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Remote sensing identification of
shallow landslide based on
improved otsu algorithm and
multi feature threshold

Jing Ren, Jiakun Wang*, Rui Chen, Hong Li, Dongli Xu,
Lihua Yan and Jingyuan Song

Sichuan Leshan Geological Engineering Survey Institute Group Co., Ltd, Leshan, Sichuan, China

In low-resolution remote sensing images under complex lighting conditions,
there is a similarity in spectral characteristics between non-landslide areas
and landslide bodies, which increases the probability of misjudgment in the
identification process of shallow landslide bodies. In order to further improve
the accuracy of landslide identification, a shallow landslide remote sensing
identification method based on an improved Otsu algorithm and multi-feature
threshold is proposed for the temporary treatment project of the Yangjunba
disaster site in Leshan City. Using Retinex theory, remote sensing images are
enhanced with local linear models and guided filtering; then, multi-feature
scales and sliding window calculations of opening and closing transformations
identify potential landslide areas, which are finally segmented using the Otsu
algorithm. Through experimental verification, the method proposed in this
article can clearly segment the target object and background after binary
segmentation of remote sensing images. The recognition rate of shallow
landslide bodies is not less than 95%, indicating that themethod proposed in this
article is relatively accurate in identifying shallow landslide bodies in the research
area and has good application effects.
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1 Introduction

Global climate change has led to a significant increase in the number and
scale of rainfall landslides, posing greater threats to human activity areas such as
roads, houses, farmland, and residential areas (Amarasinghe et al., 2024). The initial
stage of a rainfall landslide is a shallow landslide that occurs on the surface or in
shallow soil (Su et al., 2024). Therefore, how to effectively identify and monitor shallow
landslide bodies has become an important issue that urgently needs to be addressed
in the field of geological disaster prevention and control (Wang et al., 2024). Remote
sensing technology has demonstrated unique advantages in identifying and monitoring
geological hazards (Liang and Sun, 2023). Through the interpretation of remote sensing
images, rapid identification and dynamic monitoring of landslide bodies can be achieved,
involving the accuracy of landslide disaster identification and monitoring efficiency
and providing strong technical support for geological disaster prevention and control.

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2024.1473904
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2024.1473904&domain=pdf&date_stamp=2024-09-06
mailto:13508131369@163.com
mailto:13508131369@163.com
https://doi.org/10.3389/feart.2024.1473904
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2024.1473904/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1473904/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1473904/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1473904/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Ren et al. 10.3389/feart.2024.1473904

In the face of increasingly severe environmental changes and
geological disasters, it is particularly important to study remote
sensing identification methods for shallow landslide bodies.

Jiang W et al. (2023) proposed a landslide disaster remote
sensing image recognition method based on AED Net (Attention
combined with Encoder De der Network). Optimizing the multi-
scale feature extraction capability of deep neural networks using
shallow feature extraction networks and combining the feature
restoration ability of the encoder-decoder structure to restore
the boundary information of landslide disaster remote sensing
images, an AED Net model is constructed to complete landslide
disaster identification. This method does not consider the close
spectral characteristics between non-landslide areas and landslide
bodies, significantly increasing the probability of misjudgment in
identifying landslide bodies under background interference.

Du et al. (2023) proposed a high-resolution remote sensing
image landslide identification and detection method based on
DETR. Using the Transformer as the primary research method
and combining the advantages of convolutional neural networks,
a DETR network was constructed to augment the remote sensing
images dataset through offline data augmentation algorithms. By
leveraging the structural advantages of the encoder-decoder, the
DETR network was trained and predicted to identify landslide
changes in remote sensing images (Liu et al., 2024). However, when
the landslide mass is small, or the remote sensing image resolution
is low, DETR may have difficulty accurately segmenting the shallow
landslide mass from the background, resulting in poor detection
performance.

Xin et al. (2023) proposed combining image recognition
technology with computer vision technology to extract local
deformation features of landslides and monitor the entire slope.
At the same time, time series image data was combined with
machine vision data for analysis, and a landslide model was used
to simulate the deformation and displacement during the landslide
process. The deformation and displacement of the landslide were
verified by combining drone orthophoto data (Qiu et al., 2024).
However, landslide monitoring often faces complex and variable
environmental conditions, such as changes in lighting, weather
influences (such as rain, fog, snow, etc.), and vegetation coverage.
These factors may lead to a decrease in image quality, thereby
affecting the accuracy of recognition and monitoring.

