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Experimental variogram modelling is an essential process in geostatistics. The
use of artificial intelligence (AI) is a new and advanced way of automating
experimental variogram modelling. One part of this AI approach is the use of
population search algorithms to fine-tune hyperparameters for better prediction
performing. We use Bayesian optimization for the first time to find the
optimal learning parameters for more precise neural network regressor for
experimental variogram modelling. The goal is to leverage the capability of
Bayesian optimization to consider previous regression results to improve the
output of an experimental variogram using three experimental variograms as
inputs and one as output for network training, calculated from ore grades of
four orebodies, characterised by the same genetic aspect. In comparison to
artificial neural network architectures, the Bayesian-optimized artificial neural
network demonstrably achieved the superior Coefficient of determination in
validation of 78.36%. This significantly outperformed a non-optimized wide,
bilayer, and tri-layer network configurations, which yielded 32.94%, 14.00%,
and −46.03% for Coefficient of determination, respectively. The improved
reliability of the Bayesian-optimized regressor demonstrates its superiority over
traditional, non-optimized regressors, indicating that incorporating Bayesian
optimization can significantly advance experimental variogram modelling, thus
offering a more accurate and intelligent solution, combining geostatistics and
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artificial intelligence specifically machine learning for experimental variogram
modelling.
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geostatistics, experimental variogram, machine learning, neural network, Bayesian
optimization

1 Introduction

Geostatistics is a fundamental domain in the field of earth
sciences and mining engineering, providing critical methods for
spatial data analysis and mineral resource estimation (Abildin et al.,
2022). Among the various techniques employed, the modelling
of experimental variograms plays a vital role. An experimental
variogram, which plots the semi-variance of a regionalized variable
against the distance between sample points, helps in understanding
the spatial continuity and correlation of geological phenomena.
Usually, the route of experimental variograms modelling has been
manual, requiring personal decisions, and extensive trial-and-error
by experienced geostatisticians. This often leads to significant
variances in the results, depending on the individual’s expertise and
the complexity of the data (Pardo-Igúzquiza and Dowd, 2001; Saikia
and Sarkar, 2013; de Carvalho and da Costa, 2021; Liu et al., 2022).

With the advent of Artificial Intelligence (AI) (Ali et al.,
2024a; Ashraf et al., 2024b), especially sophisticated machine
learning methods, there is a hopeful shift towards automating
geostatistical modelling routes (Valakas et al., 2023). Machine
learning is recognized for its power to learn from data and attain
predictions or decisions without being obviously programmed
(Ashraf et al., 2024a). In geostatistics (Hooten et al., 2024),
machine learning can be utilized to automate the cumbersome
and subjective task of experimental variogram modelling,
thereby standardizing the process and enhancing the accuracy of
the models (Nakamura, 2023).

One of the greatest critical sides of employing machine learning
(Liao et al., 2024) in this field is the tuning of hyperparameters,
which significantly influences the performance of the algorithms.
Hyperparameters (Tilahun and Korus, 2023) are the parameters
of the model that are set prior to the learning route, and are
not absolutely learned from the data. Conventional techniques of
hyperparameter setting, such as grid search and random search, are
often sweeping and do not warrant obtaining the optimal solution
within a wise time frame (Dutta et al., 2010).

Bayesian optimization (Asante-Okyere et al., 2022) appears as
an impressive alternative for hyperparameter tuning in complex
models, involving neural networks (Alférez et al., 2021; Chen et al.,
2024). This approach engages a probabilistic model to map the
hyperparameters to a probability of a score on the objective function
(Houshmand et al., 2022; Djimadoumngar, 2023), usually, trying to
minimize loss or maximize accuracy (Tilahun and Korus, 2023).
Bayesian optimization not only meets on searching the parameter
space more efficiently but also uses the results of past calculations to
refine the exploration, making it faster and more operational than
conventional methods (Zhang et al., 2024).

In this study, we introduce a new attempt that uses Bayesian
optimization (Asante-Okyere et al., 2022) to fine-tune the
hyperparameters of a neural network (Ali et al., 2024b) conceived

to model experimental variogram. The purpose is to harness
the potential of Bayesian optimization to not only automate the
process, but also to improve the precision of the neural network
regressor (Ystroem et al., 2023). The regressor is trained using three
experimental variograms as inputs, representing a defined spatial
orientation and sampling densities (Souza et al., 2023), and predicts
an output experimental variogram (the experimental variogram
with the minimum variance) (Phelps and Cronkite-Ratcliff, 2023),
assessed from the ore grades of four orebodies characterized by the
same geological background.

