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The Inner Northern Apennines (Italy) are a region with a dominant N-S to
NNW-SSE fault system, but dissected and offset by several E-W to NE-SW
trending structures and lineaments. The knowledge about the nature of these
transverse structures, their origin, activity and role in current tectonic motions
is limited and debated. To better establish the location, subsurface shape, and
kinematics of faults related to the Livorno-Empoli lineament, one of the major
transverse structures in the Northern Apennines, we analysed the seismicity in
western Tuscany. In the Viareggio Basin we identified and relocated two distinct
earthquake clusters as well as calculated 12 new focal mechanisms. The results
show that the clusters consisted of several swarms from the years 2006, 2015,
2016 and 2021. The events had a depth between 2 and 15 km and were located
along a NE-SW oriented, SE dipping fault system dissecting the Viareggio Basin.
Focal mechanisms show oblique normal slip. We interpret the fault system to
form a connection between the Viareggio Basin and the Lucca Basin to the east
as well as continuing offshore. The results show that the transversal faults of
the Inner Northern Apennines are seismogenic, with the length, position and
onshore to offshore nature of the fault suggesting reactivation of pre-existing
structures.
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1 Introduction

Transverse tectonic structures are orientated perpendicular or highly oblique to the
main fault trend and are a common feature in different geologic settings. Such structures are
generally not consistent with the Andersonian fault theory in that the fault characteristics
are inconsistent with the regional stress field. They can be found in compressional settings
such as the Alps (Laubscher, 1985; Viola et al., 2001; Zanchi et al., 2012) but also in
ancient as well as tectonically active extensional areas, e.g., Rhine Graben Rift System, East
African Rift, Basin and Range (Illies, 1972; Davis and Burchfiel, 1973; Chorowicz et al.,
1989; Martin et al., 1993; Corti et al., 2018; 2022; Muirhead and Kattenhorn, 2018). Their
morphology, scale, sense of slip motion can vary considerably. Some are active strike-
slip faults, e.g., Garlock Fault (Davis and Burchfiel, 1973) while other structures can
only be described as lineaments, inferred from the offset of faults and basins as well as
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changes within the local tectonic regime on either side of
the lineament (Illies, 1972; Laubscher, 1985; Martin et al., 1993;
Zanchi et al., 2012). On a larger scale transverse structures often
form the border between different kinematic domains or control
large scale segmentation of the tectonic system, and accordingly
in extensional settings they often play a substantial role in basin
development (Davis and Burchfiel, 1973; Gibbs, 1984; Laubscher,
1985; Chorowicz et al., 1989; Morley, 1995; Corti et al., 2018; 2022).
Despite their varying nature and size, transverse structures are most
commonly interpreted to be related to pre-existing structures, which
may be reactivated in the new tectonic field (Illies, 1972; Laubscher,
1985; Chorowicz et al., 1989; Martin et al., 1993; Zanchi et al., 2012;
Corti et al., 2018; 2022; Muirhead and Kattenhorn, 2018). Indeed,
analogue models have shown that fault formation based on pre-
existing structures or weakness zones does not strictly have to obey
the Andersonian fault model, but reactivation is also possible with
a less favourable orientation regarding the new stress field. Their
orientation relative to the new tectonic field, however, influences
their role in the newly forming system (Collettini and Sibson,
2001; Bellahsen and Daniel, 2005; Zwaan and Schreurs, 2017;
Molnar et al., 2019; Maestrelli et al., 2020; Osagiede et al., 2021).

The Northern Apennines of Italy are tectonically active and the
mountain crest marks the transition from orogenic compression in
the east to upper plate extension in the west. Though the Northern
Apennines mountain range is dominated by N-S to NNW-SSE
oriented faults, several E-W to NE-SW oriented faults have been
recognised of different size and importance – they follow the so
called ‘antiapennine-orientation’ (Liotta, 1991; Sorgi et al., 1998;
Pascucci et al., 2007; Viti, 2020; Molli et al., 2021). Despite the clear
E-W offset of several N-S oriented basins and structures, as well
as some transverse structures being traced across the entire Italian
peninsula, these transverse structures are often only expressed
as lineaments and their existence is inferred based on structural
and stratigraphic considerations (Liotta, 1991; Sorgi et al., 1998;
Nirta et al., 2007; Pascucci et al., 2007; Bonini, 2009; Brogi et al.,
2014; Rosenbaum and Piana Agostinetti, 2015; Viti, 2020). The
nature of these structures, their origin and role in current
tectonic motions is debated (Sorgi et al., 1998; Nirta et al., 2007;
Pascucci et al., 2007). Their current activity so far has mainly
been interpreted from offset Quaternary strata and travertine
deposits (Cantini et al., 2001; Pascucci et al., 2007; Brogi et al.,
2014). Constraints from seismicity are few, for example, the 2013
June 21st Mw 5.1 Lunigiana earthquake has been attributed to an
E-W striking structure north of the Apuan Alps (Molli et al., 2016).