Zheng et al. (2024) used LiDAR data to extract geomorphic
features and analyzed the deformation characteristics of landslide
locations using InSAR technology. The deformation rate and range
were determined through time-series deformation information,
and the landslide boundary was identified using unmanned aerial
vehicle radar (Wei et al., 2024).The principle of geometric distortion
was used to correct remote sensing images, achieving real-time
monitoring of landslide deformation. However, in complex lighting
environments, using only geometric distortion correction as a
method is difficult to effectively enhance the clarity of remote
sensing images, which affects the subsequent recognition of shallow
landslide targets that are difficult to detect.

In response to the problem that existing research methods
are difficult to accurately identify small shallow landslide bodies
in low-resolution remote sensing images under complex lighting
environments, this paper proposes a shallow landslide body
remote sensing identification method based on the improved

Otsu algorithm and multi-feature threshold 1 (He et al., 2024a).
Innovatively combining Retinex enhancement and guided filtering
methods to enhance the clarity of remote sensing images in
complex lighting scenarios. Due to the complex terrain information
contained in remote sensing images, in order to segment small
shallow landslide targets in complex backgrounds and distinguish
various spectral features between non-landslide areas and landslide
bodies, this paper uses multiple feature thresholds to remove invalid
or redundant background features, thereby improving the accuracy
of image segmentation.The traditional Otsu algorithm can perform
image segmentation by automatically selecting a threshold in image
processing. However, it is easy to ignore the spatial relationship
of pixels and reduce the segmentation effect. Therefore, this paper
innovatively uses the Monte Carlo iteration strategy to improve
it, optimize the flexibility and applicability of landslide remote
sensing identification, and improve the accuracy and efficiency of
identification.

2 Data and method

2.1 Data

2.1.1 Overview data of the experimental area
This article takes the temporary remediation project of the

Yangjunba disaster site in Suji Town, Yanlong Village, Shizhong
District, Leshan City, as the research object and conducts remote
sensing identification research on shallow landslide bodies. The
geographical coordinates of this area are E: 103°39′0.49″, N:
29°34′20.81″, and the elevation range of the exploration area is
roughly between 400 and 500 m. The geomorphic features are hills
with significant undulations and steep slopes in some areas. There
are also rural roads leading directly to the landslide area, providing
convenient transportation conditions. The landslide body is located
in an “m” - shaped micro gully area on a hill slope, with a rear
edge elevation of 455 m and a front edge elevation of 407 m, with a
height difference of 48 m. The landslide body is tongue-shaped and
has a regular shape. It extends from the north side to the exposed
bedrock, from the south side to the deformation boundary of the
landslide, from the east side (front edge of the landslide) to the
houses and village roads of the villagers, and from the west side
(rear edge of the landslide) to the exposed bedrock. The landslide
mass in this area has been deformed since July 2018, with transverse
tensile cracks appearing in the middle of the slope and signs of
forward movement of the retaining walls of some houses at the
front edge. On 6 August 2019, Leshan was hit by an extremely
heavy rainstorm once in 50 years, with a maximum daily rainfall of
380 mm. After the heavy rainfall, the landslide mass in this area was
deformed again, and a downward dislocation crack appeared at the
rear edge. The deformation of the retaining wall behind the house
was aggravated, and the soil mass of the steep slope collapsed. In
August 2020, the central district of Leshan City experienced another
general rainstorm, with continuous rainfall from the 15th to the
17th, and the maximum rainfall intensity from 11:00 on the 17th to
2:00 on the 18th, exceeding 50 mm/h, leading to the aggravation of
mountain deformation. At present, the landslide is about 110 m long
and 55 m wide along the slope, with an area of about 6,050 square
meters.Themain sliding direction of the landslide is 115°, and there
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FIGURE 1
Local landslide cracks.

are tensile cracks of varying widths at the rear and middle of the
landslide. Among them, the deformation of the central tensile crack
is the most significant, with a width of about 30–40 cm, a north-
south direction, and an extension length of about 27 m. On the right
boundary, there is a sunken crack deformation with a width of about
5–15 cm, running nearly east-west and extending for about 110 m.
On the right side of the retaining wall behind Xie Renzhong’s house
at the front edge of the landslide, perennial clear water can be seen
flowing out between the bedrock layers, while on the back edge of
the landslide, brick red sandstone bedrock is exposed, with a rock
attitude of 310°∠ 4°. The middle crack L1 and the north crack L2 of
the landslide in this area are shown in Figure 1.