The application of a Bayesian-optimized neural network
regressor to experimental variogram modelling is a pioneering step
in the integration of AI with geostatistics (Fronterrè et al., 2018).
This approach promises to reduce the subjectivity associated with
traditional variogram modelling, offering a more reproducible and
accurate method. By systematically comparing the performance
of Bayesian-optimized and non-optimized neural network
architectures (Houshmand et al., 2022; Djimadoumngar, 2023)
wide, bilayer, and tri-layer configurations (Figure 1), the study
showcases the advantages of optimization in neural network design
for geostatistical applications.

This integration of Bayesian optimization (Asante-Okyere et al.,
2022) with neural network-based regression represents a significant
advancement in the field of geostatistics (Ejigu et al., 2020),
potentially setting a new standard for how experimental variograms
are modelled. By combining sophisticated machine learning
methods (Alférez et al., 2021; Chen et al., 2024) with usual
geostatistical techniques, this research opens up new avenues for
more precise and reliable resource estimation and spatial data
analysis, crucial for the effective exploitation and management of
mineral resources.

2 Material and methods

2.1 Data description

The first step in our methodology involved the collection and
preprocessing of spatial data (Bai and Tahmasebi, 2021) relevant
to experimental variogram modelling (Pesquer et al., 2011). For
this study, we obtained data from four orebodies characterized by
similar genetic aspects (geological background). These orebodies
were chosen to ensure consistency in the spatial characteristics of
the data (Li Z. et al., 2018), facilitating meaningful comparisons
in our analysis. The spatial data included measurements of ore
grades at various locations within each orebody (Liu et al.,
2022). These measurements were used to compute experimental
variograms (Pardo-Igúzquiza and Dowd, 2001), which quantify
the spatial dependence between pairs of data points (Fouedjio,
2016). To warrant the data reliability and accuracy, we performed
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FIGURE 1
Example of neural network architecture.

FIGURE 2
Drillholes spatial location.

careful quality control processes, including outlier detection and
data cleaning. The used dataset in this research includes a
medium-sized database containing 243,808 composite samples from
four orebodies, all sharing the same geological characteristics
(McCormick and Heaven, 2023) as the misinformed orebody,
extracted from 477 drillholes. The assays encompass 16 variables,
including sample coordinates (northing, easting, and elevation),
ore grades and sample length. Sampling was performed at both
regular and irregular intervals, with composite data at a 5 m
sampling interval (Figure 2).

2.2 Experimental variogram modelling

Once the spatial data were collected and preprocessed,
we proceeded to model experimental variograms (Pardo-
Igúzquiza et al., 2013) for each orebody. Experimental variograms
were computed using the traditional method of pairwise differences,
where the variance of the differences between data points, at
different distances is calculated (Rivoirard, 2007). This procedure
grants helpful perceptions into the data spatial structure and
variability, which are fundamental for successive predictive
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modeling (Niu et al., 2024). It’s essentially half the anticipated square
deviation among pair off random functions (Lui et al., 2022), Z(x)
and Z(x+ h) situated at a certain space and bearing vector (with
anisotropy factored in), or else what’s termed as lag h Equation 1:

γ(h) = 1
2
E[{Z(x) −Z(x+ h)}2] (1)

To compute experimental variograms, we followed standard
procedures outlined in the geostatistics literature (Atkinson and
Lloyd, 2007). Specifically, we calculated the semivariance between
pairs of data points at various lag distances, using a predefined
lag tolerance to ensure enough data pairs for reliable estimation
(Afeni et al., 2021). The resulting experimental variograms were
then plotted and analyzed to identify spatial trends and patterns.
Instead of continuous variables, the “experimental semi-variance”
stays described as quasi of the mean square off variation among
quantities that are a certain lag h apart. This means that the γ(h)
(experimental variogram) could be derived for α = 1,2,3,…..,N(h)
couples of samples {Z(xα),Z(xα + h)} at positions {xα,xα + h} split
with a constant lag (h) Equation 2:

γ(h) = 1
2N(h)

N(h)

∑
α=1
[z(xα) − z(xα + h)]

2 (2)

A mathematical model can be applied to the variogram, and its
coefficients can find the best weights for spatial prediction through
Kriging. The model must be conditionally negative semi-definite,
as emphasized by (Atkinson and Lloyd, 2007). Typically, the model
is selected from a set of approved or valid models that meet this
criterion, as discussed in a review by (Li Z. et al., 2018) of commonly
used valid models as spherical model Equation 3 (C0: Nugget effect,
C: Sill, a: Lag, h: Distance between samples).