In this study, we focus on the analysis of seismicity in the
Viareggio Basin in the Northern Apennines adjacent to one of the
main transverse structures of the Apennines, the Livorno-Empoli
lineament (e.g., Cantini et al., 2001; Nirta et al., 2007; Pascucci et al.,
2007; Rosenbaum and Piana Agostinetti, 2015) to establish the
location, subsurface shape, and kinematics of the faults.We analysed
the Italian Seismological Instrumental and Parametric Data-
Base (ISIDe) (ISIDe Working Group, 2007) earthquake catalogue
from the “Istituto Nazionale di Geofisica e Vulcanologia” (INGV)
between 1985 and 2021 and located as well as relocated two clusters
(onshore and offshore) near Pisa that were active between 2006 and
2021. We show that both clusters can be attributed to transverse
E-W trending structures, showing that these anti-apennine faults

are currently active and seismogenic, are steeply dipping, and show
oblique normal-slip.

2 Geological and seismic setting

2.1 Tectonic evolution and geophysical
background

The Northern Apennines are a NW-SE trending northwards
bent fold-and-thrust belt in northern to central Italy. Their
development started in the Oligocene with the subduction of
Adria-continental crust after the closure of the Alpine Tethys
ocean (Late Cretaceous-Paleocene) (e.g., Boccaletti et al., 1971;
Kligfield, 1979; Carmignani and Kligfield, 1990; Jolivet et al., 1990;
Molli, 2008; Vignaroli et al., 2008; Argnani, 2012). Since then, the
deformation front has been continuously moving to the north-
east and has been replaced in the back by an extension dominated
setting in the west, now called the Inner Northern Apennines
(Figure 1A) (Carmignani and Kligfield, 1990; Argnani et al.,
1997; Pascucci et al., 1999; Carmignani et al., 2004; Barchi, 2010;
Loreto et al., 2021). The way in which the switch from compression
to extension occurred in the Inner Apennines since the Miocene
is still under debate (e.g., Boccaletti and Sani, 1998; Bonini et al.,
2014). However, the current crustal structure, depicted by several
geophysical studies (e.g., Ferretti et al., 2002; Mele and Sandvol,
2003; Li et al., 2007; Di Stefano et al., 2009; 2011; Piana Agostinetti
and Amato, 2009; Di Stefano and Ciaccio, 2014), shows clear
extensional characteristics west of the Apennines crest with a
relatively thin crust of <20 km in some parts of the Ligurian and
Tyrrhenian Sea (Di Stefano and Ciaccio, 2014; Dannowski et al.,
2020). Along the Tyrrhenian coast of the southern part of the
Northern Apennines the Moho is generally estimated to have a
depth of 20–25 km (Ferretti et al., 2002; Mele and Sandvol, 2003;
Li et al., 2007; Piana Agostinetti and Amato, 2009; Di Stefano et al.,
2011; Di Stefano and Ciaccio, 2014) with a continuously thickening
crust towards the east, reaching a maximum thickness of ∼40 km
under the Apennines divide (Ferretti et al., 2002; Mele and
Sandvol, 2003; Li et al., 2007; Piana Agostinetti and Amato, 2009;
Di Stefano et al., 2011; Di Stefano and Ciaccio, 2014).