The landslide stability is poor, and large-scale collapse and
damage are possible. Therefore, it is necessary to conduct remote
sensing image recognition of shallow landslide bodies in this area to
identify the geological hazard characteristics of the landslide, which
is representative of the experimental target.

2.1.2 Experimental remote sensing data
In response to the on-site landslide case, five wide-swath

panchromatic remote sensing images were captured using the
Gaofen-1 satellite, and landslide recognition experiments were
conducted based on the image data. The remote sensing image of
the research area is shown in Figure 2.

The width size of these images is 8,192×2048 pixels, with a
pixel width of 8 bits, and the data volume of a single image
reaches 128 Mbit. In order to improve recognition accuracy, images
with significant differences in grayscale values were selected, where
the ground area contains interference factors such as vegetation
with higher grayscale values. Divide satellite image data and
digital elevation model data based on spectral characteristics
and spatial resolution. The digital elevation model of the region
is shown in Figure 3, and the data parameter information is
shown in Table 1.

2.2 Method

Figure 4 shows the shallow landslide remote sensing
identification process based on the improved Otsu algorithm and
multi-feature threshold studied in this article.

According to the process shown in Figure 4, firstly, the remote
sensing image is enhanced and smoothed based on the Retinex
theory and the local linear model. Then, multi-scale feature values
of the remote sensing image background and landslide targets are
extracted. Finally, theOtsu algorithm is used to segment the remote-
sensing images of landslide bodies. Improve the binary threshold
processing of the Otsu algorithm, use the optimal threshold to
segment the image into foreground and background, and achieve
remote sensing recognition of shallow landslide bodies.

2.2.1 Image preprocessing replace
Remote sensing images may be affected by various factors,

such as atmospheric disturbances, cloud cover, sensor noise,
etc., during transmission and acquisition (Tao et al., 2022).
Therefore, the accuracy of recognition can be improved by
enhancing remote-sensing images (Lin et al., 2023). However,
using a single enhancement method alone may not achieve
the desired effect (Ye et al., 2024). Therefore, this article
innovatively combines the Retinex enhancement and guided
filtering methods to adapt to this complex lighting scene,
improving the processing effect and practicality of remote
sensing images.

The Retinex theory emphasizes color constancy, which means
that the color perception on the surface of an object should remain
consistent under changing lighting conditions (Yang et al., 2024).
It can effectively handle highlight and shadow areas in the image,
making the brightness distribution of the image more uniform and
also restoring color information lost due to lighting changes in
the image (Li et al., 2023). Guided filtering uses a guided image
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FIGURE 2
Location of the study area and the general situation of the landslide.

FIGURE 3
DEM model.
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TABLE 1 Raw data parameter information.

Raw data Spectral range/μm Spatial resolution/m

Gaofen-1 (GF-1)
Satellite imagery data

0.45∼0.90 2.00

0.45∼0.52

8.00
0.52∼0.59

0.63∼0.69

0.77∼0.89

Digital Elevation Model (DEM) — 30.00

Input the DEM, model and remote sensing data of working conditions into the Revit2020 database. Divide the database data into training and testing sets in a 3:1 ratio. The training set data is
input into the TensorFlow model training and learning framework for training processing, while the test set data is used for testing.

FIGURE 4
Remote sensing image segmentation and recognition process.

to guide the filtering process. Compared to other edge-preserving
filtering methods, such as bilateral filtering, guided filtering has
lower computational complexity. It can process large-scale images
faster, making it suitable for preprocessing high-resolution remote-
sensing images. However, it has disadvantages in color enhancement
of low-resolution images. The Retinex enhancement performs well
in dynamic range compression, edge enhancement, and color
restoration but may have shortcomings in smoothing processing.

Guided filtering is adept at achieving smoothing while preserving
edge information (Panigrahi and Gupta, 2022). The combination
of the two can compensate for their respective shortcomings
and achieve a more comprehensive image enhancement effect by
starting from image enhancement and image smoothing (He et al.,
2024b). Therefore, this article combines the Retinex enhancement
algorithm and guided filtering algorithm to preprocess remote
sensing images.
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2.2.1.1 Remote sensing image enhancement processing
based on retinex

The Retinex enhancement method can effectively handle the
quality loss caused by uneven lighting on shallow landslide
remote sensing images, improve the brightness, contrast, and color
expression of the images, and enhance the clarity of remote sensing
images. In the Retinex algorithm, shallow landslide remote sensing
images can be represented as:

S(i, j) = L(i, j) ×R(i, j) (1)

In the formula, S(i, j) represents the original shallow landslide
remote sensing image; (i, j) represents the pixel points of shallow
landslide remote sensing images; L(i, j) and R(i, j) represent the
illumination component and reflection component, respectively.