γ(h) =
{{
{{
{

C0 +C.(
3
2
|h |
a
− 1
2
|h |3

a3
); 0 < |h | ≤ a

C0 +C for |h | > awithC,a > 0
(3)

2.3 Neural network regression

With the experimental variograms computed, we proceeded
to develop neural network regressors (Li X. et al., 2018) for
predicting variogram based on input data using conceived
MATLAB scripts. Neural networks are impressive machine
learning models (Friedman, 2001; Manouchehrian et al., 2012)
able of catching complex relationships in data (LeCun et al.,
2015), through interconnected layers of neurons. In our case,
we used feedforward neural networks (Nwaila et al., 2024),
which involve of an interconnected layers divided into three
input layers, one or many hidden layers, and one output
layeryperparameters to evalua Figure 1.

The architecture of the neural network regressors (Heaton,
2018) was carefully designed to optimize predictive performance
while minimizing computational complexity (Lozano et al., 2011;
Adeniran et al., 2019; Lundberg et al., 2020). We tested with
many configurations, counting different numbers of hidden
layers, activation functions, neurons per layer, and regularization
techniques (Kim et al., 2023). These configurations were chosen
based on practical evidence and domain expertise to confirm the
neural networks efficiency in experimental variogram modelling.

2.4 Bayesian optimization

To fine-tune the hyperparameters (Ystroem et al., 2023)
of the neural network regressor, we engaged Bayesian
optimization (Zhang et al., 2020), an overwhelming optimization
method that powers probabilistic models to guide the quest
for optimal hyperparameters (Asante-Okyere et al., 2022).
Bayesian optimization runs iteratively, operating previous
valuations to update its probabilistic model and select the
next set of hyperparameters to evaluate (Xie et al., 2022;
Rong et al., 2023).

In our implementation of Bayesian optimization (Shahriari et al.,
2016), we used Gaussian process regression (Arabpour et al., 2019;
Phelps and Cronkite-Ratcliff, 2023) to model the objective function,
which in this case was the performance of the neural network
regressor in predicting experimental variogram. We defined
appropriate acquisition functions (Zhang et al., 2020; Hallam et al.,
2022), such as expected improvement or probability of
improvement, to guide the search for optimal hyperparameters
efficiently.

2.5 Model evaluation

To evaluate the performance of the Bayesian-optimized and the
others neural network regressors, we conducted rigorous validation
experiments using a holdout dataset (Adeniran et al., 2019). The
dataset was randomly split into training and validation groups,
ensuring that each set comprised a representative data sample
(Guo et al., 2022).

The neural network regressors were trained on the training
set using the best hyperparameters achieved among Bayesian
optimization (Zhang et al., 2021). The accomplished models
were afterward, evaluated on the validation set, using proper
performance metrics (Wu and Zhou, 1993), like: Mean squared
error (MSE), Coefficient of determination (R2), Mean absolute
error (MAE).

2.6 Comparative analysis

Finally, we conducted a comparative analysis (Soltanmohammadi
and Faroughi, 2023) to assess the performance of the Bayesian-
optimized neural network regressor against non-optimized
configurations (Pavlov et al., 2024). We compared the predictive
accuracy of Bayesian-optimized neural network regressor
with wide, bilayer, and tri-layer networks (Lauzon and
Marcotte, 2022; Kim et al., 2023).

The comparative assessment engaged quantitative valuation
of the performance metrics (Li Z. et al., 2018; Liu et al.,
2022), as well as qualitative assessment of the predictive models
accuracy and robustness (Dutta et al., 2010). By comparison of
different models performance, we aimed to prove the lead of
Bayesian-optimized neural network regressor (Fasnacht et al., 2020;
Houshmand et al., 2022; Costa et al., 2023) in experimental
variogram modelling.
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FIGURE 3
Histograms of orebodies grade.