GNSS measurements show a relative north-eastwards
movement of the Inner Northern Apennines with respect to
the Eurasian plate, with some local variation showing a more
northwards movement along the western side of Apennine chain
(Bennett et al., 2012; Cenni et al., 2012; Viti, 2020; Serpelloni et al.,
2022). The velocities decrease in a westward direction from the
eastern side of the chain (3–4 mm/yr) to the Tyrrhenian coast
(<1 mm/yr) (Bennett et al., 2012; Viti, 2020). However, as can be
seen in Bennett et al. (2012), Cenni et al. (2012) and Viti (2020) the
number of stations along the coast considered in each velocity field
is very sparse. The NE movement is in line with the Italian Present-
Day Stress Indicators (IPSI) (Montone andMariucci, 2016;Mariucci
and Montone, 2020; 2022) showing that the general minimum
horizontal stress (Shmin) west of the water divide is NE-SW oriented
(Figure 1B). However, the stress field changes eastwards to a NW-
SE oriented Shmin on the outer mountain side (IPSI). Based on the
stress distribution, the Inner Northern Apennines are generally
assumed to be under extension in ∼NE-SW direction (Frepoli and
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FIGURE 1
(A) Sketch of Northern Italy with main tectonic setting, the arrow is showing the general movement direction according to GNNS data. Inset showing
the Italian Peninsula with the location of Fig. 1B. (B) INGV ISIDe earthquake catalogue of the Inner Northern Apennines and stress map (IPSI) with the
seismic stations (University of Genoa, 1967; MedNet Project Partner Institutions, 1990; Istituto Nazionale di Geofisica e Vulcanologia, 2005; AlpArray
Seismic Network, 2015) used for location and the orientation of the minimum horizontal stress (Shmin).

Amato, 2000; Montone et al., 2004; Cenni et al., 2012; Montone and
Mariucci, 2016).

2.2 Structural characteristics of the
Viareggio Basin

The area of interest is located in the southern to central part of
theViareggioBasin, the only large basin north of theArno river plain
(Figure 2A). The NW-SE oriented extensional basin consists of an
offshore and onshore part and in total is about 85 km long and up to
40 km wide (Bartole et al., 1991; Argnani et al., 1997; Pascucci et al.,
2006; Molli et al., 2021). The basin fill reaches 3,500 m thickness
of Neogene-Quaternary deposits (mostly marine sand and clay)
resting unconformably on Oligocene to lower Miocene sandstones
(Pascucci et al., 2006; Molli et al., 2021). The basin has a half-graben
geometry with a SW-dipping listric master fault in its southern
part. In the northern part the master fault is associated with a
series of SW-dipping normal faults, creating a step like margin
(Pascucci et al., 2006; Molli et al., 2021).

The topographic borders in the north-east are the Mt. Pisani
as well as the Apuan Alps north of them, both formed mostly by
continental metamorphic units (Conti et al., 2020). The southern
border is considered to be the anti-apennine Livorno-Empoli
transversal lineament which, based on structural consideration, is
thought to have acted as left-lateral strike-slip structure in the
Quaternary (Nirta et al., 2007; Pascucci et al., 2007; Rosenbaum and

Piana Agostinetti, 2015). Offshore the basin is bounded to the south
by the Meloria Shoal fault which is interpreted to be the westwards
continuation of the Livorno-Empoli lineament (Cantini et al., 2001;
Molli et al., 2021). The northern and southern parts of the Viareggio
Basin is assumed to be separated by another transverse structure,
inferred from geophysical data, which possibly can be extended
eastward into the Guappero fault line crossing the Mt. Pisani in the
east (Pascucci et al., 2006; 2007) (Figure 2A).

2.3 Regional seismicity

We use the publicly available ISIDe record of seismic activity
from 1985 to 2021 to understand the subsurface structure and
kinematics of faults. The seismic network underwent major
improvement to the number of seismic stations and accordingly
number of recorded events in 2005 (Figure 2B) (Saccorotti et al.,
2022), after which the catalogue can be considered complete above
magnitude 1.2 (Figure 2D).The catalogue shows extensive seismicity
within the Apennine mountain chain but a rather low seismic
activity in the Inner Northern Apennines especially towards the
coast (Figures 1B, 2A), where no large magnitude events have been
recorded over the past century. Still, some distinct clusters were
recorded. The existing focal mechanism in the region (from 1984,
2006, 2013 & 2022) (see Supplementary Material S1) (Pondrelli
and Salimbeni, 2006; Scognamiglio et al., 2006), of which three are
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FIGURE 2
(A) Map of the Viareggio Basin with main normal faults (red lines and red dashed lines) (mapped after Molli et al. (2021)), available focal mechanisms
(see text for details) and earthquake distribution (ISIDe Working Group, 2007). Coloured events occurred in years of increased seismicity (compare
Fig. 2C) mostly consisting of the two discussed clusters. Events which are part of the relocated clusters are highlighted with a dark outline. (LEL:
Livorno-Empoli-Liniament, NLF: Northern Lucca Fault, MP: Monte Pisano, GP: Guappero Fault, AP: Apuan Alps), (B) Number of earthquake per year
1985–2021, (C) Magnitude distribution by year 1985–2021, colour corresponding to Fig. 2A, (D) Gutenberg-Richter Plot for events after 2005
(b-value = 0.89)