The irradiation component mainly involves light source
conditions, including factors such as solar position, angle, and
atmospheric conditions. These factors can affect the brightness
distribution and contrast of ground objects in remote sensing
images, thereby affecting the identification and analysis of landslide
bodies.The reflection component is related to the physical properties
and geometric shape of surface objects, including the material,
humidity, roughness, etc., of landslide bodies (He et al., 2023).These
factors will affect the reflection characteristics of the landslide body
to light, and to some extent, affect the characteristics of the landslide
body in remote sensing images. Multi-Scale Retinex (MSR) can
adjust the contrast and brightness of an image while preserving
its detailed information. In order to highlight the characteristics
of the landslide body and improve the readability of the image, it is
necessary to process the illumination L(i, j) by removing or reducing
the influence of the illumination component, thereby highlighting
the reflection component that reflects the surface characteristics of
the object. The calculation formula for MSR is:

lg R(i, j) = lg S(i, j) − lg [G ∗ L(i, j)] (2)

In the formula, ∗ is the convolution operation; G stands for
Gaussian filter scale, and its calculation formula is:

G = u exp[
−(i2 − j2)

σ2
] (3)

In the formula, u represents Gaussian filter; σ stands for
Gaussian kernel.

After filtering through multiple Gaussian kernels, the reflection
components at this scale can be extracted to enhance the
color and detail of shallow landslide remote sensing images
and obtain Retinex-enhanced remote sensing images I(i, j). The
calculation formula is:

I(i, j) =
N

∑
m=1

Wm{lg S(i, j) − lg R(i, j) + g[G ∗ S(i, j)]} (4)

In the formula, Wm represents the fusion weight in the m-th
number field.

After completing color detail enhancement, the edges of low-
resolution remote sensing images in complex lighting scenes are
prone to blurring, so smooth filtering is required.

2.2.1.2 Smooth processing of remote sensing images based
on guided filtering

To further enhance the edge details of shallow landslide remote
sensing images, a local linear model guided by filtering is used
to apply smoothing filtering to the obtained enhanced remote
sensing image I(i, j), improving the edge details of the image. The
calculation formula is:

qi = ahCi + bh, ∀i ∈ h (5)

In the formula, qi represents the output image of the guided
filtering algorithm after filtering pixel i in remote sensing image
I(i, j); ah and bh represent the linear coefficients of remote sensing
images during filtering processing; h represents the window used
in the smoothing filtering process; Ci represents the radius of the
window for pixel i during the smoothing filtering process. Using
qi as the guiding image, substitute remote sensing image I(i, j) and
apply the minimum cost function to constrain its implementation.
The calculation formula is:

E(qi) =∑
i∈h
[(ahCi + bh − pi)

2 + εa2h] (6)

In the formula, pi represents the number of pixels; ε stands for
regularization parameter.

Using linear regression analysis method, the remote sensing
images under guided filtering are smoothed to obtain the
smoothed shallow landslide remote sensing image J(i, j). The
calculation formula is:

J(i, j) = 1
σ2h + ε

1
|h|E(qi)

∑
i∈h

Cipi − uph (7)

In the formula, u represents the number of iterations of the local
linear model smoothing filtering process; ph stands for pixel mean.

Based on Formulas 1–7, complete remote sensing image
preprocessing using the Retinex enhancement algorithm and guided
filtering algorithm, providing clear image data for subsequent
landslide identification.

2.2.2 Landslide feature extraction replace
Remote sensing images typically contain complex terrain

information, such as water bodies, vegetation, buildings, etc.,
which exhibit different features in the image, such as color,
texture, shape, etc. Multi-feature thresholds can be used to screen
for features that have a significant impact on the segmentation
results of the target, removing invalid or redundant features
(Deng et al., 2024; Senogles et al., 2023). By setting reasonable
threshold conditions, the most representative subset of landslide
target features can be selected to more finely distinguish between
these terrain backgrounds and landslide targets, thereby improving
the accuracy of image segmentation.