3 Results

3.1 Geostatistical assessment

Statistical assessment of the composites (Pardo-Igúzquiza et al.,
2013) indicated a notably low difference in ore grades, with a mean
of 0.44% and a standard deviation of 0.76%. However, the coefficient
of variation exceeded one. To ease training of the artificial neural
network (ANN) (Hu and Shu, 2015), the data was normalized using
log transformation. Figure 3 illustrates histograms of normalized
and clustered data for grades of four deposits. Chart inspection of
the histograms indicates that the data predominantly consists of
medium-grade values, with only a small percentage of very high-
grade across all deposits Figure 3.

Following data analysis, we investigated spatial continuity by
creating variogram models (Phelps and Cronkite-Ratcliff, 2023).
Both omni-directional and directional variograms and are crucial
in spatial analyses (Shi and Wang, 2021). However, in our case, we
focused on constructing a downhole variogram for each orebody,
using a conceived macro in Datamine Studio RM and Supervisor.
The dominant direction for each orebody was found, and it was
found that the four obtained directions were nearly identical due

to the shared genetic context. The spatial structures (Mueller et al.,
2020; Souza et al., 2023), as depicted in Figure 4, showed substantial
impacts from the nugget effect, implying challenging conditions for
variogram modelling (Das et al., 2020).

The obtained variogram models offered improved insight
into the deposit, helping in model fitting (de Carvalho and
da Costa, 2021). Figure 4 displays the downhole variogram models
fitted using a spherical model. A significant portion of the
spatial irregularity arising from the nugget effect suggests a
medium spatial correlation structure across the study area, as
indicated by the variogram plot, demonstrating good spatial
correlation (Sharifzadeh Lari et al., 2021).

3.2 Detailed comparison of neural network
models for experimental variogram
modelling

Experimental variogram modelling is a crucial aspect of
geostatistics (Allotey and Harel, 2023), providing insights into the
spatial dependence (Fouedjio, 2016) of ore grades within mining
environments. In this study, we evaluated four different neural
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FIGURE 4
Experimental variograms γe overlayered by the variogram models γm and variances σ2 of all orebodies.

network models for their effectiveness in predicting experimental
variograms based on spatial data from multiple orebodies. Here,
we provide a complete comparison of assessed models founded on
many characteristics and performance metrics Table 1.

The wide neural network (Model 1) (He et al., 2015), with
a single fully connected layer comprising 100 neurons and
ReLU activation, exhibits moderate performance in experimental
variogram modelling. On the validation dataset, it gets an R2 of
0.3294 and an RMSE of 0.1318, then proving an adequate data
fit. Nevertheless, it is performing on the test dataset is relatively
lower, with an RMSE of 0.1461 and a negative R2 of −0.7646,
advocating overfitting or inadequacy in capturing the principal
spatial relationships. Additionally, the model’s Mean Absolute
Percentage Error for both validation (52.1646%) and test (28.5176%)
datasets show an important discrepancy between predicted and
actual values. The absence of regularization in this model may
contribute to its susceptibility to overfitting, particularly given the
limited architecture complexity Figure 5A.

The bilayered neural network (Model 2), featuring two fully
connected layers with 10 neurons each and ReLU activation
(He et al., 2015), demonstrates slightly inferior performance
compared to the wide neural network. Though it reaches the
same RMSE on the validation dataset (0.1492), its R2 value is

remarkably lower (0.1400), suggesting weaker predictive capability.
On the test dataset, however, the bilayered network outperforms
the wide network with a lower RMSE (0.1323) and a less
negative R-squared value (−0.4468). This suggests that the bilayered
architecture may generalize better to unseen data despite its simpler
structure. The MAPE values for both validation (42.9603%) and
test (22.9784%) datasets remain high, indicating notable prediction
errors (Kim et al., 2023) Figure 5B.

The trilayered neural network (Model 3), featuring three fully
connected layers with 10 neurons each and ReLU activation,
exhibits the weakest performance among the neural network
models evaluated. It attains the greatest RMSE on both validation
(0.1945) and test (0.1553) datasets, revealing the smallest accurate
predictions. The negative R2 values on both datasets (−0.4603
on validation, −0.9939 on test) further signify poor model
fit. Additionally, the high MAPE values for both validation
(45.0308%) and test (27.2294%) datasets highlight substantial
discrepancies between predicted and actual values. The trilayered
architecture’s increased complexity does not translate to improved
performance, suggesting potential issues with model capacity or
training convergence (Figure 5C).