located offshore and one onshore, are in line with the general NE-
SW oriented Shmin (Figure 2A). They all, except for one, display
normal to oblique normal faulting, the exception being the only
onshore event which shows a nearly vertical NW-SE oriented fault
plane. The number of earthquakes recorded in the Viareggio Basin
are not distributed evenly in space and time. Clear peaks in the
seismicity rate occurred in 2006, 2015, 2016 and 2021 (Figure 2C).
These peaks can be correlated with two distinct clusters consisting
of 40 and 80 events. The first cluster, which we call the “Onshore
Cluster”, is located about 10 km west of Lucca and north of Pisa,
just at the southern foot of the Apuan Alps (Figure 2A). The second
cluster, which we call the “Offshore Cluster”, is located, mostly
offshore, about 15 km west to south-west of the Onshore Cluster.
The magnitude of the events in the clusters is generally low with
a maximum magnitude of 2.5 in the Onshore Cluster and 3 in the
Offshore Cluster.

A limitation of the INGV catalogue is that the earthquakes are
located using a single velocity model consisting of a two-layered
crust of 11.1 and 26.9 km thickness (Vp 5 km/s and 6.5 km/s)

plus a mantle layer (Vp 8.05 km/s) for the whole country (e.g.,
Scudero et al., 2021; Latorre et al., 2023). In addition, earthquakes
are initially picked and located automatically, with only earthquakes
above magnitude 2.5 undergoing an additional step of a detailed
manual quality control and reprocessing (Scudero et al., 2021). As
a result, the catalogue and especially small magnitude earthquake
clusters, are commonly not well located and difficult to associate
to known tectonic structures, with location errors at more than
a kilometre scale (Scudero et al., 2021). Furthermore, the INGV
generally only calculates focal mechanism for events ML ≥3.5, and
therefore none are available for the clusters in question leading to a
lack of structural information (Scudero et al., 2021).

3 Data and analysis

In order to improve the INGV catalogue locations
(Figures 3A, 4A), we located the two earthquake clusters using
Hypo2000 utilising an improved velocity model appropriate for the
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FIGURE 3
Earthquake distribution of the Onshore Cluster (A) INGV catalogue, (B) Location by Hypo2000 with maximum and mean horizontal error (transparent
and grey circle (circle extend scaled to map scale)), (C) Relocation with HypoDD (horizontal error below marker size), (D) Newly calculated focal
mechanism with T-trend distribution.

region, and then relocated the clusters with the double difference
relocation code HypoDD. Over the course of processing the
number of events reduced from 120 to 68. Focal mechanisms
for 12 earthquakes were calculated from P- and S-wave polarity
measurements with the programme Focmec.

The identified clusters are part of the INGV ISIDe earthquake
catalogue (1985–2021) (ISIDe Working Group, 2007). The initial
earthquake location and arrival times were downloaded from
the INGV database, for the Onshore Cluster from the Italian
Seismic Bulletin (BSI) (Margheriti et al., 2016; Nardi et al., 2020;
Latorre et al., 2022) and for the Offshore Cluster from the
INGV Earthquake list (https://terremoti.ingv.it/, downloaded
on: 22.11.2023). The station locations as well as the waveforms
used for the focal mechanisms were downloaded from the
INGV Database European Integrated Data Archive EIDA
(Danecek et al., 2021; Mandiello et al., 2023).

The initial earthquake location was done with the programme
Hypo2000 by Klein (2002) using an appropriate velocity model. To

find the best model a variety of velocity models were considered
based on their extent, layering structure and data source (e.g.,
Chiarabba and Frepoli, 1997; Ferretti et al., 2002; Li et al., 2007;
De Luca et al., 2009). Eventually, a velocity model based on the 3D
Vp/Vs grid model by Di Stefano and Ciaccio (2020), created as
described in Di Stefano and Ciaccio (2014), was constructed and
used for the earthquake location. This model was chosen partly due
to the availability of discrete 1D models at 15x15 km grids size. The
grid structure offered the possibility to calculate an average velocity
model for an 8.000 km2 area covering both clusters as well as equally
including the onshore and offshore area. The velocity model used
in the location consists of four layers and can be seen in Table 1.
We used Vp/Vs ratio of 1.7, consistent with the continental nature
of the crust (Piana Agostinetti and Amato, 2009; Di Stefano and
Ciaccio, 2014). The minimum numbers of stations used to locate
an earthquake was 4. We tested several setups in Hypo2000 and
eventually used settings shown in Table 2, which lead to the best
RMS values.

