower than 2 × 106 km2 in
June 2022 (Figure 2B). In general, the IIEE is relatively large in
May‒July when the ice starts and continues to melt, suggesting that
the ArcIOPS has a relatively moderate skill in forecasting sea ice
evolution during the freeze-to-melt transition period. Similarly, the
IIEE is also large in October when the ice starts to freeze, suggesting
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FIGURE 5
Monthly patterns of the sea ice thickness deviation between the ArcIOPS forecasts at a lead time of 24 h and the CS2SMOS data. (A‒G) denote January,
February, March, April, October, November, and December, respectively. The patterns are averaged between 2021 and 2023. The unit is m.

that the ArcIOPS also performs moderately in forecasting sea ice
evolution during the melt-to-freeze transition period.

Spatially, in January‒March (Figures 3A–C), the ArcIOPS
forecasts at a lead time of 24-h overestimate sea ice concentration
in the Barents Sea and the Bering Sea, while underestimating the
sea ice concentration in the Labrador Sea and the Greenland Sea. In
April‒June (Figures 3D–F), the positive sea ice concentration biases
for the Barents Sea and the Bering Sea are reduced, but positive sea
ice concentration biases for the Beaufort Sea and the Laptev Sea
are increased. In July‒September (Figures 3G–I), negative sea ice
concentration biases occupy the marginal ice zone, while positive
sea ice concentration biases occupy the Arctic ice zone inside. In

October (Figure 3J), the ice zone with negative sea ice concentration
biases is expanded, which means that the sea ice freeze onset is
delayed in theArcIOPS in comparison to theHY-2B observations. In
November‒December (Figures 3K, L), alongwith the recovery of the
Arctic sea ice zone, the sea ice concentration biases of the ArcIOPS
forecast are reduced again to a low level.

3.2 Sea ice thickness

The sea ice volume derived from the ArcIOPS sea ice thickness
forecasts at a lead time of 24 h is evaluated against that derived
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FIGURE 6
Monthly patterns of sea ice thickness deviation between the ArcIOPS forecasts at a lead time of 24 h and the PIOMAS data. (A–L) denote
January‒December, respectively. The patterns are averaged between 2021 and 2023. The unit is m.

from the PIOMAS sea ice thickness reanalysis, as well as the
assimilated CS2SMOS sea ice thickness data (Figure 4). Due to the
availability of the near-real-time CS2SMOS sea ice thickness data,
the CS2SMOS observations were assimilated into the ArcIOPS in

March‒April of 2021, January‒April of 2022, November‒December
of 2022, and January‒April of 2023. Although the CS2SMOS
observations were assimilated discontinuously, the assimilation of
sea ice thickness data significantly changed themodel state evolution
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FIGURE 7
Time series of sea ice thickness at the mooring locations of (A) BGEP_A ULS, (B) BGEP_B ULS, and (C) BGEP_D ULS. The black and red lines denote the
observations and the ArcIOPS forecasts at a lead time of 24 h, respectively.

in the operational records of 2021–2023. Before the day in 2021
when the CS2SMOS sea ice thickness data were assimilated for the
first time, the sea ice volume evolution of the ArcIOPS forecast was
found to be generally in line with the PIOMAS sea ice volume.

After the initial assimilation of the CS2SMOS sea ice thickness data
in 2021, the sea ice volume of the ArcIOPS forecasts decreases
drastically, with a decrement of 2 × 103 km3. A similar effect of sea ice
thickness assimilation on the modeled sea ice volume evolution was
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FIGURE 8
Time series of the (A) deviation and (B) RMSE of the ArcIOPS sea ice drift speed forecasts at different lead times with respect to the NSIDC data. The
black, cyan, blue, magenta, green, yellow, and red lines denote the forecasts at lead times of 24 h, 48 h, 72 h, 96 h, 120 h, 144 h, and 168 h, respectively.

observed in 2022.Moreover, the PIOMAS data seem to overestimate
the Arctic sea ice volume in winter and spring, as revealed by the
comparison against the CS2SMOS observations.