The custom neural network (Model 4), optimized through
Bayesian optimization (Figure 5D), emerges as the top-performing

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1474586
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Soulaimani et al. 10.3389/feart.2024.1474586

T
A
B
LE

1
Su

m
m
ar
y
re
su

lt
s
ta
b
le

o
f
th
e
tr
ai
n
ed

N
eu

ra
lN

et
w
o
rk
s.

M
o
d
e
l

n
u
m
b
e
r

P
re
se
t

R
M
SE

(V
al
id
at
io
n
)

M
SE

(V
al
id
at
io
n
)

R
Sq

u
ar
e
d

(V
al
id
at
io
n
)

M
A
E

(V
al
id
at
io
n
)

M
A
E

(T
e
st
)

M
SE

(T
e
st
)

R
M
SE

(T
e
st
)

R
Sq

u
ar
e
d

(T
e
st
)

M
A
P
E
%

(V
al
id
at
io
n
)

M
A
P
E

%
(T
e
st
)

H
yp

e
r-

p
ar
am

e
te
rs

Se
le
ct
e
d

fe
at
u
re
s

O
p
ti
m
iz
e
r

o
p
ti
o
n
s

1
W
id
e

N
eu
ra
l

N
et
w
or
k

0.
13

0.
01
74

0.
33

0.
09
65

0.
11
54

0.
02
13

0.
15

−0
.7
6

52
.1
6

28
.5
2

N
um

be
ro

ff
ul
ly

co
nn

ec
te
d
la
ye
rs
:1

Fi
rs
tl
ay
er

siz
e:
10
0

A
ct
iv
at
io
n:

Re
LU

Ite
ra
tio

n
lim

it:
1,
00
0

Re
gu

la
riz

at
io
n

st
re
ng

th
(L
am

bd
a)
:

0
St
an
da
rd
iz
e
da
ta
:

Ye
s

3/
3

N
ot

ap
pl
ic
ab
le

2
Bi
la
ye
re
d

N
eu
ra
l

N
et
w
or
k

0.
15

0.
02
23

0.
14

0.
10
39

0.
08
56

0.
01
75

0.
13

−0
.4
5

42
.9
6

22
.9
8

N
um

be
ro

ff
ul
ly

co
nn

ec
te
d
la
ye
rs
:2

Fi
rs
tl
ay
er

siz
e:
10

Se
co
nd

la
ye
rs
iz
e:

10
A
ct
iv
at
io
n:

Re
LU

Ite
ra
tio

n
lim

it:
1,
00
0

Re
gu

la
riz

at
io
n

st
re
ng

th
(L
am

bd
a)
:

0
St
an
da
rd
iz
e
da
ta
:

Ye
s

3/
3

N
ot

ap
pl
ic
ab
le

3
Tr
ila
ye
re
d

N
eu
ra
l

N
et
w
or
k

0.
19

0.
03
78

−0
.4
6

0.
09
76

0.
12
19

0.
02
41

0.
16

−0
.9
9

45
.0
3

27
.2
3

N
um

be
ro

ff
ul
ly

co
nn

ec
te
d
la
ye
rs
:3

Fi
rs
tl
ay
er

siz
e:
10

Se
co
nd

la
ye
rs
iz
e:

10
Th

ird
la
ye
rs
iz
e:
10

A
ct
iv
at
io
n:

Re
LU

Ite
ra
tio

n
lim

it:
1,
00
0

Re
gu

la
riz

at
io
n

st
re
ng

th
(L
am

bd
a)
:

0
St
an
da
rd
iz
e
da
ta
:

Ye
s

3/
3

N
ot

ap
pl
ic
ab
le

(C
on

tin
ue
d
on

th
e
fo
llo

w
in
g
pa
ge
)

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2024.1474586
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Soulaimani et al. 10.3389/feart.2024.1474586

T
A
B
LE

1
(C

o
n
ti
n
u
ed

)S
u
m
m
ar
y
re
su

lt
s
ta
b
le

o
f
th
e
tr
ai
n
ed

N
eu

ra
lN

et
w
o
rk
s.