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2024.1474036
https://terremoti.ingv.it/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Kaerger et al. 10.3389/feart.2024.1474036

FIGURE 4
Earthquake distribution of the Offshore Cluster (A) INGV catalogue, (B) Location by Hypo2000 with maximum and mean horizontal error (transparent
and grey circle (circle extend scaled to map scale)), (C) Relocation with HypoDD (horizontal error below marker size), (D) Newly calculated focal
mechanism with T-trend distribution.

TABLE 1 Velocity model used for earthquake location.

Depth (km) Velocity (km/s)

0.0 5.97

8.0 6.28

22.0 7.51

38.0 7.89

We used the earthquake locations as an input for double
difference earthquake relocation carried out with the programme
HypoDD by Waldhauser and Ellsworth (2000). HypoDD is a
common tool to improve earthquake location through relative re-
location (e.g., Tan et al., 2011; Saccorotti et al., 2022; Raggiunti et al.,
2023; Tan, 2024). Due to the double difference method, HypoDD is

TABLE 2 Parameter set up for earthquake location with Hypo2000.

RMS 4 .16 1.5 3

SWT 0.5

DIS 4 500 1 3

POS 1.7

WET 1.0 0.75 0.5 0.25

less dependable on the input velocity model and has more accurate
relative event locations especially in relation to the event depths.The
minimum numbers of links to define an event pair was set to eight
and the minimum number of observations per event pair to 1, as
suggested for small clusters by the HypoDD manual (Waldhauser,
2001). For the relocated we used singular value decomposition
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(SVD) approach for theOffshoreCluster, as this is the recommended
approach for small clusters (Waldhauser, 2001). The number of
events in the Onshore Cluster is too large for the SVD approach
so the conjugated gradient method (LSQR) was used to relocate
the entire cluster. As a quality control the individual swarms of
the Onshore Cluster were relocated as subsets with SVD, which
lead to comparable results and error estimation. The relocation for
both clusters was done in 10 iterations during which the P- & S-
phases were weighted 1 and 0.5, respectively. To remove outliers
and misfits a dynamic cutoff of five was set and the maximal event
separation was set to 15 km. These values were chosen according
to the recommendation in the examples by Waldhauser (2001) and
adjusted to the clusters. The relocation with HypoDD lead to a loss
of events of 33% in the Onshore Cluster and 50% in the Offshore
Cluster. (See Supplementary Material S2 for relocated solutions).

The focal mechanisms were calculated with the programme
FOCMEC by Snoke (2003) and the beach balls created with the
Matlab script “bb.m” (Boyd, 2023). The earthquake location, phase
arrival azimuth and take-off angle were taken from the previous
processing steps. To be considered for focal mechanism calculation
the events needed to have a minimum station gap of 180° and
at least a total of 14 P- and S-polarity recordings. We measured
the polarity of the Sh & Sv waves on the transverse and radial
component, respectively, after rotating the seismogram to the ray-
path coordinate frame. The average variation in the calculated plane
orientations was ± 15° for the strike and dip of the possible nodal
planes (see SupplementaryMaterial S1 for detailed focal mechanism
solutions).

4 Results

4.1 Onshore Cluster

The Onshore Cluster activity was recorded from June 2015 until
November 2021, with three distinct swarms occurring over 1–3
months in 2015, 2016 and 2021. Locating the Onshore Cluster with
Hypo 2000 (Figure 3B) lead to an ∼E-W elongate cluster that is
∼5-km-wide by ∼9-km-long. With a spatial separation between a
shallower set of events to the NW (2015 swarm) and a cumulation
of events with increasing depth to the SE becoming visible. The
relocation with HypoDD (Figure 3C) significantly improved the
location errors from a mean horizontal error of 0.9 km in Hypo2000
to 0.2 km in HypoDD. The mean error in depth after the relocation
with HypoDD is 0.3 km. The relocation lead to a clearer definition
of the cluster in map view and in depth distribution, making
the individual swarms even more distinguishable (Figures 3C, 5B).
The depth distribution of the cluster is from 2 km to 15 km,
with the 2015 swarm distinctly shallower than the other two
swarms. Overall, a deepening of the events towards the SE is clearly
visible. The cross-section furthermore shows the 2015 and 2016
cluster being aligned creating a steeply SE dipping, NE-SW striking
fault plane (Figure 5D). The plane is curved and steepens upwards,
becoming subvertical in the upper few kms.