In the task of landslide segmentation and recognition,
traditional recognitionmodels often rely on the spectral information
features of a single pixel target to classify and determine landslide
bodies. However, current hyperspectral remote sensing images
reveal that even within potential landslide areas, differences in
spectral information between different regions may be significant,
while spectral features between certain non-landslide areas and
landslide bodies may be closer (Niu et al., 2023; Peters et al.,
2024). This phenomenon greatly increases the noise interference
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FIGURE 5
The process of extracting morphological features from remote
sensing images.

in the landslide identification process, which can easily lead to
misjudgment, such asmisclassifying non-landslide areas as landslide
bodies or omitting landslide bodies. Therefore, this article delves
into and integrates multiple spectral features in remote-sensing
images based on traditional single-pixel spectral features. These
features can capture subtle spatial changes in the landslide body
and its surrounding environment, such as abnormal changes in
surface morphology, specific patterns of vegetation coverage, etc.,
providing richer information for accurate identification of landslide
bodies. By comprehensively utilizing these features, it is possible to
better depict the spatial details of landslide bodies and improve the
accuracy and reliability of landslide body identification. Therefore,
in the process ofmulti-feature extraction for landslide identification,
special attention is paid to the extraction of spatial features, which
contain geographical information about the landslide and its
surrounding environment and are crucial for accurate identification
of the landslide. Spatial features can be further subdivided into
morphological features and attribute features (Rajan et al., 2024).

In the extraction of morphological features, a fixed-sized
window is used to slide scan remote sensing images. By
operating this switch window, the connected pixel regions in
the remote sensing image are identified and connected, which
often reflect key spatial features such as the shape contour and
edge changes of the landslide body, effectively highlighting the
spatial distribution characteristics of the landslide body. The entire
extraction process can be visually demonstrated through a diagram,
as shown in Figure 5:

In Figure 5, the green box represents the ABC window range,
and the gray block refers to the target area. The white block is
the background area. The annotated sliding window is considered
a key structural unit for landslide identification, where A, B,
and C represent three typical situations that the window may

encounter when scanning landslide remote sensing images.Window
A simulates an idealized scenario where the feature values (such
as spectral reflectance, texture features, etc.) of all pixels within the
window are almost equal.This is rare in actual landslide recognition
and may indicate uniform regions or specific backgrounds in the
image. Window B reflects a more common situation in landslide
identification, where at least one pixel in the area covered by the
window has a feature value that is not equal to other points. This
difference may be caused by changes in geological features at the
edge of the landslide body, different parts of the landslide body, or
differences in vegetation coverage, which are crucial for identifying
the morphology, scale, and boundaries of the landslide body.
Window C describes an extreme situation where all expected pixel
feature values within the window are significantly different from
those outside the window boundary. This situation may indicate a
strong contrast between the landslide body and the surrounding
environment, such as the contrast between the exposed rocks of
the landslide body and the dense vegetation around it, which is of
great significance for quickly locating the location of the landslide
body. However, in practical applications, the situation of window C
is relatively rare and requires careful handling to avoidmisjudgment.
The transformation function for opening and closing the above
window is as follows:

{
{
{

s( f1(J(i, j))) = ( f ⊙ s) ⊕ s

s( f0(J(i, j))) = ( f ⊕ s) ⊙ s
(8)

In the formula, s( f)1 represents the transformation function
under the window opening operation; s( f)0 represents the
transformation function under window closure operation; s stands
for sliding window; f represents the area covered by the window;
The ⊕ symbol represents the characteristic changes of expansion; ⊙
represents the characteristic changes of corrosion.

After extracting morphological features using the above
formula, it is also necessary to extract attribute features from remote-
sensing images for landslide recognition. Extract feature vectors of
length 2n from each pixel for images of different resolutions. By
using dimensionality reduction techniques, these high-dimensional
data are effectively compressed while preserving key information
and arranging feature values in an orderly manner to reflect their
importance. The core of the attribute feature extraction process for
landslide identification lies in the use of carefully designed attribute
filters, which calculate the feature values of the potential coverage
area of the landslide based on specific attribute sets such as terrain
slope, vegetation index, soil moisture, etc. (Kusunose et al., 2022).
During this process, the selection and definition of attributes are
highly flexible and can be customized according to the specific
characteristics and recognition needs of the landslide mass. For a
given detection area and threshold conditions, due to the complexity
and diversity of landslide bodies, direct feature mapping in low-
dimensional space often fails to fully reflect their characteristics.
Therefore, this article extends the low dimensional spatial attribute
features in the high-dimensional feature space to capture more
subtle information that is helpful for landslide identification:

E = T{A1(P1),A2(P2), ...,An(Pm)} (9)

In the formula, E represents the attribute characteristic values
of the potential coverage area of the landslide mass; T stands
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for attribute set; A1 ∼ An represents feature value ranking; P1 ∼
Pm represents attribute feature categories, such as terrain slope,
vegetation index, soil moisture, etc.