M
o
d
e
l

n
u
m
b
e
r

P
re
se
t

R
M
SE

(V
al
id
at
io
n
)

M
SE

(V
al
id
at
io
n
)

R
Sq

u
ar
e
d

(V
al
id
at
io
n
)

M
A
E

(V
al
id
at
io
n
)

M
A
E

(T
e
st
)

M
SE

(T
e
st
)

R
M
SE

(T
e
st
)

R
Sq

u
ar
e
d

(T
e
st
)

M
A
P
E
%

(V
al
id
at
io
n
)

M
A
P
E
%

(T
e
st
)

H
yp

e
rp
ar
am

e
te
rs

Se
le
ct
e
d

fe
at
u
re
s

O
p
ti
m
iz
e
r

o
p
ti
o
n
s

4
C
us
to
m

N
eu
ra
l

N
et
w
or
k

0.
07

0.
00
56

0.
78

0.
05
84

0.
07
00

0.
00
81

0.
09

0.
33

18
.2
6

16
.9
6

Ite
ra
tio

n
lim

it:
1,
00
0

O
pt
im

iz
ed

H
yp
er
pa
ra
m
et
er
s

N
um

be
ro

ff
ul
ly

co
nn

ec
te
d
la
ye
rs
:3

A
ct
iv
at
io
n:

Si
gm

oi
d

Re
gu

la
riz

at
io
n
st
re
ng

th
(L
am

bd
a)
:1
.2
06
e-
05

St
an
da
rd
iz
e
da
ta
:N

o
Fi
rs
tl
ay
er

siz
e:
26
7

Se
co
nd

la
ye
rs
iz
e:
14

Th
ird

la
ye
rs
iz
e:
3

H
yp
er
pa
ra
m
et
er

Se
ar
ch

Ra
ng
e

N
um

be
ro

ff
ul
ly

co
nn

ec
te
d
la
ye
rs
:1
–3

A
ct
iv
at
io
n:

Re
LU

,T
an
h,

Si
gm

oi
d,
N
on

e
St
an
da
rd
iz
e
da
ta
:Y
es
,N

o
Re

gu
la
riz

at
io
n
st
re
ng

th
(L
am

bd
a)
:

1.
51
52
e-
07
–1
,5
15
.1
51
5

Fi
rs
tl
ay
er

siz
e:
1–
30
0

Se
co
nd

la
ye
rs
iz
e:
1–
30
0

Th
ird

la
ye
rs
iz
e:
1–
30
0

3/
3

O
pt
im

iz
er
:

Ba
ye
sia

n
op

tim
iz
at
io
n

A
cq
ui
sit
io
n

fu
nc
tio

n:
Ex

pe
ct
ed

im
pr
ov
em

en
t

pe
rs
ec
on

d
pl
us

Ite
ra
tio

ns
:3
0

Tr
ai
ni
ng

tim
e

lim
it:

fa
lse

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2024.1474586
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Soulaimani et al. 10.3389/feart.2024.1474586

FIGURE 5
True response vs. Predicted response of the used Neural Networks during validation.

model for experimental variogram modelling. It achieves the
least RMSE on validation and test datasets, 0.0749 and 0.0898,
indicating superior predictive accuracy. With three fully connected
layers, sigmoid activation, and optimized layer sizes (267, 14,
and 3 neurons), Likewise, the model presents a high R2 on the
validation dataset (0.7836), signifying a strong fit to the data.
On the test dataset, although the R2 of 0.3335 is lower, it stays
positive, implying satisfactory model performance. The MAPE
values for both validation (18.2583%) and test (16.9594%) datasets
are significantly lower than those of other models, indicating
improved prediction accuracy and reduced errors. The absence of
data standardization in thismodel suggests that it effectively handles
the input data without requiring normalization, further simplifying
the modelling process Figure 6.

In summary, the custom neural network (Model 4) outperforms
the wide, bilayered, and trilayered neural network models in
experimental variogram modelling. Its greater performance is
ascribed to the hyperparameters optimization through Bayesian
optimization, resulting in an architecture that effectively captures
the underlying spatial patterns in the data. Compared to the other
models, the custom neural network demonstrates higher predictive
accuracy, stronger model fit, and reduced prediction errors, making

it the preferred choice for experimental variogram modelling in
mining applications.