Nine focal mechanisms were calculated for the cluster
(Figure 3D; Table 3). Most focal mechanism show NE-SW oriented
normal fault with an oblique component that can be more or less
pronounced, while three show a near vertical NE-SW striking fault.

These three focal mechanisms are all in the shallowest part of the
cluster and agree well with the steepening of the shallow part of
the fault visible in the cross-section. The oblique components of
the normal faults are right-lateral in the shallower 2015 events and
left-lateral for the deeper 2016 and 2021 events. The T-Axis is NW-
SE orientated, which is oblique to the regional recorded stress field
as inferred for the area from the very sparse GNSS measurements
and few past focal mechanisms.

4.2 Offshore Cluster

The Offshore Cluster was predominately active over 2 weeks
in August 2006. The earthquake location produced a swarm of
∼5 km x 6 km spatial extent consisting of 25 events (Figure 4B).
The earthquake relocation (Figures 4C, 5A) of 15 events of the
cluster improved the location errors from a mean horizontal error
of 4.3 km in Hypo200 to 0.20 km in HypoDD and a mean vertical
error of 0.8 km. It also improved the spatial definition of the cluster,
reducing the cluster extend to ∼3-km-wide by 5-km-long, leading
to a very narrow cluster. The depth distribution is from 3 to 13 km,
with depth increasing towards the south. This increase in depth
is clearly visible also in the cross-section (Figure 5C), which also
delineates a possible fault dipping to the south or south-east and
strikingNE-SW.Threemeaningful focalmechanismwere calculated
for the cluster (Table 3). All show normal faulting with generally
E-W to NE-SW oriented planes and more or less pronounced right-
lateral component (Figure 4D). This would agree quite well with
the distribution visible in the cross-section. The T-axes of all focal
mechanism are N-S oriented.

5 Discussion

The results of the earthquake relocation improved the spatial
definition of the two clusters. The map view and cross-section
relocations, as well as the focal mechanisms show that the two
clusters are both located along NE-SW striking, SE dipping faults.
The clusters clearly show that these faults are seismogenic.

The orientation of the faults is consistent with that fromprevious
studies on transversal structures in the region (e.g., Pascucci et al.,
2007; Viti, 2020; Molli et al., 2021) of which one structure is
supposed to be bounding the Viareggio Basin in the south and
one crossing the middle of the basin (Pascucci et al., 2006; 2007).
Both relocated clusters, however, are too far north to be attributed
to either of these previously inferred structures. The fault map
from Molli et al. (2021) shows another E-W trending fault ∼4 km
north of the Onshore Cluster. Which could be, if extended offshore,
related to the Offshore Cluster. Based on the currently mapped
location of the fault, this fault is too far north to be related to the
Onshore Cluster given the cluster’s steep fault plane. However, as
none of the E-W striking faults display any morphology evidence
at the surface its precise location might need to be reconsidered.
Based on its location and orientation the Onshore Cluster can
be reasonable associated to be the westwards continuation of the
Northern Lucca Fault (Molli et al., 2021), bounding the Apuan Alps
to the south-east.
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FIGURE 5
Relocated earthquakes of the (A) Offshore Cluster and (B) Onshore Cluster with 2D cross-section (orange lines) and updated (red line) fault map (black
lines) showing the depth distribution of the (C) Offshore and (D) Onshore Cluster in NW-SE and SW-NE direction (see Supplementary Material S1 for a
3D cross-section).

The 3D geometry of the interpreted faults on which the two
relocated clusters occurred are co-linear and sub-parallel. From
this, we interpret the earthquake clusters likely occurred on the

same fault or fault system, suggesting that the transversal structures
identified onshore likely continue offshore. An onshore-offshore
connection would support previous tentative interpretations that
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TABLE 3 Source Parameters of the focal mechanism of the Onshore and Offshore Cluster.