Formulas 8, 9 can be used to extract features from landslide
remote-sensing images based on multiple feature thresholds. The
extracted features can be used to segment the background and
identify landslide targets.

2.2.3 Landslide segmentation replace
In the field of image processing and remote sensing recognition,

the Otsu algorithm is widely used for its ability to automatically
select the optimal threshold for image segmentation, which can
effectively distinguish landslide bodies (i.e., target foreground)
from the surrounding environment (i.e., background) (Neogi et al.,
2024).Therefore, after completing the feature extraction of landslide
remote sensing images based on multiple feature thresholds, the
Otsu algorithmwas selected to segment the landslide remote sensing
images. However, the traditional Otsu algorithm needs to traverse
all possible gray levels and calculate their corresponding inter-class
variances when searching for the optimal threshold. This process
requires a huge amount of computation when processing high-
resolution or large data images, resulting in low algorithm efficiency
and difficulty meeting real-time requirements. To overcome this
limitation, this article innovatively uses the Monte Carlo iterative
method to optimize the remote sensing identification effect of
landslide bodies. As the sample size increases, the results of the
Monte Carlo method will become closer to the true solution, with
high flexibility and applicability.

Firstly, by applying the Otsu algorithm, the pixels in the local
image are divided into two categories: one represents the high
brightness or specific grayscale value range of the landslide body,
and the other represents the low brightness or different grayscale
value range of the background (König et al., 2022; Zhu et al., 2024).
Assuming that the shallow landslide remote sensing image J(i, j)
processed by smoothing enhancement in section 2.1 can be divided
into {0,1,⋯,F} gray levels, where the total number of pixels
corresponding to gray level F is Fb and its proportion is Bb =

Fb/
F
∑
b=0

Fb, then
F
∑
b=0

Bb = 1. Using grayscale value d as the threshold
for segmenting landslide mass and background in remote sensing
images, the pixels in interval [0,d] can be regarded as background
D0, and the pixels in interval [d,F] can be regarded as landslide mass
target D1. Then, the proportion η0 of background pixels and the
average grayscale value μ0 in the remote sensing image are calculated
as follows (Equation 10):

{{{{{
{{{{{
{

η0 =
d

∑
b=0

Bbs( f1(J(i, j)))

μ0 =
1
η0

d

∑
b=0

Bbs( f0(J(i, j)))

(10)

The proportion η1 and gray value mean μ1 of landslide
target pixels in landslide remote sensing images are
as follows (Equation 11):

{{{{{
{{{{{
{

η1 =
d

∑
b=d

BbE

μ1 =
1
η1

d

∑
b=d

BbE

(11)

The calculation formula for the average grayscale value μ of
landslide remote sensing images is as follows (Equation 12):

μ = η0μ0 + η1μ1 (12)

Then, the Monte Carlo iterative strategy is used to optimize
the remote sensing image of the landslide body. Firstly, the large
remote sensing image is segmented into multiple smaller local
image regions using random partitioning techniques (Jiang et al.,
2023). This process aims to reduce the computational complexity of
directly processing the entire image and allow for a more refined
analysis of each local region. Evaluate the confidence level of
the binarization effect within each block based on the random
samples generated by the Monte Carlo iteration process and their
processing results. The calculation of confidence can be based
on factors such as the stable appearance of feature patterns in
multiple iterations, the consistency of classification results, and
the degree of conformity with other known information. High-
confidence segmentation means that the landslide identification
results are more reliable, while low-confidence segmentation may
require further analysis or validation (Shen et al., 2023). Based on
the above block processing and binary recognition results, combined
with the fusion technology of panchromatic images and terrain
data, the accuracy and comprehensiveness of landslide identification
can be further improved. Full-color images provide rich texture
and detail information, which helps to more accurately depict
the morphology and boundaries of landslide bodies. Terrain data
(such as DEM) provides key information about surfacemorphology,
slope changes, etc., which are crucial for understanding the causes,
development trends, and potential risks of landslide bodies. The
specific operational approach is as follows:

(1) Based on the ratio of the number of morphological features
s( f1(J(i, j))) and attribute features E extracted from the remote
sensing image in Section 2.2, the size of the Monte Carlo
random block of the remote sensing image is set to H×W,
and theMonte Carlo calculation steps areN steps.Monte Carlo
random block is performed according to this setting.