Spatially, in January‒February (Figures 5A, B) and
October‒November (Figures 5E, F), the ArcIOPS forecasts at a lead
time of 24 h underestimate sea ice thickness in the Greenland Sea
and the high-latitude Arctic Ocean with a mean negative bias of
0.5–1 m. In other areas of the Arctic sea ice zone, the ArcIOPS
forecasts at a lead time of 24 h generate thicker ice in comparison
to the CS2SMOS data. In March‒April (Figures 5C, D), both the
positive and negative biases in the sea ice thickness forecasts are
reduced. It is noteworthy that the CS2SMOS sea ice thickness data
have relatively considerable uncertainties; thus, the sea ice thickness
forecasts of the ArcIOPSmay still be in a rational range (Figure 5G).

The sea ice thickness comparison between theArcIOPS forecasts
and the PIOMAS data shows that the winter‒spring sea ice in the
ArcIOPS forecasts is substantially thinner than that in the PIOMAS
data in most areas of the Arctic Ocean, except the Bering Sea, the
Greenland Sea, and the area north of the Fram Strait (Figures 6A–F).
The maximum negative deviation exceeds −1.0 m in the East

Siberian Sea and the thick multiyear ice zone north of the Canadian
Arctic Archipelago.The maximum positive deviation exceeds 1.0 m
in the Greenland Sea. In summer‒autumn (Figures 6G–L), the
negative sea ice thickness deviations between the ArcIOPS forecasts
and the PIOMAS data are still persistent in the multiyear ice zone
north of the Canadian Arctic Archipelago, whereas in other areas of
the Arctic sea ice zone, the deviations are reduced greatly.

Comparison of sea ice thickness at the three locations between
the ArcIOPS forecasts at a lead time of 24 h and the ULS data
suggests that the ArcIOPS reasonably forecasts sea ice thickness
evolution at the three locations in the Beaufort Sea, and small
negative biases exist at the locations of BGEP_A and BGEP_D in
2021 and 2023, respectively (Figure 7).

3.3 Sea ice drift

We validate the sea ice drift speed of the ArcIOPS forecasts
at different lead times against the NSIDC sea ice drift product,
i.e., Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion
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FIGURE 9
Monthly patterns of sea ice drift speed deviation between the ArcIOPS forecasts at a lead time of 24 h and the NSIDC data. (A–L) denote
January‒December, respectively. The patterns are averaged between 2021 and 2022. The unit is cm/s.

Vectors. Due to the strong variation in the daily evolution of the
ice-zone-mean sea ice drift speed, we show the monthly evolution
of the ice-zone-mean sea ice drift speed both from the ArcIOPS
forecasts and the NSIDC data (Figures 8A, B).

The ice-zone-mean sea ice drift deviations between the ArcIOPS
forecasts and the NSIDC data suggest that the ArcIOPS forecasts
produce higher sea ice drift speed than the NSIDC data, and
the biases in 2022 are larger than those in 2021. The relation
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between the bias and forecast lead time is not straightforward.
The sea ice drift deviations are lower than 4 cm/s in most of
the months of 2021–2022. The sea ice drift RMSE between the
ArcIOPS forecasts and the NSIDC data ranges between 5 cm/s
and 10 cm/s. Furthermore, the sea ice drift RMSE shows obvious
seasonality that the RMSE is larger in wintertime and smaller
in summertime.

Spatially, in January‒March (Figures 9A–C), the ArcIOPS
forecasts at a lead time of 24 h produce higher sea ice drift
speed in the marginal ice zones of both the Pacific and Atlantic
sides, such as the Bering Sea, Labrador Sea, Greenland Sea,
and Barents Sea, while in other areas of the Arctic sea ice
zone, the ArcIOPS forecasts generally produce lower sea ice
drift speed. The maximum positive bias exceeds 10 cm/s, while
the maximum negative bias reaches −5 cm/s. In April‒August
(Figures 9D–H), the area with positive sea ice drift speed bias
expands to the Arctic marginal seas of the Eurasian Continent,
and the area with negative sea ice drift speed bias shrinks greatly.
In September‒December (Figures 9I–L), negative sea ice drift bias
reemerges and expands to most areas of the Arctic sea ice zone.
The sea ice drift speed biases are relatively moderate in August
and September.