Date, Time ML Latitude Longitude Depth (km) S/D/R (°)a T-T/P (°)b

Onshore Cluster

F1 25.07.2015, 00:55:14 2.0 43.820483 10.35114 6.1 57/70/-101 155/25

F2 28.07.2015, 04:23:14 1.8 43.831018 10.353593 5.4 220/5/-90 130/40

F3 08.08.2015, 08:18:57 1.0 43.82419 10.345156 5.8 230/85/85 134/50

F4 08.08.2015, 13:49:24 1.4 43.820341 10.345205 6.1 61/55/-150 009/07

F5 19.07.2016, 05:19:18 1.2 43.804244 10.359141 11.0 34/65/-51 097/12

F6 19.07.2016, 06:14:51 1.2 43.805465 10.35603 9.5 48/77/-59 115/26

F7 15.08.2016, 10:13:21 1.0 43.800781 10.366768 11.0 40/66/-51 102/12

F8 25.10.2021, 13:43:39 1.0 43.839364 10.389122 7.3 215/85/85 119/50

F9 30.10.2021, 05:24:37 1.2 43.808516 10.367537 8.9 16/70/-79 096/25

Offshore Cluster

F10 16.08.2006, 17:07:55 2.5 43.768123 10.169592 12.7 148/25/-11 359/36

F11 16.08.2006, 17:16:40 2.5 43.771944 10.164218 11.0 94/46/-76 354/00

F12 22.08.2006, 04:34:03 1.8 43.768119 10.162038 6.7 304/29/-29 170/27

aS/D/R: Strike/Dip/Rake.
bT-T/P: T-Trend/T-Plunge.

other major transverse faults in the region, such as the Livorno-
Empoli lineament and the Guappero fault, are potentially also
continuing offshore (Cantini et al., 2001; Pascucci et al., 2006; 2007).

The two clusters also show that the associated transverse
structures do not display pure normal or strike-slip faulting but are
mostly oblique slip. While the Offshore Cluster only shows a right-
lateral component, the slip direction in the Onshore Cluster is not
unique and changes with depth along the fault (Figures 3D, 4D). In
the shallowest part the focal mechanisms of the Onshore Cluster
show a vertical fault plane and with an increase in depth the dip
angle decreases to 60–70° while the focal mechanisms become more
oblique slip. The sense of obliquity switches below 9 km depth from
right-lateral to left-lateral.This change occurs despite the orientation
of the slip vector and T-axes not changing with depth, with the
change in slip type fully consistent with the decrease in dip angle
and anti-clockwise rotation of the fault strike with increasing depth.

A clear difference between the Onshore and Offshore clusters is
the orientation of the T-Axis, which also differs from the regional
trend (Figures 1B, 3D, 4D). In the region the general observed
direction of horizontal minimum stress is NE-SW (Cenni et al.,
2012; Viti, 2020). The Offshore Cluster shows a slight change from
the general trend with a N-S oriented T-Axis. The bigger deviation
from the general trend is visible in theOnshore Cluster, which shows
a NW-SE direction, so a 90° change from the regional trend. Such
variations in the stress field are not unusual and examples can be
found worldwide (Tingay et al., 2006; Heidbach et al., 2007; 2010;
Pierdominici and Heidbach, 2012). One example is the spatially

variable stress direction in the North German Basin attributed
to regional effects (e.g. an inherited suture zone, postglacial
rebound, increase of lithospheric strength or crustal thickness, salt
diapirs) (Tingay et al., 2006; Heidbach et al., 2007; Reiter, 2021).
Such variations are due to the fact that the stress orientation is not
just influenced by the plate boundary forces, but is also sensitive to
second- and third-order factors (e.g. topography, density contrast
active faults and open fractures) influencing the stress field on
much a smaller scale (Bell, 1996; Tingay et al., 2006; Heidbach et al.,
2007). Accordingly, one possible, local, cause, for the change in the
Onshore Cluster is the proximity between the Apuan Alps and the
Viareggio Basin and the concomitant material contrast leading to
a contact parallel orientation of the maximum horizontal stress.
Also, weak faults and open fractures, acting as a free surface, lead to
reorientation of the maximum horizontal stress parallel to the fault
plane (Bell, 1996; Tingay et al., 2006).