(2) Using Monte Carlo to perform Otsu binary thresholding on
remote sensing images. Determine the optimal threshold d
through inter class variance, so that the image can be divided
into foreground (target object, i.e., landslide) and background
parts based on this threshold. The inter class variance θ2

between D0 and D1 can be obtained as follows (Equation 13):

θ2 = μ(D0 −D1) = η0(μ0 − μ)
2 + η1(μ1 − μ)

2 = η0η1(μ0 − μ1)
2 (13)

The inter class variance θ2 can be used to determine the optimal
threshold of the Otsu algorithm. When the θ2 takes its maximum
value, the difference between D0 and D1 is the largest, and the
corresponding gray value threshold d of the landslide remote sensing
image is the optimal threshold.

(3) Monte Carlo iteration itself is based on random sampling
and does not directly correspond to a mathematical formula.
But the sampling process can be based on a random number
generation algorithm to calculate the binary probability
distribution P(i, j) as follows (Equation 14):
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FIGURE 6
(A) Comparison of local window entropy and grayscale mean (B) Comparison of local window standard deviation and grayscale mean.

P(i, j) = 1
N

N

∑
k=1

θ2Ok(i, j) (14)

In the formula,Ok represents obtaining the binary segmentation
result for each pixel, where k ∈ N.

(4) Set the confidence level TP as the probability threshold,
with a value greater than TP used as the foreground
for landslide remote sensing image segmentation (target
object, i.e., landslide), and a value less than TP used as
the background clutter for segmentation. Assuming that in
Monte Carlo iterative calculation, a pixel is identified as
a target foreground above this probability threshold, then
this pixel is identified as a shallow landslide mass in the
final result, achieving remote sensing recognition of shallow
landslide mass.

3 Results and discussions

3.1 Experimental environment and
preparation

3.1.1 Experimental environment settings
The above data and DEM model require the construction of an

experimental platform environment before they can be applied.
Set the experimental environment as follows: Hardware

environment: Intel Core Ultra 9 285K processor, NVIDIA
GeForce GTX1070 graphics card, 10 TB Seagate ST10000NM017B
mechanical hard drive, 260G-SSD solid state drive.

Software environment used: Windows 11 operating system,
Python programming language, MATLAB with SIMULINK
simulation platform, TensorFlow model training and learning
framework. Based on the above experimental environment,
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FIGURE 7
(A) Proposed method (B) High-resolution sensing image recognition
method based on DETR (C) Methods based on image recognition
technology and computer vision technology.

input the DEM model and data into the Revit2020 database
for experimental testing.

3.1.2 Selection of local feature threshold
In order to verify the effectiveness of the shallow landslide

remote sensing identification method based on the improved Otsu

algorithm and multi-feature threshold proposed in this paper, the
local feature threshold is first selected. When smoothing remote
sensing images, a 64 × 64 pixel local window was set, and 100
local window images of landslide areas and surface types affected
by geological disasters were selected for analysis. An appropriate
threshold can be determined by analyzing the distribution of these
images on two indicators: grayscale mean entropy and grayscale
mean standard deviation. The result is shown in Figure 6. When
smoothing remote sensing images, a 64 × 64 pixel local window was
set, and 100 local window images of landslide areas and surface types
affected by geological disasters were selected for analysis.

(a) Comparison of local window entropy and grayscale mean
(b) Comparison of local window standard deviation and

grayscale mean

Figure 6 shows that the one-dimensional entropy, grayscale
mean, and standard deviation values of normal ground types in
non-landslide areas are lower. In contrast, the local characteristics
of ground types in landslide areas exhibit higher numerical
distributions. Based on the observation of Figure 6, the following
thresholds can be set: the threshold for one-dimensional entropy
is 4.2, the threshold for grayscale mean is 50, and the threshold
for grayscale standard deviation is 20. When the eigenvalues of a
local window are all less than or equal to these three thresholds, the
window is classified as a normal ground type. If these conditions are
not met, it is identified as a landslide type.