4 Discussion and conclusion

In this paper, we evaluate the ArcIOPS sea ice forecasts during
2021–2023 against in situ sea ice thickness observations, satellite-
retrieved sea ice concentration, and drift data, as well as the PIOMAS
sea ice thickness reanalysis. The results show that the ArcIOPS has
a reliable capacity on the Arctic sea ice forecasts for the future
7 days. Over most time of the 3 years, the sea ice concentration
RMSE of the ArcIOPS forecasts ranges between 8% and 20%, and
the derived IIEE is lower than 1.6 × 106 km2 when validated against
the HY-2B sea ice concentration data. The sea ice volume of the
ArcIOPS forecasts is closer to that derived from the CS2SMOS
sea ice thickness observations, and sea ice thickness comparison
between the ArcIOPS forecasts and in situ ULS observations in the
Beaufort Sea also proves that the sea ice thickness forecasts are
credible, which sets a fundamental basis for supporting ice-breaker
navigation in the Arctic thick ice zone. The sea ice drift deviations
between the ArcIOPS forecasts and NSIDC data are lower than
4 cm/s in most months of 2021–2022.

The ArcIOPS sea ice concentration forecasts have some biases
appearing in the marginal ice zone, especially during melt-to-freeze
or freeze-to-melt transition periods. This probably originates from
the fact that the ArcIOPS uses zero-layer ice/snow thermodynamics,
which are known to overestimate the seasonal variations due to
the lack of thermal inertia. Sea ice drift speed is jointly affected
by wind force and sea ice thickness in an ice‒ocean-coupled model
system (Liang et al., 2024).Thepositive biases in the sea ice thickness
forecasts (Figure 5) likely cause the negative biases in sea ice drift
speed forecasts in the high-latitude Arctic sea ice zone (Figure 9).
Meanwhile, the relatively larger RMSE in the wintertime sea ice drift
speed forecasts in comparison to summertime (Figure 8B) is a result
of relatively larger sea ice drift speed biases in the marginal ice zone
in wintertime (Figure 9). Satellite-retrieved observations, although
with advantages of board spatial coverage and temporal continuity,

have considerable uncertainties, especially in sea ice thickness and
drift data. Admittedly, the evaluations against satellite-retrieved
data presented in this study still have room to improve, both on
validation metrics and data processing algorithms. Nevertheless, at
the current stage, the validations against these available data sets
suggest that the ArcIOPS sea ice thickness and drift forecasts are in
a reasonable range.

Currently, the Arctic sea ice forecasts at the synoptic time
scale operationally provided by the NMEFC of China is based on
the ArcIOPS v1.1, while our operational Arctic sea ice forecasts
at the seasonal time scale is implemented by a fully coupled
Arctic ice‒ocean‒atmosphere modeling system (Ren et al., 2021)
which has considered the complex air‒ice‒ocean interaction in
the summertime marginal ice zone. In the coming decade, short-
term sea ice forecasts may necessarily need to use a fully coupled
Arctic ice‒ocean‒atmosphere modeling system, as the general sea
ice decline and the Arctic amplification may exert a strong feedback
among the air, the ice, and the ocean on the synoptic time scale. In
addition, multi-variable data assimilation schemes are essential for
sea ice forecasts at the synoptic time scale and sea ice predictions at
the seasonal time scale as sea ice has complex features of solid and
fluid, which behaves with a long memory. In future, more advanced
data assimilation algorithms are also required for accurate sea ice
forecasts in the Arctic Ocean.
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