In extensional systems transverse faults often have their origin
in inherited heterogeneities in the crust, and these faults commonly
mark the connection between two step-over faults or basins
oriented in line with the main fault trend (Illies, 1972; Morley,
1995; Zanchi et al., 2012). The lineaments inferred in the Northern
Apennines might be related to inherited heterogeneities going as
far back as the continental margin of Adria in the opening of the
Ligurian-Piedmont ocean in the Jurassic or even further back in
time to the Triassic (Liotta, 1991; Nirta et al., 2007) and could have
experienced reactivation during the Oligocene thrusting as well as
during the following extension (Sorgi et al., 1998). The Northern
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Lucca Fault and its now identified westwards continuation could
be the connection between the master fault of the Viareggio Basin
and the faults bounding the Lucca basin to the east. Assuming both
clusters are indeed along one fault system would indicate that it is
a larger structure, which may influence linkage between en-echelon
basins such as the Viareggio Basin to the Lucca Basin in the east.The
lateral step of about 20 km between these two basins is similar to
what is suggested for other offset basins in the Northern Apennines
supporting the interpretation that the basin segmentation can be
attributed to the presence of transverse structures (Liotta, 1991;
Sorgi et al., 1998; Pascucci et al., 2007). Indeed, further to the south,
in the central Apennines, similar NE-SW transverse structures have
been interpreted as transfer faults, which developed in a significantly
stretched crust between theNW-SE oriented normal faults (Acocella
and Funiciello, 2006).

Large scale transverse structures are oftenmarking the transition
between rift segments accommodating differential extension (Davis
andBurchfiel, 1973; Laubscher, 1985;Martin et al., 1993; Corti et al.,
2018). These differences are often expressed at the surface in
large scale morphological changes. Indeed the faults associated
with the two clusters are located at the transition between major
topographic–geomorphic changes visible north and south of the
Arno Plain. This difference in morphology is thought to be the
surface expression of the differently developed extensional systems
in the region (Carmignani and Kligfield, 1990; Pascucci et al.,
2007; Rosenbaum and Piana Agostinetti, 2015). Generally the
transition between the two extensional regimes is thought to be
accommodatemainly by the Livorno-Empoli lineament (Nirta et al.,
2007; Rosenbaum and Piana Agostinetti, 2015). Molli et al. (2021)
suggests that some faults of the transverse E-W trending system
might be reactivated by oblique slip along the dominant N-S
trending fault system. This might also be the case for the Northern
Lucca fault and its westward continuation. Furthermore, it is likely
that this fault system might, due to its size and location at a major
topographic step, additionally accommodate part of the movement
generally attributed to the Livorno-Empoli lineament. The origin
of the differential development of the extensional regime in the
region is still under debate. Rosenbaum and Piana Agostinetti
(2015) attributes the different extensional development to deep
seated processes connected to along strike variation in slab rollback
rates such as an increase in slab rollback velocity south of the
Arno plain and possibly underplating north of it (Di Stefano et al.,
2009; Chiarabba et al., 2014) leading to a possible tearing of
the subducting Adratic slab. Another possible explanation or
influence factor for the differential extension is the rotational,
counter-clockwise, movement of the Apennines-Adriatic system
(Le Breton et al., 2017) since theOligocene leading to the bending of
themountain chain and possibly causing theNorthernApennines to
move as separate, independent blocks with the transverse structures
accommodating the movement between the blocks (Nirta et al.,
2007; Cenni et al., 2012; Rosenbaum and Piana Agostinetti, 2015).

6 Conclusion

We analysed and relocated one onshore and one offshore
earthquake cluster in the Viareggio Basin, Northern Tuscany,
occurring between 2006 and 2021 – to improve the spatial and

depth distribution of seismicity. The results for the Onshore Cluster
showed clear spatial separation between three swarms at a depth of
2–15 km. The Offshore Cluster consisted of a single swarm 3–13 km
deep. We also calculated 12 new focal mechanisms from P- and
S-polarity recordings. All data showed a coherent picture of an
active NE-SW striking, SE dipping transversal fault system with
oblique normal-slip with a predominately right-lateral component,
but with a left-lateral component for the deeper swarm (>9 km) of
theOnshoreCluster.The clusters are co-linear andwe interpret them
to be part of a single fault system, likely the westwards continuation
of the Northern Lucca fault. The system is dissecting the Viareggio
Basin and connects it with the Lucca basin, possibly influencing
the basin segmentation and development. The results show that the
transversal structures of the Inner Northern Apennines, many of
which lack clear surface morphologic expression, are seismogenic.
The length, position and onshore-to-offshore nature of the fault
systems suggests reactivation of pre-existing structures.
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