3.2 Analysis of identification comparison
experiment results

To further verify the application effect of the shallow landslide
remote sensing recognition method based on the improved Otsu
algorithm and multi-feature threshold proposed in this paper,
the high-resolution remote sensing image landslide recognition
method based on DETR proposed in reference (Du et al.,
2023) and the landslide recognition method based on image
recognition technology and computer vision technology proposed
in reference (Xin et al., 2023) were compared and tested together
with the method proposed in this study. The binary segmentation
effect of remote sensing images and the accuracy of landslide
recognition will be used as experimental indicators to verify the
effectiveness of different methods.

3.2.1 Binary segmentation effect
In this study, binary segmentation was performed on the

target object (landslide) and background in remote sensing images.
Therefore, the binary segmentation effect of different methods on
remote sensing images in complex lighting environments with
environmental noise interference is shown in Figure 7.

(a) Proposed method
(b) High resolution remote sensing image recognition method

based on DETR
(c) Methods based on image recognition technology and

computer vision technology

Figure 7 shows that although all three methods can segment
the target object from the background, there is still a significant
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FIGURE 8
Identification rates of shallow landslide bodies using different methods.

gap in the binary segmentation effect of different methods in terms
of details. Among them, the high-resolution remote sensing image
landslide body recognition method based on DETR can effectively
segment ordinary ground and landslide bodies. However, some
areas containing vegetation have missing details, which may reduce
the accuracy of shallow landslide body recognition. After binary
segmentation of remote sensing images based on image recognition
technology and computer vision recognition methods, some areas
have high noise, blurriness, and low edge features, making it difficult
to accurately segment the target object and background, which is not
conducive to shallow landslide recognition. In contrast, the shallow
landslide remote sensing recognitionmethod based on the improved
Otsu algorithm and multi-feature threshold proposed in this article
can clearly segment the target object and background in complex
lighting environments after binary segmentation of remote sensing
images, with clear edges and good binary segmentation effect, which
can effectively improve the accuracy of shallow landslide remote
sensing recognition.

3.2.2 Accuracy of landslide identification
The accuracy of landslide identification refers to the ability to

correctly identify landslide bodies (including their location, shape,
size, and other information) after processing remote sensing images
through specific methods. The recognition rate is a key indicator
for measuring the effectiveness of landslide identification methods,
which is the ratio of the number of correctly identified landslide
bodies to the actual number of landslide bodies. The higher the
recognition rate, the stronger the recognition ability of the method
and the better the actual application effect. Arrange 150 monitoring
points in the research area to monitor landslide displacement,
randomly select 100monitoring points for experimental testing, and
verify the recognition rate of different methods on shallow landslide
bodies in the research area. The comparison results of identification

rates of shallow landslide bodies in the study area using different
methods are shown in Figure 8.

Figure 8 shows that as the number of monitoring points
increases, the identification rate of shallow landslide bodies using
different methods shows a decreasing trend. Among them, the
recognition rate of landslide bodies based on the DETR high-
resolution remote sensing image recognition method decreased
from 96% to 87%, with a decrease of 9 percentage points; The
recognition rate based on image recognition technology and
computer vision technology has decreased from 95% to 86%, a
decrease of 9 percentage points. The shallow landslide remote
sensing recognition method based on the improved Otsu algorithm
and multi-feature threshold proposed in this article has reduced the
recognition rate of shallow landslides in the study area from 99% to
95%, with a decrease of only 4 percentage points and a recognition
rate of not less than 95%.This indicates that themethod proposed in
this article is more accurate in identifying shallow landslides in the
study area and has good application effects.

4 Conclusion

This article proposes a shallow landslide remote sensing
identification method based on the improved Otsu algorithm
and multi-feature threshold. By conducting detailed analysis and
processing of remote sensing images, the traditional Otsu algorithm
has been optimized, and a multi-feature threshold strategy has
been introduced to improve the accuracy and reliability of landslide
identification. The experimental results show that this method can
effectively distinguish landslide bodies from complex backgrounds
in complex remote sensing images, accurately identify shallow
landslide bodies, and provide strong technical support for early
warning and prevention of geological disasters.With the continuous
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advancement of remote sensing technology and the increasing
richness of data sources, there is still room for further optimization
of research methods, such as combining higher-resolution image
data or introducing machine learning algorithms to improve
recognition performance. Future research will focus on these
directions to achieve higher recognition accuracy and provide
more comprehensive and in-depth solutions for monitoring and
managing landslide disasters.
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