4 Discussion

4.1 Inferences, limits, and future directions
in AI-driven experimental variogram
modelling

Whereas, the study investigates the use of optimized artificial
neural networks models, through Bayesian optimization, for
experimental variogram modelling in geostatistics, which
discussion can cover an investigation of the results, inferences,
limits, and future directions of the research.

4.1.1 Effectiveness of neural network models
The results demonstrate that neural network models,

particularly the custom configuration optimized through Bayesian
optimization, offer promising performance in experimental
variogram modelling. Compared to traditional variogram
modelling techniques and other neural network configurations,
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FIGURE 6
Minimum classification error plot of the Optimizable Neural Network (model 4).

the custom neural network exhibits superior predictive accuracy
and model fit. This underscores the potential of machine learning
approaches, specifically neural networks, in capturing the complex
spatial dependencies inherent in mining datasets.

4.1.2 Bayesian optimization benefits
The employment of Bayesian optimization is confirmed to be

a key factor in improving the performance of neural network
models for experimental variogram modelling. By systematically
exploring the hyperparameter space and leveraging probabilistic
models to guide the search for optimal configurations, Bayesian
optimization facilitates the identification of architectures that
effectively capture spatial patterns. This automated optimization
process not only improves predictive accuracy but also streamlines
model development, reducing the need for manual tuning and
iteration.

4.1.3 Geostatistics and implications
The results of this study have major implications for

geostatistical assessment, by using innovative machine learning
methods, such as neural networks and Bayesian optimization,
mining companies can improve their comprehension of spatial
heterogeneity in ore grades. Accurate experimental variogram
modelling enables more informed decision-making in resource
estimation, mine planning, and optimization, ultimately leading to
improved operational efficiency and profitability.

4.1.4 Limitations and challenges
Although the encouraging results, numerous limitations and

challenges should be acknowledged. The computational complexity

of neural network models, especially when optimized through
Bayesian optimization, may present challenges for execution in
resource-constrained situations. Additionally, the dependence on
historical data for model training may introduce prejudices or
errors, underlining the importance of data quality and typicality in
geostatistical modelling.

4.1.5 Future directions
Future research directions could focus on addressing the

limitations identified in this study and further refining neural
network models for experimental variogram modelling. This
may imply searching another optimization algorithms, such as
genetic algorithms or reinforcement learning, to enhance model
performance and efficiency. Also, adding other features, like geology,
can enhance the model’s strength and generalization capabilities.

5 Conclusion

In this study, we have investigated the use of advanced machine
learning techniques, explicitly neural networks optimized through
Bayesian optimization, for experimental variogram modelling in
geostatistics. Through a comprehensive analysis of four different
neural network configurations and traditional experimental
variogram modelling techniques, we have demonstrated the
effectiveness of the custom neural network architecture in capturing
the complex spatial dependencies inherent in mining datasets. The
results highlight the superior predictive accuracy, model fitness, and
reduced prediction errors achieved by the custom neural network,
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underscoring the significance of optimization methodologies in
enhancing model performance.

Our results promote the extending body of work at the
intersection of geostatistics and machine learning, displaying the
potential of data-driven advances in attending complicated spatial
challenges in mining and resource management. By utilizing
sophisticated machine learning methods, mining companies can
get deeper understandings into the spatial heterogeneity of ore
grades, conducting to more informed decision-making in resource
estimation, mine planning, and optimization. The approval of
neural network models optimized through Bayesian optimization
offers a hopeful avenue for refining the efficiency and accuracy of
experimental variogram modelling, eventually driving operational
efficiency and profitability in mining operations.

However, this study gives valued perceptions into the use
of machine learning techniques for experimental variogram
modelling, various openings for imminent research occur.
Further searching of another optimization algorithms and model
architectures can boost the robustness and generalization of the
model’s capabilities. Also, the incorporation of supplementary
informations, such as geology, geophysical or remote sensing
data, might provide additional background and increase the
accuracy of predictive models. Generally, this work places the
foundation for future research intended at progressing the usage of
machine learning in geostatistical analysis and mining applications,
eventually contributing to sustainable resource managing and
environmental custodianship in the mining industry.
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